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For each n, let U, be Haar distributed on the group of n X m unitary matrices.
Let Xn,1,...,Xn,m denote orthogonal nonrandom unit vectors in C™ and let u,, =

(uh, ..., u)* = UlXp g, k=1,...,m. Define the following functions on [0, 1]: X,’i’k(t) =
’

\fz[nt](\u |2 — %), Xkk (t) = \/QnZEnq ukuk/, k < K'. Then it is proven that

5k,§RXﬁ K , SXﬁ’k , considered as random processes in D0, 1], converge weakly, as

n — oo, to m? independent copies of Brownian bridge. The same result holds for the
m(m+1)/2 processes in the real case, where Oy, is real orthogonal Haar distributed and

Xp,i € R™, with /n in X" and v2n in X" replaced with 5 and /1, respectively.

This latter result will be shown to hold for the matrix of eigenvectors of M,, = (1/s)V,V,;
where Vj, is n X s consisting of the entries of {v;;}, 7,7 = 1,2, ..., i.i.d. standardized and
symmetrically distributed, with each x,; = {£1/v/n,...,£1/y/n} and n/s — y > 0
as n — oo. This result extends the result in [J. W. Silverstein, Ann. Probab. 18 (1990)
1174-1194]. These results are applied to the detection problem in sampling random
vectors mostly made of noise and detecting whether the sample includes a nonrandom
vector. The matrix Bp = 0vpv), + S, is studied where S, is Hermitian or symmetric
and nonnegative definite with either its matrix of eigenvectors being Haar distributed,
or S, = My, 6 > 0 nonrandom and v,, is a nonrandom unit vector. Results are derived
on the distributional behavior of the inner product of vectors orthogonal to v, with the
eigenvector associated with the largest eigenvalue of By, .

Keywords: Weak convergence on D|0,1]; eigenvectors of random matrices; Brownian
bridge; Haar measure.

Mathematics Subject Classification 2020: 60F05, 15A18; 62H99

1. Introduction

Let {vi;}, 4,7 = 1,2,... be iid. real valued standardized random variables
with finite fourth moment, and for each n let M, = %VnVnT, where V,, = (vs5),
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t1=1,2...,n,j=1,2,...,s = s(n) and n/s — y > 0 as n — oo. This paper is
essentially an extension of results in [I7], where it is shown that random elements
in DJ0, 1], the space of r.c.L.l. function on [0, 1] embodied with the Skorohod metric,
defined by the eigenvectors of M, converge weakly to Brownian bridge under the
assumption v;; is symmetrically distributed. Specifically, denote by O, A, O the
spectral decomposition of M,,, where the eigenvalues of M, are arranged along the
diagonal of A, in nondecreasing order, and the columns of the orthogonal matrix
O,,, are the corresponding eigenvectors (a unique determination of O,, is outlined
in [I7, Sec. 2]). For each n let x,, € R™ be a nonrandom unit vector, and let
Yo = (W1,Y2,-- -, yn)? = OLx,,. Define for t € [0,1],

\f S ( ) ([a] = greatest integer < a). (1.1)

The main result in [I7] is that when v;; is symmetrically distributed, for x,, =

1\T
(#L, s+ )T,

X, —=p W° asn— o0 (1.2)

(D denoting weak convergence in D[0, 1]), where W° is Brownian bridge [4, p. 64].

This result is a partial answer to the question of how the matrix of eigenvectors
of M, are related to the Haar measure on the group O,, of n x n orthogonal matri-
ces, which occurs when v1; is mean 0 Gaussian, That is, when M,, is a matrix of
Wishart type. The question is originally raised in [14] where it is conjectured that
for arbitrary centered vy the distribution of O,, in O,, is near in some way to the
Haar measure ([T4HI7], see also [I3]). This resulted in [14] to an investigation in the
behavior of (ILT]). When O, is Haar distributed y is uniformly distributed over the
unit sphere in R”, being the same as the normalized vector, ((1,...,¢,)7T, of i.i.d
mean-zero Gaussian entries. Equation (LI can then be written as

[nt]

Z ; [nt]
Xl = Yo S B -t (Y e -
Z<3 Z@ =

(=1

-

i=1

(1.3)

Using the fact that the fourth moment of a standard normal random variable is 3,
we apply Donsker’s theorem [4, Theorem 16.1] along with standard results on weak
convergence of random functions on DJ0, 1] to arrive at (2.

In [I5] [1€], it is shown that a necessary condition for ([I2]) to hold for all unit
vectors X, is that when E(v?;) = 1 we must have E(v],) = 3. Indeed, it is shown in
[T6] that when E(v%;) = 1 but E(vi;) # 3, there exist sequences {x,,} of unit vectors
such that {X,,} fails to converge weakly. This result suggests a strong relationship
needs to exist between the distribution of v11 and Gaussian in order for (L2) to
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hold for all sequences of unit vectors, and leaves open the possibility that this is
true only when vy is Gaussian.

However, the result in [I7] indicates some similarity of the distribution of O,, to
Haar measure, at least when v;; is symmetrically distributed and the entries of x,,
are equally weighted.

In this paper, another property of the Haar measure on O, is derived and is
shown to be true for v1; symmetrically distributed and on unit vectors considered
in [I7]. In order to provide a more complete setting, the property is stated and
derived on U,,, the group of n X n unitary matrices. The corresponding statements
and steps in the verification for the real case will be specified in the proof.

Let for d > 2 an integer, and b > 1, DY = H'ii:l DI[0,b] and 7 denote the
smallest o-field on DY in which convergence of elements in DY is equivalent to
component-wise convergence. We will prove the following.

Theorem 1.1. For each n, let U, be Haar distributed on U,. Let X,.1,...,Xn,m
denote orthogonal nonrandom unit vectors in C" and let u, = (up,...,ul)* =
U*Xni, k =1,...,m. Define the following functions on [0,1]:

[nt] [nt]

, 1 , .
XEH(E) =v/nY <|u;€|2 - H)’ XEF () =Von ) apuy, k<K (14)
=1 =1

(“77 denoting complex conjugate). Then Xﬁ’k,%Xﬁ’k/,%Xﬁ’k/ k < k', considered
as random processes in D[0, 1], converge weakly in D}n2 to independent copies of
Brownian bridge.

The fact that X** converges weakly to W° follows along the same lines as
in (L2) where now we use the fact that a vector uniformly distributed on the unit
sphere in C" can be achieved by normalizing an i.i.d. vector, (z1,...,2,)7, where
each z; is standard complex normal (real and imaginary parts i.i.d. N(0,1/2)), and
subsequently E|z; |2 = 1, E|z1|* = 2. The reason why RX**  SX*+ | < |/ converge
weakly to W° will be seen in the proof. It follows from how the proof is approached,
by creating the u, j after applying the Gram—Schmidt orthogonalization process on
a matrix of i.i.d. standard complex Gaussian, resulting in a Haar distributed unitary
matrix.

The real case is stated in the following.

Theorem 1.2. For each n, let O,, be Haar distributed on O,,. Let Xp1,...,Xnm
denote orthogonal nonrandom unit vectors in R™ and let yr, = (Yr.1, -+ Ykn)®
Olxp,k, k=1,...,m. For each of these k define XFE a random element in D[0, 1]
to be (LI) with y; replaced with y,,; For 1 < j < k < m define Y% a random
element of D|0, 1], to be

[nt]

Vi (t) = \/ﬁzy]lykl (1.5)

i=1
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Then the random functions XE, Y% 1 < j < k < m converge weakly in D},
d=m(m +1)/2, to independent Brownian Bridges.

The extension of the result in [17] is the following.

Theorem 1.3. Assume vi1 is symmetrically distributed about 0, Ev‘ll1 < 00, and the
m orthogonal vectors X, x = (£1/y/n, ..., £1//n)T (this of course necessitates the
n’s to be restricted to multiples of 2™). Then, with O,, being the orthogonal matriz
of eigenvectors of M,, = %VnVnT, the conclusion of Theorem L2 holds.

The motivation behind studying these quantities is to analyze the detection
problem in sampling random vectors mostly made of noise, and determining whether
the sample includes multiples of a nonrandom vector. For example, reading off the
values a bank of antennas is receiving at discrete intervals of time. If the values
consist of pure Gaussian noise, then the matrix forming the sample correlation
matrix S, is modeled by a Wishart matrix, and its matrix of eigenvectors would be
Haar distributed, either in O,, or U,,. Suppose at certain periods of time multiples
of a nonrandom unit vector v,, appear, resulting in the matrix

B, =0v,v:,+S, 6>0 nonrandom. (1.6)

It is straightforward to verity that AL, the largest eigenvalue of B,, is the unique
value which solves

Vi = 8,) v, =1/6 for A > Anax(Sn), (1.7)

where I is the n x n identity matrix and A\pax(Sy) is the largest eigenvalue of S,,.
Moreover, a multiple of the corresponding eigenvector is

AT —S,) " v,. (1.8)

The goal is to understand the random behavior of this largest eigenvector for n
large in order to infer as much as possible the nature of v,,. We will place S,, in a
more general setting.

