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Summary

Let {vij}, i, j = 1, 2, . . . , be i.i.d. symmetric random variables with E(v4
11) < ∞,

and for each n let Mn = 1
sVnV

T
n , where Vn = (vij), i = 1, 2, . . . , n, j = 1, 2, . . . , s =

s(n), and n/s → y > 0 as n → ∞. Denote by OnΛnO
T
n the spectral decomposition

of Mn. Define X ∈ D[0, 1] by Xn(t) =
√

n
2

∑[nt]
i=1(y2

i − 1
n), where (y1, y2, . . . , yn)T =

OT (± 1√
n
,± 1√

n
, . . . ,± 1√

n
)T . It is shown that Xn

D−→ W ◦ as n → ∞, where W ◦ is

Brownian bridge. This result sheds some light on the problem of describing the behavior
of the eigenvectors of Mn for n large and for general v11.
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1. Introduction. Let {vij}, i, j = 1, 2, . . . , be i.i.d. random variables with E(v11) =

0, and for each n letMn = 1
sVnV

T
n , where Vn = (vij), i = 1, 2, . . . , n, j = 1, 2, . . . , s = s(n),

and n/s → y > 0 as n → ∞. The symmetric, nonnegative definite matrix Mn can

be viewed as the sample covariance matrix of s samples of an n dimensional random

vector having i.i.d. components distributed the same as v11 (assuming knowledge of the

common mean being zero). The spectral behavior of Mn for n large is important to areas

of multivariate analysis (including principal component analysis, regression, and signal

processing) where n and s are the same order of magnitude, so that standard asymptotic

analysis cannot be applied. Although eigenvalue results will be discussed, this paper is

chiefly concerned with the behavior of the eigenvectors of Mn. It continues the analysis

begun in [8].

Throughout the following, OnΛnO
T
n will denote the spectral decomposition of Mn,

where the eigenvalues of Mn are arranged along the diagonal of Λn in nondecreasing

order. The orthogonal matrix On, the columns being eigenvectors of Mn, is not uniquely

determined, owing to the multiplicities of the eigenvalues and the direction any eigenvector

can take on. This problem will be addressed later on. For now it is sufficient to mention

that, by appropriately enlarging the sample space where the vij ’s are defined, it is possible

to construct On measurable in a natural manner from the eigenspaces associated with Mn.

Results previously obtained suggest similarity of behavior of the eigenvectors of Mn

for large n to the eigenvectors of matrices of Wishart type, that is, when v11 is normally

distributed ([8],[9],[10],[11]). In this case it is well-known that On induces the Haar (uni-

form) measure on On, the n×n orthogonal group. In [9] it is conjectured that, for general

v11 and for n large, On is somehow close to being Haar distributed. The attempt to make

the notion of closeness more precise has led in [9] to an investigation into the behavior

of random elements, Xn, of D[0, 1] (the space of r.c.l.l. functions on [0,1]) defined by the

eigenvectors. They are constructed as follows:

For each n let ~xn ∈ Rn, ‖xn‖ = 1, be nonrandom, and let ~yn = (y1, y2, . . . , yn)T =

OTn~xn. Then, for t ∈ [0, 1]

Xn(t) ≡
√

n
2

[nt]∑
i=1

(y2
i − 1

n ) ([a] ≡ greatest integer ≤ a).

The importance of Xn to understanding the behavior of the eigenvectors of Mn stems

from three facts. First, the behavior of Xn for all ~xn reflects to some degree the unifor-

mity or nonuniformity of On. If On were Haar distributed, then ~yn would be uniformly

distributed over the unit sphere in Rn, rendering an identifiable distribution for Xn, in-

variant across unit ~xn ∈ Rn. On the other hand, significant departure from Haar measure

would be suspected if the distribution of Xn depended strongly on ~xn. Second, we are able
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to compare some aspects of the distribution of On for all n on a common space, namely

D[0, 1]. Third, the limiting behavior of Xn is known when On is Haar distributed. Indeed,

in this case the distribution of ~yn, being uniform on the unit sphere in Rn, is the same

as that of a normalized vector of i.i.d. mean-zero Gaussian components. Upon applying

standard results on weak convergence of measures, it is straightforward to show

(1.1) Xn
D−→W ◦ as n→∞

(D denoting weak convergence in D[0, 1]) where W ◦ is Brownian bridge ([9]). Thus, for

arbitrary v11, (1.1) holding for all {~xn}, ‖xn‖ = 1, can be viewed as evidence supporting

the conjecture that On is close to being uniformly distributed in On for n large.