Let, for each n, S, be a Hermitian nonnegative definite random matrix whose
matrix of eigenvectors is Haar distributed in U,,. Let F,, denote the empiri-

cal distribution function of the eigenvalues of S, that is, for x > 0, F,(x) =
1
n

in distribution to F, a nonrandom probability distribution function, continu-

(number of eigenvalues ofS,, < x). Suppose with probability one F,, converges

ous on [0,00), where the largest eigenvalue of S, converges almost surely to
Amax > 0.
We will prove the following.

Theorem 1.4. Suppose for all X\ > Amax, [(A — z) " dF(z) < 1/6 (integral being
over [0, Amax]). Then with probability one N} — Apax as n — oo and knowledge of
the limiting behavior of (L8) is beyond the scope of this paper.
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However, if there exists A > Apax such that [(A—xz)"'dF(z) > 1/6, then, since
J (A —2)7'dF (z) decreases to zero, there exists a unique A > Amax such that

/(A1 —z) tdF(z) =1/6 (1.9)

and AL 2% A

For any x,,1,...,Xpn,m—1 unit vectors orthogonal to v,

Vonx, (AT — Sn) vy

—p /()\1 —2)" AWy .(F(z)) +i/(/\1 —z) Wy, (F(z)), (1.10)

where W ., W7 ., k < m—1, are independent copies of Brownian bridge, and 14 is
the indicator function on the set A. Thus, the limits are i.i.d. mean zero Gaussian,
and it is straightforward to show their common variance is

/()\1 —x)2dF (z) — </()\1 — :c)ldF(ac)>2. (1.11)

Moreover, the norm of the eigenvector (L8]) satisfies

IOALT — Sp) tv || &2 </(>\1] - x)QdF(:z:)> v : (1.12)

With Theorems and come the analogous results in the real case,
with (LI0) becoming

Vnxt (AT = 8,) v, —p /()\1 —2) YW (F(x)). (1.13)

For the matrix S,, = M,, in Theorem the vectors v,, and x,,; are all orthonor-
mal vectors of the form (+1/y/n,...,41/y/n)T. There is a limiting F in this case,
described below.

These results can aid in detecting the presence of a particular signal by establish-
ing the distributional behavior of inner products of the eigenvector of B,, associated
with the largest eigenvalue with vectors orthogonal to v,,. Knowledge of eigenvalue
behavior of S;, can aid in the detection. For example, if S,, = M,, where the v;;
are N(0,1), F, is known to be the Marcenko—Pastur distribution [8, 9] 11|, [I8H20],
proven in [20] under the assumption of finite second moment of v1;, where, with
a=(1-y)?b=(1+y)? fory <1, F, has density

(x—a)((b—2)
fy(x) _ 2myx

0 otherwise

a<x<b,

and for y > 1, F has mass 1 —1/y at 0, and density f,(z) on ((1—/y)%, (1+/%)?).
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These results have connections to the spike model [2 [B] [12], where a sam-
ple covariance matrix is studied with several of its population eigenvalues being
altered, not enough of them to change the limiting empirical spectral distribution,
but enough of a change in values to reveal individual sample eigenvalues associated
with them. For B,, the size of  in relation to the function f(A\) = [(A— ) 'dF(x)
on (Amax, 00) determines whether a spike sample eigenvalue is revealed.

The next sections contain proofs of these results. Section Pl contains the proofs
of Theorems [Tl and [[2] Sec. [3 has the proof of Theorem and Sec. M has the
proof of Theorem L4

2. Proofs of Theorems [1.1] and

We concentrate on the proof of Theorem [[LT] and indicate the analogous results in
the real case.

We begin with understanding the relationship between w,, j and uy k& # k.
Let U be any unitary matrix having x,, ; k& < m for its first m columns. We know
that the matrix U U is also Haar distributed, so we see that u,, ; k < m, have the
same distribution as the first m columns of a Haar distributed matrix. The following
lemma will enable us to express their relationship in a simple way.

Lemma 2.1. Let Z = (z;5) be n X n consisting of i.i.d. complex Gaussian entries
(211 = zp + @2 2,2 independent N(0,1/2)). Form the n x n unitary matriz U
by performing the Gram—Schmidt process on the columns of Z. Then U is Haar
distributed in U,, the group of n X n unitary matrices.

Proof. Let zg,u; be the kth column of Z, U, respectively. Then

u; = fi(z1) = (Hz1—1||> “

and recursively

1

= —————(Zr — Pk),
T2r —paf] P

u, = fi(z1,...,2k)
where

pr = (Wizp)uy + -+ + (Uf_12x)up—1.

Let Q € U,. We will show for k=1,....,n

Qui = Qfi(z1,. .., 2) = fr(Qz1,...,Qzr). (2.1)
We use induction. k = 1 is obvious. Assume it is true for £ =1,2,...,k — 1. Then
Q Q- Qpi)
uy = 5~ (WZr — Pk
|Qzr — Qpk|l
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and
Qpr = (Qf1(21))" Qzr)Q f1(z1) + - + ((Qfx—1)"Qz)Q fr—1(21, - . -, Z—1)
= ((f1(Q21))" Qz) {1(Qz1) + - + ((fe-1(Q21, . . ., Qzp—1))" Qz)

X fk—l(QZh o 'aQZk—l)a

by the inductive hypothesis. Therefore, we get [21]).
We use now the fact that QZ ~ Z to conclude

QU = (Qfl(zl)an2(z17Z2)7 .- -ann(Zla cee ,Zn))
= (fl(Qzl)af2(Qz17QZ2)7 - 'afn(QZlv . -aQZn))
~ (fi(z1), f2(21,22), . .., [u(2Z1,s ... 20)) = U

and we are done. O

We will use Lemma B] after we establish the framework for considering the m?
processes on a common probability space.

We assume the reader is familiar with the basic concepts of probability, includ-
ing: the notion of a measure space {Q, F}, where F is a o-field of subsets of €2, and
a probabilty space {2, F, P}, where P is a probability measure defined on F. Given
two measurable spaces {1, F1}, {Q2, Fa}, a mapping T : Q1 — Qo, is measurable
Fi/Foif T7'Ay = {w € Qy : Tw € Ay} € F for each Ay € Fy. For any collection
A of subsets of a set Q, o(A) denotes the smallest o-field containing .A.

We also assume the reader is also familiar with the material in [4] [6] on weak
convergence of probability measures on metric spaces, most notably the metric space
D = D|0,1] consisting of real valued functions on [0,1] that are right continuous
with left-hand limits, the o-field D, defined by the Skorohod topology on D. For
0<t; <--- <t <1, let my..t, denote the natural projection from D to R¥:

Tty -ty (‘T) - (x(tl)v s 7x(tk))

for any € D. Let D denote the collection, W;,l,,tkhﬁ forany k, 0 <t; <--- <ty <
1 and H € R*, the o-field of Borel sets in R¥, called the class of finite-dimensional
sets. In [6] it is shown that Dy is a 7-system (closed under finite intersections) and
0(Dy) = D. Therefore, |5 Theorem 3.3] Dy is a separating class for probability
measures on (D, D): if probability measures Pq, P2 agree on D then they are iden-
tical. Thus, showing weak convergence of a sequence, { P, }, of probability measures
on (D, D) to a probability measure P (denoted by P, = P) amounts to verifying
{P,} is tight (that is, for any € > 0 there exists a compact set A. € D such that
Pn(A¢) > 1 — € for all n), and P,(A) — P(A) for all A € Dy.

We wish to extend this criterion of weak convergence to the product space Dy =
Hle D with the product topology 7y, the smallest o-field in which convergence
of elements in Dy is equivalent to component-wise convergence. Since (D, D) is
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separable, it follows from natural extensions to the material in [6 M10], (Dg, 7) is
separable, which implies

d
Tda<{HAZ— : each AZ-ED}>. (2.2)
i=1
Let B = {H'ii:l A; s each A; € Dy}). It is clear that B is also a m-system. We also
have the following.

Lemma 2.2. o(B) = 7;.

Proof. We have o(B) C 7;. Let Ty (21,...,24) = 21, and define
C={AeD: T 'Aco(B)}.

We have obviously D € C and A € C for each A € Dy, since T; 'A = A®
[I2! D € o(B). For A € C, Ty A° = (T 1A)° € o(B), which implies A° € C.
For {A,} C C, Ty ' U A, = UT['A, € o(B), implying UA,, € C. Therefore, C
is a o-field containing Dy, and hence contains D = o(Dy). Therefore, C = D,
and we have for any A € D A® H?:_ll € o(B). Similarly, we have for 2 < j < d
(Hz:—ll D)®A®(H?:_1j D) and (1—[;1:—11 D)® A all contained in o(B), so it also contains
all H?Zl A; for each A; € D. Therefore, by [22]), we have 7; C o(B), and we have

our result. O

We see then that from [5] Theorem 3.3] B is a separating class for probability
measures on (Dg, 7y).
It is straightforward to verify that

d
B= {HAi1Ai:”z;,l...,tkHika172,---,0§t1 <<ty < 17Hi€73k}-
i1

(2.3)

Suppose now we have a probability space (€2, F,P) and a mapping X from 2 into
Dy, for which each component x; is a random element in D, that is, it is measurable
F/D. Then for any A; € D,i=1,...,d, we have

d d
X! <HAZ> = ﬂ{w cxi(w) € A} € F.

Therefore, from (Z2)) and [5, Theorem 13.1] we have that X is measurable F /Dy,
that is, (x1,...,24) is a random element in Dy.

If £1, 2, ...,z are random elements from probability space (2, F,P) to D (Dy),
we write x,, = = to mean the measures z,, induce on D (Dg) converge weakly to
the measure on D (D) induced by . Also we say {x,} is tight (on D or D) if the
sequence of induced measures is tight.

2250033-8



Random Matrices: Theory Appl. Downloaded from www.worldscientific.com
by WSPC on 07/05/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Weak convergence of a collection of random functions

We then have the following.

Lemma 2.3. Suppose {x},..., 2%} is a sequence of random functions, each lying
in D, defined on a common probability space (0, F, P). Then, from above, for each
n{xl, ... 22} is a random element in Dy. Assume each {x!} is tight. Moreover,
assume there exists a random element (z',...,x%) in Dy for which

(z(t1),...,zL(t), ..., 2% (t1),. ..,z (ts))
= (z(t1),. ..,z (tr), ..., 2% (t1), ..., 2% (ty))

(weak convergence on R¥) for all k, t1,... tx. Then (x),... 2%) = (2!, ... z%).

Proof. Let P!, P denote the measures the 27, 7 induce on D and Py,,q the measure
{zL,..., 2%} induces on D4. Then each { P!} is tight. Therefore, for any ¢ > 0 there

ns

exists compact sets A € D for which P’ (AY) > 1 — ¢/d. Then [6], M6] we have
Hle A! compact, and

d
P <HA§> =P({w: ! (w) € AL i <d})
i=1
=P(M{w: 2} (w) € AL}) =1 - P(U{w: 2} € A'}°)
>1-) PLA) >1—e
Therefore, {P,, 4} is tight. Since B is a separating class, and it can be expressed as

in (3), we must have {z.,..., 24} = {2, ... 2¢}. O

We proceed to show each of X*F RXEF SXkHF | < k' converges weakly to
independent copies of Brownian bridge.
The following lemma is needed throughout the remaining arguments.

Lemma 2.4. If random variables X,,,Y,, are such that {Y,} is tight and X, ip, 0,
then X,,Y, <% 0.
Proof. For e >0 M > 0 we have

P(|Xn| |Yn| > 5) = P(|Xn| |Yn| > €, |Yn| > M) + P(|Xn| |Yn| > €, |Yn| < M)
< P(|Yn| > M)+ P(|X,| > €e/M).

Therefore, limsup,, P(|X,| |Y.| > €) < limsup,, P(|Y,,| > M) which can be made
arbitrarily small. We get our result. O

Let Z and U be as in Lemma [Z.Il1 We can assume the first m columns of U are
the orthonormal vectors u,, ; where in the following we suppress the dependence
on n. We can also assume that Z and U are n x m. Define r;; = ujz for j <k,
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ri1 = ||z1]|, and for k > 2, rip = ||z — pr||- We have then r;;u; = z1, and for
k>2,
k-1
TeekUg — Zg — erkuj'
j=1

Letting R denote the m X m upper triangular matrix (r;,) we obtain the QR
factorization of Z: Z = UR. Letting A = R~! we have U = ZA. We have then for
each k

k—1
Uy, = agkZE + Z AjiZ;5. (2.4)

j=1
For j < k, u; and z; are independent. Therefore,
E(rjr) =0 and E|rj|> = 1. (2.5)

Therefore, above the diagonal the entries of R are tight. By the weak law of large
numbers

|zl /v/7 225 1. (2.6)

It is straightforward to verify

k—1
rie = llzell* =Y Irel*. (2.7)
j=1
Therefore, we have
2
Lkk 14 0(1)/n, (2.8)

22

where here and in the following O(1) denotes a tight sequence of random variables.

From (Z0) and ([Z8) we get

We have agi, = 1/rgk and for j < k aji, = Ry;/ det(R), where Ry, is the kj cofactor
of R:

Ry; = (—1)" det(M)

and M = My, is the (m — 1) x (m — 1) matrix obtained by deleting the kth row
and jth column of R. We have det(R) = [];~, 4. For det(M) we use the Leibniz
formula

Qi) = 3 sen(o) [ mios

0ESm 1
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where S,,—1 is the set of all permutations of {1,...,m — 1}, the sum is over the
collection of all permutations o € S,,,—1 and sgn(o), the signature of o, is 1 if
the reordering of (1,...,m — 1) given by o can be brought back to (1,...,m — 1)
by successively interchanging two entries an even number of times, —1 if an odd
number of interchanges are needed.

We see then that aj, can be written as a sum of (m — 1)! terms. The largest
term in absolute value occurs for that o where all r;; ¢ # j, k are included. The
remaining entry must be r;,. Indeed, it will lie in row j of M, the only row of M
not containing an 74, ¢ # j,k, and column k — 1 of M (column k of R) the only
column of M not containing an 7;;, i # j, k. The o creating this term is necessarily
the top row of

k—1 ... k=2

j o k=1
except when k = j + 1 in which case the top rowis 1 2 ... m — 1. Here the second
row is 1 2 ... m — 1. All other numbers in the top row are in increasing order.

When k£ > j+1 it takes k — j — 1 pairwise interchanges to bring £ —1 to the right of

k — 2 (no interchanges when k = j + 1). Therefore, sgn(c) = (—1)*=7~!, and since
j+k+k—7—1=2k—1 we have

aji = —rjk/ (rjiree) + O(1) /0.
We have

1 1 i
(i) =5 (1)
TiiTkk n n T Tkk

so from (9)

ajr = —rjr/n+o(l)/n=0(1)/n, (2.10)

where here and in the following o(1) denotes a sequence of random variables con-
verging in probability to zero. We have

j—1
* _
ik = (ijk — E Tij”k) /Tjj
i=1

=zjzi/rj; +O(1)/v/n

— 2/ + Z\JZ_’“ (g - 1) o)/ V.

By the Central Limit Theorem z}zy//n is tight. Therefore,

aji = —zz/n*? + o(1) /n. (2.11)
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Let || - || represent the sup nmorm on functions. Write z; = (zj,...
Using ([24) we have

[nt] o1 2

Kok ; ; [nt]
X2F(t) =+v/n Z akkzi—i—z%kz; -
i=1 =1
2
[nt] [nt] |k—1 [nt] k—1
2
SRCIER SIETES 3| ) PS5 ST
=1 |j=1 =1 5=1
[nt] k—1 ]
Fau 3 S anted -
i=1 j=1

Using Cauchy—Schwarz, Lemma 2.4 the weak Law of Large Numbers, and (2.10)

we have

[nt] |k—1 2 k—1 1 k—1 .
VA D e || <02 lanl Yzl 0. (212)
i=1 |j=1 i=1 j=1
We have using (2.9) and 210)
[nt] k—1 [nt] .
nakkzz%kzkz < (0(1)/v/n) Z\/— szz 2Py,

i=1 j=1
since || - || 1is continuous on (C10,1], and the real and imaginary parts of
(v/2/n) Zim] , each satisfying the assumptions of Donsker’s theorem [4, Theo-
rem 16.1], converge weakly to Wiener measure, which lies in C[0, 1], so that from
[, Theorem 5.1] (with b = || - ||} | = 321" 2421 is tight, and using Lemma 2] we

get our result.