Verifying (1.1) more generally is difficult since there is very little useful direct informa-

tion available on the variables y2
1, . . . , y

2
n. However, under the assumption E(v4

11) <∞, the

results in [9],[10],[11] reduce the problem to verifying tightness of {Xn}. For the following

we may, without loss of generality, assume E(v2
11) = 1. The results are limit theorems on

random variables defined by {Mn}. From one of the theorems ([11], to be given below)

it follows that for E(v4
11) = 3, any weakly convergent subsequence of {Xn} converges to

W ◦ for any sequence {~xn} of unit vectors, while if E(v4
11) 6= 3, there exists sequences {~xn}

for which {Xn} fails to converge weakly. This suggests some further similarity of v11 to

N(0, 1) may be necessary. It is remarked here that the theorem also implies, for finite

E(v4
11), the necessity of E(v11) = 0 in order for (1.1) to hold for ~xn = (1, 0, . . . , 0)T .

The main purpose of this paper is to establish the following partial solution to the

problem:

Theorem 1.1. Assume v11 is symmetric (that is, symmetrically distributed about

0), and E(v4
11) <∞. Then (1.1) holds for ~xn = (± 1√

n
,± 1√

n
, . . . ,± 1√

n
)T .

From the theorem one can easily argue other choices of ~xn for which (1.1) holds,

namely vectors close enough to those in the theorem so that the resulting Xn approaches

in the Skorohod metric random functions satisfying (1.1). It will become apparent that

the techniques used in the proof of Theorem 1.1 cannot easily be extended to ~xn having

more variability in the magnitude of its components, while the symmetry requirement

may be weakened with a deeper analysis. At present the possibility exists that only for

v11 mean-zero Gaussian will (1.1) be satisfied for all {~xn}.
However, from Theorem 1.1 and the previously mentioned results emerges the possibil-

ity of classifying the distribution of On into varying degrees of closeness to Haar measure.

The eigenvectors of Mn with v11 symmetric and fourth moment finite display a certain

amount of uniform behavior, and On can possibly be even more closely related to Haar

measure if E(v4
11)/[E(v2

11)]2 = 3. As will be seen below when it is formally stated, the limit
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theorem in [11] itself can be viewed as demonstrating varying degrees of similarity to Haar

measure.

The proof of Theorem 1.1 relies on two results on the eigenvalues of Mn and on a

modification of the limit theorem in [11]. Let Fn denote the empirical distribution function

of the eigenvalues of Mn (that is, Fn(x) = (1/n) × (number of eigenvalues of Mn ≤ x),

where we may as well assume x ≥ 0). If Var(v11) = 1 (no other assumption on the

moments), then it is known ([4],[5],[12],[13]) that, for every x ≥ 0,

(1.2) Fn(x)
a.s.−→ Fy(x) as n→∞,

where Fy is a continuous, nonrandom probability distribution function depending only on

y, having a density with support on [(1−√y)2, (1 +
√
y)2], and for y > 1, Fy places mass

1 − 1/y at 0. Moreover, if E(v11) = 0, E(v2
11) = 1, then λmax(Mn), the largest eigenvalue

of Mn, satisfies

(1.3) λmax(Mn)
a.s.−→ (1 +

√
y)2 as n→∞

if and only if E(v4
11) <∞ ([1],[3],[14]).

For the theorem in [11], we first make the following observation. It is straightforward

to show that (1.1),(1.2),(1.3) imply

(1.4) Xn(Fn(x))
D−→W y

x ≡W ◦(Fy(x))

on D[0,∞). The proof of Theorem 1.1 essentially verifies the truth of the implication in

the other direction and then the truth of (1.4). An extension of the theorem in [11] is

needed for the latter to establish the uniqueness of any weakly convergent subsequence.

The theorem states:

(1.5)
{√

n
2 (~xTnM

r
n~xn − 1

n tr(Mr
n))
}∞
r=1

=

{∫ ∞
0

xr dXn(Fn(x))

}∞
r=1{

−
∫ ∞

0

rxr−1 Xn(Fn(x))dx

}∞
r=1

D−→
{∫ (1+

√
y)2

(1−√y)2

xr dW y
x

}∞
r=1

as n→∞

(D denoting weak convergence on R∞) for every sequence {~xn} of unit vectors if and only if

E(v11) = 0, E(v2
11) = 1, and E(v4

11) = 3 (we remark here that the limiting random variables

in (1.5) are well defined stochastic integrals, being jointly normal each with mean 0). The

proof of this theorem will be modified to show (1.5) still holds under the assumptions of

Theorem 1.1 (without a condition on the fourth moment of v11 other than it being finite).

The proof will be carried out in the next three sections. Section 2 presents a formal

description of On to account for the ambiguities mentioned earlier, followed by a result
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which converts the problem to one of showing weak convergence of Xn(Fn(·)) on D[0,∞).

Section 3 contains results on random elements in D[0, b] for any b > 0, which are extensions

of certain criteria for weak convergence given in [2]. In section 4 the proof is completed

by showing the conditions in section 3 are met. Some of the results will be stated more

generally than presently needed to render them applicable for future use.

2. Converting to D[0,∞). Let us first give a more detailed description of the

distribution of On which will lead us to a concrete construction of ~yn. For an eigenvalue λ

with multiplicity r we assume the corresponding r columns of On to be generated uniformly,

that is, its distribution is the same as On,rOr where On,r is n×r containing r orthonormal

columns from the eigenspace of λ, and Or ∈ Or is Haar distributed, independent of Mn.

The Or’s corresponding to distinct eigenvalues are also assumed to be independent. The

coordinates of ~yn corresponding to λ are then of the form

(On,rOr)
T~xn = OTr O

T
n,r~xn = ‖OTn,r~xn‖~wr

where ~wr is uniformly distributed on the unit sphere in Rr . We will use the fact that the

distribution of ~wr is the same as that of a normalized vector of i.i.d. mean zero Gaussian

components. Notice that ‖OTn,r~xn‖ is the length of the projection of xn on the eigenspace

of λ.

Thus, ~yn can be represented as follows:

Enlarge the sample space defining Mn to allow the construction of z1, z2, . . . , zn, i.i.d.

N(0,1) random variables independent of Mn. For a given Mn let λ(1) < λ(2) < · · · < λ(t)

be the t distinct eigenvalues with multiplicities m1,m2, . . . ,mt. For i = 1, 2, . . . , t let ai

be the length of the projection of ~xn on the eigenspace of λ(i). Define m0 = 0. Then, for

each i we define the coordinates

(ym1+···+mi−1+1, ym1+···+mi−1+2, . . . , ym1+···+mi)

of ~yn to be the respective coordinates of

(2.1) ai(zm1+···+mi−1+1, zm1+···+mi−1+2, . . . , zm1+···+mi)

/√√√√mi∑
k=1

z2
m1+···+mi−1+k .

We are now in a position to prove

Theorem 2.1. Xn(Fn(·)) D−→ W ◦Fy(·) in D[0,∞), Fn(x)
i.p.−→ Fy(x), and λmax

i.p.−→
(1 +

√
y)2 =⇒ Xn

D−→W ◦.