From (2.6]), 1) and ([Z9) we have

[nt] [nt]

NS
nakk |Zk|2 E | L2 = llzel®vnlad, — 1/ ]zl = 0(1) %" 0,
| r2

kk

Therefore,
IXEE — XF 20

where
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We have
[nt]
- t] n
XN(t) = v (lzif> = 1) - [n—(IIZkIIQ*n) = —ha(WE (1)),
(EAR ; g n (EAR
where

and hy, : D — D is defined as h,(X) = X(t) — ([nt]/n)X(1). Let h(X) = X(t) —
tX (1). We have for any X € D ||h,(X)—h(X)|| < || X(1)]|t—[nt]/n| <|XQ)|/n —
0. If X,, — X in the Skorohod topology, then there exists {\,}, each increasing
continuous on [0,1] with A,(0) = 0, A,(1) = 1, such that ||[A\,(¢) — ¢|| — 0 and
|1 Xn(t) = X(A\n(t))|| — 0. Therefore,

([ (X (2)) = (X (An (1))
< ||hn(Xn(t)) - hn(X()‘n(t)))H + ||hn(X()‘n(t))) - h(X()‘n(t)))H
< [1Xn(t) = XA @) + [Xn(1) = X @) + [X D) [([nt]/n) — t] — 0.

Therefore, the set F in [4, Theorem 5.5] is empty, and by (9.13), [4, Theorems 16.1
and 5.5] we have hn(W,]f) —p (W) =W?°, W denoting Wiener measure.

We have ||Xk R (WHE)| < |11 — n/||zx||?| max; |k, (WE(t))|. By @8) we have
11— n/|lz]]?] <2 0. Again, from [, Theorem 5.1] we have ||h,(W¥)|| —p |[W°]|.
Therefore, by Lemma 2.4] we have

|XE = ha (W) 22> 0.

Therefore, X}* —p W,

For k < K/,
[nt] k—1 K —1
A » o . .
XM () =V2n E apkZy, + E ajkZ; Qs 2 + E Ajrir 250
i=1 Jj=1 J'=1
[nt] k-1 [nt]

=V2n | arrar i E zkzk,—i—akk E aj/k/ E zkz,

[nt] [nt] k—1 k=1

+ Qg E aji; E zt zk,—i— E E ajkz;- E aj/k/z;,
1= j':l
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From Cauchy—Schwarz and (2.12) we have

k—
\/—Z Zd z Zaj/k/z,

[n] K1 H

, o\ 1/2
[nt] |k—1 [nt] |K'—1 )
— g 1.p.
< NG g g ajkz;» vn g g aj/k/z ) — 0.
i=1|j=1 =1 |j/=1

Similar to what was done earlier we have for j' # k and j # k' we have both

[nt] [nt]

Vnagga g E Zpzp || and ||vnapra E Zi 2}

i=1 i=1

converging in probability to zero. Also

[nt]

\/ﬁakkak/k/f E ZkZ;ZC/ ==

n

E Zkzk/

‘ [nt]

TkkTk K’

We have using ([2.17])

1
1, [nf <
\/ﬁzkzk’ + Vnagkagy ; EAR

[nt]

+ LAY [mf] + nagrarr — \/_ Z — 1)

= Zkzk'

st P VR i)z 0?2 4 o(1) )

IN

|7

[nt]

+ nakk|akk’ \/— Z

Since the function inside the norm of the second term converges weakly to Wiener
measure, the second term converges in probability to zero. The first term is

11— Via| + o(1)vnag 22 0.

‘ zkzk;/

Therefore,

k k/ 2 [nt] [nt] ’i.p.
Xn, — g ZEIZ ]7;/ — TZZZ]C/ — 0.

i=1
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We separate out the real and imaginary parts of the process X, fj’k/ is approaching.
Write zx = 2gr + 1214, 27 = 2k + 1257 Then the real and imaginary parts of X,’f’k/
are approaching, respectively,

2 [nt] 7’L n
J o J i J J _ k.k
" § :(Zkrzk’r + Zkizk’ . § : L2ty Zhiztn) | = hn(Wy ()
=1 =1
and
) [nt] n n
J I Jj . J J o _ kK i
o E :(Zkrzk’i = ZiZir) — o E : Zkrzk’i = Z1iZry) | = ha (W2 (1)),
j=1 j=1
where

[nt]
/
Whkor( \/ E (2] 2, +2.2],.) and
[nt]
k,k" J I
w, \/75 szzk, — 24 %)

It is clear now that each of X®k RXFK  SXFHF converges weakly to Brownian
bridge. In order to show they converge weakly in D,,> to independent copies of
We, we will show the weak convergence of the W, Wff’k/“, W,’f’k/’i to Wk, WhHr,
Wi independent copies of Wiener measure, using (9.13), Theorem 5.5 (on D,,2),
and Theorem 16.1 all in [4].

Let W, denote the m x m matrix consisting of the W¥ on the diagonal, the
W,’f’k/“ on the lower diagonal, and the Wffk/l on the upper diagonal. Let W denote
an m X m matrix consisting of independent copies of Wiener measure.

We have each entry of W, is tight, satisfying the first condition of Lemma
Choose k, 0 <t; < --- <t < 1. To prove

(Wia(t1), -, W (te)) —p (W(tr), ..., W(t)) (2.13)
it is sufficient to show
(Wi (t1), Wi (t2) — Wi (t1)s -+ Wi (t) — W (te_1))
—p (W(t1), W(ts) — W(t1), ..., W(te) — W(ti_1)).

But the k matrices W, (t¢) — W,,(t—1), where ¢y = 0, are independent. By the
natural extension to [4, Theorem 3.2] it is sufficient to show each of these converges
in distribution. We use the Cramér—Wold device [4, p. 48]. Thus, we need to prove
that linear combinations of the entries of W, (t¢) — W, (t¢,—1) converge in distribution
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to the corresponding linear combinations of the entries of W (ty) — W(t,—1). Fix
A = (a;5) € R™*™. Let o denote Hadamard product on m x m matrices and let 1
denote the m-dimensional column vector consisting of 1’s. Let

Y =1%(A o nW,(1/n))1.

We have EY = 0 and E(Y?) = )7, . a7;. Therefore, from the central limit theorem

7,7 %,
1T(A o (Why(te) = Wi(te—1)))1 —=p N [ 0, (te — te—1) Zafj )
]

the same distribution as 1T (Ao (W (t;) — W (t,—1)))1. Therefore, by Lemma 23} we
are done.

It is clear that the analysis carries over to the real case, so that Theorem [[.2] is
true. Indeed, when Z consists of i.i.d. standard Gaussian, we use in Lemma [Z.1] the
fact that for any @ € O\ QX ~ X, and for the scaling of the X% and Y% we have
now the variance of a standard Gaussian is 1, while its fourth moment is 3.

3. Proof of Theorem

We let F), denote the empirical distribution function of M,, with almost sure limiting
distribution function F, specified above. We will also use the fact [21] that, because
Evi; < 00, Amax(M,,), the largest eigenvalue of M,, satisfies

Amax(My) — (14 /7)*  as. asn — oo. (3.1)
We begin with two lemmas.

Lemma 3.1. Let S be a metric space with X,,,X random elements in S and
X, —p X. Suppose for each n, £, is a random posilive integer, independent of
{X,} such that for any positive integer j, P({, < j) — 0 as n — oo. Then
Xv, —p X.

Proof. Let A be an X-continuity set. For any positive integer j we have

P(Xe, € Alln = j) = P(Xy, € Al = j)/P(ln = j)

P
P(X; € A, by = j)/P(ln = j)
P

(Xj € A)

For € > 0 let positive integer M; be such that |P(X; € A) — P(X € A)| < ¢/2 for
all j > M. Let M > M; be such that P(¢,, < M;) < ¢/4 for all n > M. Then,
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using

o0

P(Xe, € A) =Y P(X; € AP(L, = j)

we have for all n > M,

IP(X € A) — P(X,, € A)|

< Y IP(X € A)—P(X; € AIP(ln = )
Jj=Mi+1
M,
+YIP(X € A) = P(X; € A)P(ly =j) < €/2+¢/2=F.
j=1
Therefore, since € was arbitrary we have X, —p X. O

Lemma 3.2. Let S’ and S” be separable metric spaces, with X', X! random ele-
ments of S’, defined on probability space P and X", X! random elements of S,
defined on probability space P’ and let P= P x P’. Then {X!}, X" and {X!'}, X"
are independent on P. Suppose X! —p X', X! —p X" and for each n there exists
a positive integer-valued function £y, = €,(X]) for which the €, satisfy the condition
in LemmaBIl Then (X, X} ) —p (X', X") on P.

Proof. From Lemma BT we have X}/ —p X". Let A’, A” be respective X', X"-
continuity sets. Then for each n,

P(X, € A, X[ € A")

=Y P(X) € A, X[ € A" 0, = j)
=> P(X, € A X/ € A" 4, =)
=Y P(X] € AMP(X;, € A L, = j)

= Z P(X! € A"P(X], € A'| £, = j)P(ly = j).

P(X, e A, X, e A")—P(X' € A)P(X" € A")
=P(X, e A X/ € A")-P(X, € A)P(X" € A")
+P(X] e A ) P(X" € A") —P(X' € A)P(X" € A")
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Z X// c A// . (X// c A//))P(X;L c Al |£n :j)P(gn :])
j=1

P(X/ € A)P(X" € A") — P(X' € A)P(X" € A").
For € > 0 let M7 be such that for all j > M,
max(|P(Xj € A") = P(X" € A")|, |P(Xj € A”) = P(X" € A")[) < ¢/3.
Let M > M be such that for all n > M P(¢,, < M) < €/6. Then for all n > M,

IP(X, e A, X,/ € A") —P(X' € A)P(X" € A”)]

< Y IP(X) €A —P(X" € A")P(X), € A £y = j)P(bn = j)
Jj=Mi+1
My
+YIP(X) € A" —P(X" € A")|P(X), € A' | £y = j)P(£y = j) + €/3 <.
j=1
Since € is arbitrary we have the result. O

Recalling V7% in (5], let Y,, = Y,!2. Much of the following are modifications to
the results in [I7], with X,, replaced by Y,,, with some being used exactly as stated
in that paper. As in [I7] some of the results make assumptions more general than
what is needed to prove Theorem [[.2] in order to be able to use them in the future.
Results in [16] will also be used and modified.

We proceed to prove [I7, Theorem 2.1] with X, replaced by Y,,. We also assume
that X! (F,.(-)) —p Wgy(_) on DJ0,00) for i = 1,2. Let p denote the sup metric in
C0,1]:

p(z,y) = sup |z(t) —y(t)| for z,y € D0,1].
tel0,1]

Theorem 3.1. Y, (F,()), X! (F,(), i = 1,2 all converging weakly to Wgy(‘), in
D[0,00), F,, —=p Fy i.p. and Amax = Amax(My) — (1 + \/ﬂ)z .p. = Y, —p W°.

Proof. The proof of [I7, Theorem 2.1] applied to Y, remains unchanged up to
the middle of p. 1179. For fixed M,, let A1) < A2) < -+ < Ay be the ¢ distinct
eigenvalues of M,, with multiplicities m1,ma, ..., m;. For fixed eigenvalue A¢;) the
corresponding m; columns of O,, are distributed as O,, ;O; where O, ; is n x m;
containing m; orthonormal columns from the eigenspace of A\;) and O; is Haar
distributed in the group of m; x m; orthogonal matrices, independent of M,,. The
coordinates of y; and y2 corresponding to A(;) are, respectively, of the form

(On,iOi)Txn,l = a1,iW1, and (On,iOi)Txn,Q = az2,;W2 i,
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— 10T —lOT — (il 2 mi\T —
where a; ; = ||OM-Xn,1||7 az; = ||On,ixn,2|| and wy ; = (wl,ikua e ’wl,i) » W20 =
(wi ;w3 ..., wyi)T are each uniformly distributed on the unit sphere in R™:.
Write

(0n:0)" (Xp1 + Xn2) = a1.9,,W1.24,
where a1 2 = [[OF i(xn1 + Xn2)|| and W12 = (wi g wea,,. .., wi's ;)" is uni-
formly distributed on the unit sphere in R™:. We have (24) in [I7] holding for
a; = a1,; and ag ;. Also as in (24) in [I7] we have
max \/5le,10”,1-0§,an,2| 2. (32)

1<i<t

We have (Z3)) in [I7] for Y,, becomes

J
00
al,ia27i§ wy ;W ;

p(Yn (), Yu (Fn(F, (1)) = max v/ : (3-3)
1<5<m; =1
For each i <t and 7 <m;
i
Vinaiaz; Yy wi wh
=1
n J J J
S CIOYEMETD SEREES yThy
{=1 {=1 =1
n m J m /
= (( =27 Y wh o )2~ (ad = ) DG )
(=1 £=1
o I
- (a’%,z - 7) Z(w2,z)2> (a)
£=1
"ol - ¢ 2 J mi [y ¢ N2 J
T\t Z( 1,2,) mil T Z(wu) T
{=1 £=1
m J ]
? £ \2
— )2 - b
(S 2 ) o)

From (3] above and ([Z4) in [I7] we see the maximum of the absolute value of
(a) over all j < m;, 1 < i < t converges in probability to zero. We see that
the three sums in (b) are beta distributed the same as in (b) of [I6, p. 1180].
Therefore, the same arguments leading to the convergence of [23)) of [I7] to zero in
probability give us the convergence of [32)) to zero i.p. Therefore, for y < 1 we have
Yn —D we.
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For iy > 1, the main difference is the appearance of Y,,(t) = Y,12 for t < F,,(0) +
1/n. Let x,,; = OF 1Xn1, X,,50 = OF X5 2 and 0; denote the ith column of O;.
Notice that a;1 = [|x,, ||, i = 1,2. We have

X} (F,(0) = g(afﬂ. — Fa(0)) —p Wiy asn — oo,
1 = 1,2, therefore, from Lemma [2.4]
a2, R 0) =1 (1fy), i=1,2.

Write

We have z''x,, , = 0 and

\/G%JG%J - (55,1571,2)2

az 1

|z]| =

Notice that \/nx!  x, , = ¥, (F,(0)). Therefore, from Lemma 2.4

§£,1§n,2 iz, 0. (3.4)
For t < F,,(0) + 1/n,

[nt]

Yo(t) = \/5255,101'0?&%2
i=1

2 2 (T 2
2 Y, ( "(0))/1 )+ \/‘11,1‘12,1 (Kn,lznz)

= LA NA B, (t
F,(0)  Vn F(0) "
[nt]
Yo (Fy )
VB0
where
[nt] T
nFn (0) Xn.2 Tzn 2 [nt]
A, () =] ————= = 0,0; =
( ) 2 ;1 a271 ag,l nFn(O))
and
[nt] 2T X,
B,(t) = \/nF,(0 _—oioiT_n’ .
() = VAR O3 Lol 25

Since O; is Haar distributed and independent of M,,, we see that A, and B, have
the same distribution if x,, ,/a2 1 and z/||z|| were nonrandom orthonormal vectors.
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H, (t) in [I7] now becomes

\/a%,la%,l - (55,1&1,2)2

F(0)

[nE (0)n (D]
nk,(0)

+ Bn(Fn(O)@n(t))

1 (F0) 1) 4 VB F )

where ¢, (t) = min(t/F,(0), 1) for t € [0, 1]. Denote the sum of the last two terms by
(a). Notice that for s € [0, 1], from Theorem [[.2] both A, (F,,(0)s) and B, (F,(0)s)
converge weakly to independent Brownian bridges. We apply Lemma where
X, = ((a), Fn(0)), £, = nF,(0) and X} = (An(Fn(0)s), Bn(F.(0)s). Since,
from (B3) and (B4) the coefficient of A, converges i.p. to zero and the coeffi-
cient of B,, converges i.p. to /F,(0) = /1 — (1/y) we have H,, converging weakly
to H appearing in [I7]. (Notice the misprint on line 8, [I7, p. 1183]. The zero to
the right of the arrow should be ¢(t).) The final argument is exactly the same as
in [I7]. This completes the proof of the theorem. O

The next step is to extend [I7, Theorem 3.1] to random elements in (DY, 7).
We denote the modulus of continuity of x € D[0,b] by w(z, -):

w(z,d) = | Sj|p<5 |z(s) —x(t)], ¢ € (0,b].

Theorem 3.2. Let {(zL,...,22)} be a sequence of random elements of DY, defined
on a common probability space, each {x%} satisfy the assumptions of [4 Theo-
rem 15.5]: {x%(0)} is tight and for every positive € and 1, there exists a 6 € (0,b)
and an integer ng, such that, for all n > ng, P(w(zt,8) > €) < n. If there exists
a random element (x',...,2%) with P(z* € C[0,b]) = 1 for each i, and such

that
b b o b b °
/ traldt, ... / "l dt =D / tratde,. .. / Tz dt
0 0 —0 0 0 —0
asn — oo  (3.5)
(D denoting weak convergence on R®), then (zl,... ,zd) = (x!,...,29).

Proof. From [4, Theorems 5.1 and 15.5] and Lemma weak convergence will
follow from showing the distribution of

(2 (t), ...,z (tr), ..., x%(t1), ..., 2% (ty))
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for all k, t1,...,tx € [0,1] is uniquely determined by the distribution of

oo

{ (/01 tratde,. .., /01 thddt) }T_O . (3.6)

This is achieved by showing the distribution of

d k
DO ayat(t;)
i=1 j=1

is uniquely determined by the distribution of ([B:6]). By a simple extension of the
proof of [I7, Theorem 3.1] this can be done. |

Next, we prove the analog of [I7, Theorem 4.2]. Write
Yo (Fo(z)) = \/ﬁxg,lpMn([va])xn,%

PMn(A) being the projection matrix on the subspace of R™ spanned by the eigen-
vectors of M,, having eigenvalues in A, a measurable subset of RT. Assuming vy is
symmetric, we have the following results from [17].

Fact 3 in [17): PM»(A) ~ OPM»(A)O! for any permutation matrix O.

Lemma 4.1 in [I7]: If one of the indices i1, j1, . . ., 14, j4 appears an odd number of
times, then for Borel sets Aq,..., A4 € RT,
E(PMr (A1) PMr(Ag) PMr(A3)PMr (Ay)) = 0.

111 i2J2 373 i4ja

Assume also that each x,, ; = (£1/y/n,...+1/y/n)T and are orthogonal. Then
necessarily n is even, say n = 2p, and exactly p entries of x,, 5 are of opposite sign
with the corresponding entries of x,, 1. Moreover, [I7, Fact 3] is true for O diagonal
with +1’s on its diagonal, using exactly the same argument. If O is diagonal of this
type with signs matching those of x,, 1 coordinatewise, then

Y, (Fy(2)) = vn(Ox,,1)T OPM ([0, 2])OT Ox,, 2
~ V1(0x,.1)T PM ([0, 2])Ox,, 2. (3.7)

Therefore, we can assume the sign of all the entries of x,, ; are positive. Let now O
be a permutation matrix which moves all the positive entries of the new x,, 2 to the
first p positions. Then using ([B71) again we conclude that we can assume that all
the entries of x,, 1 and the first p entries of x,, » are positive, and that the remaining
entries of x,, » are negative.

Theorem 3.3. Assume vy is symmetrically distributed about 0, x,; =
(£1/\/n,...,£1//n)T, 5 =1,2, and are orthogonal. Then

E(Ya(F(0))* < EQTPY"({0})) (3-8)
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and for 0 <z < x9

E(Yn(Fu(22)) = Yn(Fa(21)))" < EQTPY" (21, 22]))%. (3.9)

Proof. With A = {0} or (z1,2] (corresponding to [B.8), (BA), respectively, we
have

E(Y,(F.(0))' = —E > pimay- Y P4

n2
1<n;j<p p+1<i,j<n
=SE(Y P - > P4 +2 ) P4
i<p p+1<i<n i<j<p

4

-2 > P4 (3.10)

p+1<i<j<n

< (using for nonnegative a, b, ¢ (a + b+ c)* < 27(a* + b* + ¢*))

4

Z PMn Pl]-\ﬁ/—jg 7,+p(A) (a)

i<p

4

P V.V (b)
4,j<p
i#£]

where in (b) we used [17, Fact 3], which says that PM» is distributed the same as
OPM~OT for permutation matrices O, on the PZJJW” s with 7 # j and both larger
than p. Suppressing the dependence on M,, and A, we have from [I7] Fact 3 and
Lemma 4.1]

(b) = %(12@ — 2)E(P,PE) +3(p — 2)(p — 3)E(P, P3y)

+12(p — 2)(p — 3)E(P12 Pag P34 P1y) + 2E(PL)).

Bounds involving E(Py2 Pa3 P34 P14) and E(P%PZ,) were derived in [I7], from which
we get

(n —2)(n — 3)E(P12Pa3P3sPry) < E(Pr11Pa2)

2250033-23



Random Matrices: Theory Appl. Downloaded from www.worldscientific.com
by WSPC on 07/05/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

J. W. Silverstein

and
(n —2)(n — 3)E(P%LP3y) < E(P11Pag).

A bound on E(P%4 PE) is also needed. Starting from the fact that P? = P, we take
the expected value of both sides of

Py Zplzj+P121+P122 = PP
j=3
and use [I7, Fact 3] to get
(n — 2)E(PRLPl) < E(PRPn).

Therefore, for p > 2,

) < 2000 =1 (122_ CE(PLP) + 15%%” 2) + 2R 142))'

Thus, using [I7} Fact 3] and the facts that Pi; € [0,1], P4 < P11 Pss since P is
nonnegative definite, and ab < %(a? + b%), we get

(b) < 648E(P}).

In (a) we expand the fourth power of the sum. Using [I7, Fact 3] we see that
any term involving an odd number of P;; — Py, 44 is zero. Therefore,

27
(a) = n—2p(E(P11 — Py2)* +3(p — 1)E(P11 — Pa2)?(Ps3 — Pua)?

< 27E(Pyy — P2)? < 54EP?.

Therefore, the expression in [I0) is bounded by E(27P;1)?, and the proof is
complete. O

Notice that for unit x,, € R” xZ PM"(.)x, is a (random) probability measure
with mass at the eigenvalues of M,,. In [16] it is proven that

T (1+vm)* >
(VARG — (i QL)Y —p [ g,
(1_\/@2 r=1
as n — 0o (3.11)
(D denoting weak convergence on R>) for every sequence {x,}, x, € R", [|x,] =1

if and only if Evy; = 0, Ev?; = 1 and Evj; = 3. It is proven by showing the mixed
moments of the left side of (BI1]) depends on the first, second and fourth moment
of v11 after two sets of truncations and centralizations. After the final truncation
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and centralization the mixed moments are shown to be bounded regardless of the
value of the fourth moment as long as it is finite. Thus, after removing the \/n on
the left side of (BIT]) we find that the difference of the moments of the distribution
xI PMn(.)x,, and that of F),, the empirical distribution of the eigenvalues of M,,,
approach each other i.p. as n — oo. Since it is known that F,, —p F; a.s. from the
method of moments we conclude that

xp PY ()%, —p F, ip.
With x,, = (1,0,...,0)”7 we conclude that
PM~(y =p F, ip. (3.12)
The next result extends ([B.I1) to several different x,,’s simultaneously.

Theorem 3.4. Assume Eviy = 0 and Ev}, = 1. Fiz d a positive integer. Let for

everyn xt, ... x4 x) = (27, ... 23)T, be d unit vectors in R™. Then the limiting

distributional behavior of
(Vn/2(xL T MEx — (1)t (M), ..., /n/2(xd " Mixd — (1/m)er (M]))}22,
(3.13)

is the same as that when vy is N(0,1) if either

(a) Evi, =3 or
(b) for each j < d,

Proof of (a). By [10], through a series of truncations and centralizations, it is
sufficient to assume that v;; = v;j,, ii.d. with |v11] < 2n'/4, Evyy = 0, Evd; — 1,
Evi;, — 3 as n — oo and (1/n)tr M can be replaced by ExflTngfl. We will use

the method of moments. We will show for positive integers my, ..., mgq, ré 1 <d,

j < m;, with m = Z'ii:l m;, the limiting behavior of
T, ! T, ! T T T T
n™2E[(x} Myixh — ExLT Myixl) - (xh M, 'x) — Ex} M, 'x1)

T d T d T d T d
ce(xT Mk Ex®T M x) - (xT MTmax — Ex?T MTmax®)]

(3.14)

depends only on Ev#; and Ev{; and therefore is the same when the original v;;’s are
N(0,1).
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Let r =3¢, >ort rh. We have

(Sr/nm/2) X (314) = Z 1'11115031-11 ce SCzllml 1‘}17711

211 211 11 -11 11 11
Y Y ) 7"')7’7,17k1 a---vkrl
1 1

1 1 mq ‘Amq o, 1mg 1mq
oML sl ey ,...,krl
my my
dl dl gdl sdl pdl 1
KRRV Y DY 7~~~a7frd7k1 N
1
d d dm “dmyg , dm d m
i md,j 7rld712 dV”’ d7k1 d,...,k 4 d
"mg Tmg
d d d d
Ljar L ja xidmdxjdmd
d my
. ’ . ’ 1o . ’
xE I I | | (Ulu/k{/z Vel e Vjeer e
(=10=1 "o
— E(v;e0r peer Vyeer peer =+ 0000 peer ) | - (3.15)
RS it kY JHES,

Ty

Now the only difference between (BI4) here and B3] of [16] is that (315 in [16]

involves only one unit vector whereas (3.14]) here involves d unit vectors. The value
m = Y m,; here, which is the total number of moments considered in [BI4]), can
be identified with the m in [I0], the number of moments considered in ([BI3) of
[16]. The expected value in ([BI0) here is essentially the same as the expected value
in (BI6) in [I6). The dependence of the unit vector x,, in the argument presented
in [I6] is that the absolute value of the sum of its entries is bounded by n'/?,
entries are bounded by 1 in absolute value, and its length is bounded. The argument
here is identical to the one in [16] using the additional fact that | Y ), wlak| <1
for j,k € {1,...,d}. We have then (a).

its

Proof of (b). The proof follows exactly the same as in the proof of [I7, Theorem 4.1]
using the additional fact that for j1,...,j4 € {1,...,d},

n n
L .4

E el el* < max (%) .

, k<4 4

=1 - =1

This completes the proof of Theorem [3.41 O

Notice that

n/2(Xn 1T M Xy — (1/n)tr M) = /oo z"dXF(F,(x))
0

— 7/00 ra” L XF(F,(x))dx  (3.16)
0
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for k <m, and for j < k,
o .
Vinx, ;T MIx, = 7/ ra” VY IR (F, (2))dx. (3.17)
0

When vy; is N(0, 1) we have from Theorem [[2 the conclusion of Theorem
Therefore, from [4, Theorem 5.1] the quantities in (B16]) and (BI1) converge weakly,
together with the quantites

(Xnj + Xn k)" ) 0 (Knj + Xnn) .
n/2 ( 7 M 7 — (1/n)tr Mn>, (3.18)

since
1
(3.18) = 5\/n/2(x£,jM£xn7j — (1/n)tr M)
1 T T T
+ 5\/7~L/2(><§1,€Mnxn,k — (1/n)tr M) + /n/2x] ;M) %y, ;.

Therefore, when the m(m + 1)/2 vectors x,, ;, and (X”LQX"’“) are considered in
Theorem B4] and either (a) or (b) hold then the quantities in (B.I0) and BIJ)
converge weakly to random variables having the same distribution as when wvq;
is N(0,1). Since the quantity in IT) can be written as a linear combination of
quantities in ([BI6]) and BI8) we conclude that when (a) or (b) hold the quantities

/ " XF(F,(x)dx &k <m, / 2"YI*(Fy(x))de j <k
0 0

converge weakly to random variables, the same distribution as when v17 is N(0,1).
Using () we have, when b > (1 + /y)?,

b b
/ " XF(F,(x)dx &k <m, / "YIR(Fy(x))de § <k
0 0

converging weakly to variables with the same distribution as when vy; is N(0,1).
Therefore, we have (1)) of Theorem Under the assumptions of Theorem
we have (B), B9) and BI2), which can be used as in the last paragraph of
[T7] to show that the Y;7*(F,(-)) also satisfy the assumptions of [4, Theorem 15.5].
Therefore, under the assumptions of Theorem [[L3] from Theorems and B.2 for
each b > (1+ /y)? we have the X% (F, (")), Y7*(F,(")), j < k all converging weakly
in Dg to independent copies of Brownian bridge, composed with F},, and hence the
convergence is also on D[0,c0) for each of the processes. From [I7, Theorem 2.1]
and Theorem [B1]in this paper, we have the X*(-), Y7*(.) each converging weakly
to Brownian bridge. The proof of Theorem will follow once it is shown there is
joint convergence to independent copies.

Notice that each of the limits X*(), Y,7%(.) reside in C[0,1] and the limits
XE(EL(1), YI*(F,(-) in C[0,00), where the topology in the latter is obtained from
uniform convergence on [0, b] for every b > 0. In fact the latter limits reside in the
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closed set
C' = {r € C[0,00) : 2(t) = x¢ for t € [0, (1 — /y)?]
and for some 0,0 for ¢ € [(14 /7)?, o)}

Consider first y < 1. Then we can assume that there is one x¢ in C’, namely 0. Let C°
denote the class of Borel sets in C[0, 1] and C’ the class of Borel sets in C”. Define F, !
to be (1—,/y)* fort = 0, (14-/y)? for t = 1 and F, ' (t) for t € (0,1). It is straightfor-
ward to verify that the map X (-) — X (F, '(-)) from C” to C[0, 1] is continuous and

is the inverse of X (-) — X (Fy()) from C0, 1] to C"'. Let {W;lk( 3y W;jl(cv),j <k<m}
denote the weak limit of {X(F.(-)), Y7¥(F.(-)),j < k < m}, where the entries of

ojk _ ok ojk . .
{ (),W() ,]<k<m}= {WF (Fr (‘))’WFy(Fy*l(»))’j < k < m} are independent
copies of Brownian bridge. Let for A € C" F,7'(A) = {X € D[0,1] : X(F(-)) € A}
be the inverse image of A under F, . Then F, '(A) € C°. Suppose A, Aj € C’ for

7 < k <m. Then

P(W ) €A, W eAjk,g<k<m)
=P(Wt € (Ak) Wik e F (Ajk), i <k <m)
- HP(W(? YAR) < [P e o (Am)
k i<k
7HP Wek) € Ax) x]:[kp ;ﬂ’g)eAjk). (3.19)
J

Therefore, the entries of {W;lf(‘), W;i(_),j < k < m} are independent.

Using the same argument used in Lemma[Z3] the sequence { X, Y% j < k}°2,
is tight. Suppose on some subsequence {X* V7% j < k < m} converges weakly to
the random element {W°* W°* j <k < m} in D). Then each entry is Brownian
bridge and the entries of {W;lf(,), W;j ](C‘), j < k < m} are independent. We invoke
[7, Theorem 8.3.7]: Let X and Y be Polish spaces (separable and can be metrized
with a complete metric), let A be a Borel subset of X, and let f: A — Y be Borel
measurable and injective (1-to-1). Then f(A) is a Borel subset of Y.

Therefore, with F,(A) denoting the image of A under F,, for sets Ay, Aj € CY
we have F,(A), Fy(Aj,) € C" and

P(W € Ay, Wk € Ay)
= P(Wek) € Fy(AR), Wit € Fy(Ajr))

Fy()
— HP Wik € Fy(Ap) x [T P( ;;J’g) € Fy(A1))
i<k
= HP (W € Ag) x [[POV* € Ajp). (3.20)
i<k

Therefore, the W°*, W°* are independent and we have Theorem [ in this case.
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For y > 1, we express the processes in the form of a matrix. Let W,, denote the
mxm matrix with W, = X¥, and for j < k Wik = Whij = Y7k Let O, 1 and Oy
as in Theorem Bl Let ¢, (¢) be as in Theorem BIlwith ¢(t) = min(¢/(1 —1/y)),1)
as its a.s. limit. Let 1, (¢) = max(¢, F,,(0)) with ¢(¢t) = max(¢t,1 — 1/y) as its a.s.
limit. Let B, be the m x m matrix consisting of 1/1/2’s on its diagonal and 1’s on
its off-diagonal elements. Let X, be the m; x m matrix with i-th column OrTan,ia
let I,,, s be the m; x m; diagonal matrix consisting of 1’s on its first s diagonal
entries, 0 on the remaining diagonal entries, and let I,,,, be the m; x m; identity
matrix. Notice that m; = nF,(0). Then we have

m1pn(t
Wn(t) = \/ﬁBm o (Kﬁollml,[mlapn(t)]O?Xm - MI’!WJ)

n

- Wn(Fn(O)) + Wn(l/’n(t))

Let W’ be the weak limit of W, on a subsequence. Then on this subsequence

Wa(¥n(-)) —p W((-)) and Wi (¢n(Fn()) = Wa(Fu()) —b WI/F()a where the
entries of WF on and above the diagonal are independent copies of Brownian
bridge, composed with F,. Confining to the interval [1 — 1 / y, 1] these entries will
also be independent copies on C[1 —1/y, 1]. If we define F}, ! just on [1—1/y,1] we
have for X € C" X (F,7'(F,)) = X. Therefore, from (3I9) we see that the entries on
and above the diagonal of W, F,(,) are independent. For X, Y € Cl-1/y,1] X #Y
we have X (F,(+)) # Y (F,(- )) so that the 1-1 condition of [7l, Theorem 8.3.7] is satis-
fied. We also have X (Fy,(F, ")) = X. Therefore, we have from (3:20) with the entries
of W’ confined to [1—1/y, 1] and the sets Borel subsets of C[1—1/y, 1], the entries of
W' on [1—1/y,1] on and above the diagonal are independent. This uniquely deter-
mines the limiting distribution, so we see that W,, (¢, (+)) —p W°(¢(+)), where W°
is Brownian bridge, with entries on and above the diagonal independent.

Let X,, = Uy Ry, be the QR factorization of X, where the columns of U, are
orthonormal, and R,, is m x m upper triangular, with nonnegative diagonal entries.

Extending 33) and 34 to all columns of X, we have
R B = X3, X 5 (1= (1/9) L
From this it is straightforward to prove

R 225 /T = (1/y) L. (3.21)

Write

M1, (t
\/ﬁBm o (&ﬁollml,[mlapn(t)]oflm - M

n

I, ) = Wi (2 (0)

1 [m1en(t)] )
=——  BnoRLmi (ULOLL,. im ofv, - —Z1. | Rn
Fn(O) o Ly, ml( m~1dmy [mien ()] Y1 my
+ Wi (F,(0)) (w - 1) . (3.22)
mi
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As in [I7, Theorem 2.1], we use [4], Theorem 5.1] applied to

(Wn7 Vi (Ug;OlIml,[mls]O,fUm - Iml) aRm7 Fn(0)7 Pn,s wn) .

We also apply LemmaB.2, where X, = (W, F},(0)), £,, = m; and X}’ is the second
component of the above six-tuple. Therefore, from Theorem [[.2] (B21) and 322))

we have

[m1s]

mi

W, —p V1= 1 [y)Wg + Wy (0 — 1)+ Wy,

where W° is an independent copy of W°. Since this limit is the same when vy is
N(0,1) we have this limit having independent elements on and above the diagonal.
This completes the proof of Theorem

4. Proof of Theorem [1.4]
We first need the following.

Lemma 4.1 ([1, Lemma 2.7]). For X = (X1,...,X,)" d.id. standardized
entries, and C, an n X n matriz, we have, for any p > 2,

EIX*CX —tr CP < K,((E|X:|*r CC*)P/? + E| X, |*tr (CC*)P/?).

Suppose C, n x n, is bounded in spectral norm and X contains i.i.d. complex
Gaussian entries. Then for any p > 2,

EIX*CX — tr OP < K,||C||P((E|X1|*)P/2nP/? + E|X|?n) < KpnP/2. (4.1

Recalling S,, = U, A, U} in its spectral decomposition with eigenvalues arranged
in nondecreasing order, for any real x let A,(z) denote the diagonal matrix
containing nF), (z) one’s on the upper part of its diagonal. Therefore, F, (x) =
(1/n)tr Ap(z). Notice that Gp(x) = viUnAn(2)Uive = 30, o, [upva?, where
U, = (u1,...,u,), is the distribution function of a random variable which takes
values \p,. .., \, (eigenvalues of S,,) with probabilities |[ujv,|?, ..., [u}v,|?. Now,
since U, vy, is uniformly distributed on the n-dimensional unit sphere in C™ it has
the distribution of a normalized vector z, of n ii.d. complex Gaussian entries:

U*v,, ~ (1/||zn])2zn. By @I) we have
E[(1/n)2; A (2)2, — Fo(@)|* < Kn~2.
Moreover,
|G (@) — (1/n)z, An ()20 | = (1/n)z A (2)20 |0/ | 20]|* — 1] = 0

by the strong law of large numbers. Therefore, we have with probability one, G,
converges in distribution to F', and the largest value in the support of G, namely the
largest eigenvalue of S,,, converges with probability one to Ay ax. Therefore, for any
A > Amax with probability one, for all n large (v (A —S,) " tvy,, vi (A — S,) 7%v,)
exists and converges to ([(A — z) " dF (z), ([(A — z)2dF (x)).
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Suppose that for all A > Apax [ (A — 2)"'dF(z) < 1/6. Then necessarily
limy, ,+ [(A—2)"'dF(z) < 1/, which means for all € > 0 [(Amax + € —
z)"'dF(z) < 1/6 Since almost surely v}, ((Amax + €)1 — Sn) " 'vi, = [(Amax +
€ — 2)"'dF(z), we must have with probability one, for all n large A} < Apax + €.
Since € is arbitrary we must have almost surely )\71I — Amax-

Suppose now there exists A > Amax such that [(A— ) 'dF(z) > 1/6. Then let
A1 > Amax be the unique value such that [(A\; — ) 'dF(z) = 1/6. For small € > 0,

/()\1 —e—x) 'dF(r) >1/6 and /()\1 +e—x) tdF(x) < 1/0.
Since almost surely

vi((h — eI —8,) v, — /()\1 —e—x) 'dF(x) and

Vi (O + )T — Sp) vy — /()\1 be—a)ldF (),

we have almost surely for all n large Ay — e < AL < A1 + €. Since ¢ is arbitrary we
must have AL “% \;.
For small € > 0 we have with probability one, for all n large

ViI((AL 4+ )T —8,) 2v, <VviEOLT = 8,) v, < V(A — ) — S,) v,

where the extremes approach almost surely [(A\ + € — z) 2dF(z), [(Arie —
x)~2dF(x), respectively. Since € is arbitrary we have

VEOLT - 8,)%v,, &5 [ (W —2)2dF(2),

which gives us ([LI2]).

Let b € (Amax, A1) and @ = (Amax + 0)/2. Select d > Aq. Define for ¢ € [b,d]
®,(t) = b, if AL ¢ [b,d] and = A} if AL € [b,d]. Then ®,, is a random element in
Dylb,d], those elements of D[b,d] whose range is also in [b,d] and nondecreasing
[, pp. 144-145]. Then with probability one, for all n large, ®,, = AL and converges
to )\1.

Identify v,, with x,, 4 in ([4). Define X¥(z) = X5* (F,(x)). We have X a
random element in D0, 00), the set of all functions on [0, co) having discontinuities
of the first kind [10]. It is straightforward to extend the material in [4], pp. 144-145]
and Theorem 4.4 to bounded nondecreasing functions in D[0, o0) to conclude that
XF(z) converges weakly to

Wi o (F(x)) + W, (F(x)) (4.2)

on D3[0,00) (two copies of D[0,00)). (Note: this is the only place where we need
the limiting distribution function F' to be continuous.)
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Let for z € [0, al,

V(@) = I (S)<a} X (),

where I, is the indicator function on the set A. Then from [4, Theorem 4.1] Y,*
converges weakly to [@2]) on D30, a] (two copies of D[0,a]).

Define the mapping f from D50, a] to Ca[b,d] (two copies of C[b,d], the space
of continuous functions on [b, d]) by

f(X) =~ /Oa(t —2) 2 X (x)dzr t € [b,d).
Then

FOE) = ~Lpisizar | (= )Xk @),
0

I{/\max(Sn)Sa} / (t — m)_ldXS(iE) = I{Amax(sn)ﬁa}\/ 2nx:‘l’k(tl — Sn)_lvn.
0

We claim that f is a continuous mapping. Suppose X,, — X in D5[0,a] in the
Skorohod topology. Then X,,(s) — X (s) for continuity points s of X, and because
X lies in D2[0, al, this set is outside a set of Lebesgue measure 0. Using the fact that
convergence in the Skorohod topology renders the X, and X uniformly bounded
we have by the dominated convergence theorem

) = FX)] < (5 = Aman)/2)? / | Xa(a) - X(2)|dz — 0,

uniformly for ¢ € [b, d]. Therefore, f is continuous.
Therefore, from [4, Theorem 5.1] we have

I{)\max(sn)ga}\/ 2nx:;,k(tl — Sn)ilvn
o [(t=a) W, (@) +i [ (- o) AW (F @)
on Ds[b,d]. From the material on [4, pp. 144-145] we have

I{/\max(Sn)Sa}V 2nxfhk(q>nl — Sn)_lvn

—p / (O — )W (F(x)) +i / (A — ) LW (F ().

Using again [4, Theorem 4.1] we get (LI0).

We get the same result for GG, in the real Gaussian case. For the matrix M,
it is proven in Sec. Bl that G, —p Fy i.p. For the former the steps above follow
identically, resulting in (ILI3]). For the latter, since the finite result is distributional
in nature we may as well assume G,, —p Fy, a.s. (since this is true on an appropriate
subsequence of an arbitrary subsequence of natural numbers). Thus, we get (LI3)
with F' = F,,.
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