Proof. We assume the reader is familiar with the basic results in [2] of showing weak

convergence of random elements of a metric space (most notably Theorems 4.1, 4.4, and
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Corollary 1 to Theorem 5.1), in particular, the results on the function spaces D[0, 1] and

C [0, 1]. For the topology and conditions of weak convergence in D[0,∞) see [6]. For our

purposes, the only information needed regarding D[0,∞) beyond that of [2] is the fact

that weak convergence of a sequence of random functions on D[0,∞) is equivalent to the

following: for every B > 0 there exists a b > B such that the sequence on D[0, b] (under

the natural projection) converges weakly. Let ρ denote the sup metric used on C [0, 1] and

D[0, 1] (used only in the latter when limiting distributions lie in C [0, 1] with probability

1), that is, for x, y ∈ D[0, 1]

ρ(x, y) = sup
t∈[0,1]

|x(t)− y(t)|.

We need one further general result on weak convergence, which is an extension of the

material on pp. 144-145 in [2] concerning random changes of time. Let

D[0, 1] = {x ∈ D[0, 1] : x is nonnegative and nondecreasing}

Since it is a closed subset of D[0, 1] we take the topology of D[0, 1] to be the Skorohod

topology of D[0, 1] relativized to it. The mapping

h : D[0,∞)×D[0, 1] −→ D[0, 1]

defined by h(x, ϕ) = x ◦ϕ is measurable (same argument as in [2], p. 232, except i in (39)

now ranges on all natural numbers). It is a simple matter to show that h is continuous for

each

(x, ϕ) ∈ C [0,∞)×C [0, 1] ∩D[0, 1].

Therefore, we have (by Corollary 1 to Theorem 5.1 of [2])

(2.2) (Yn,Φn)
D−→ (Y,Φ) in D[0,∞)×D[0, 1], P

(
Y ∈ C [0,∞)

)
= P

(
Φ ∈ C [0, 1]

)
= 1

=⇒ Yn ◦ Φn
D−→ Y ◦ Φ in D[0, 1].

We can now proceed with the proof of the theorem. Since we are only concerned

with distributional results we may as well assume that for all x ≥ 0, Fn(x)
a.s.−→ Fy(x) and

λmax
a.s.−→ (1 +

√
y)2 (for this is true on an appropriate subsequence of an arbitrary subse-

quence of the natural numbers). For t ∈ [0, 1] let F−1
n (t) = largest λj such that Fn(λj) ≤ t

(0 for t < Fn(0)). We have Xn
(
Fn(F−1

n (t))
)

= Xn(t) except on intervals [mn ,
m+1
n ) where

λm = λm+1. Let F−1
y (t) be the inverse of Fy(x) for x ∈

(
(1 −√y)2, (1 +

√
y)2
]

We consider first the case y ≤ 1. Let F−1
y (0) = (1−√y)2. It is straightforward to show

for all t ∈ (0, 1], F−1
n (t)

a.s.−→ F−1
y (t). Let F̃−1

n (t) = max
(
(1− √y)2, F−1

n (t)
)
. Then, for all
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t ∈ [0, 1], F̃−1
n (t)

a.s.−→ F−1
y (t), and since λn

a.s.−→ (1 +
√
y)2 we have ρ

(
F̃−1
n , F−1

y

) a.s.−→ 0.

Therefore, from (2.2) (and Theorem 4.4 of [2]) we have

Xn
(
Fn(F̃−1

n (·))
) D−→W ◦

Fy(F−1
y (·)) = W ◦ in D[0, 1].

Since Fy(x) = 0 for x ∈ [0, (1 − √y)2] we have Xn(Fn(·)) D−→ 0 in D[0, (1 − √y)2],

which implies Xn(Fn(·)) i.p.−→ 0 in D[0, (1 − √y)2], and since the zero function lies in

C [0, (1−√y)2] we conclude that

sup
t∈[0,(1−√y)2]

|Xn(Fn(x))| i.p.−→ 0.

We have then

ρ
(
Xn
(
Fn(F−1

n (·))
)
,Xn

(
Fn(F̃−1

n (·))
))
≤ 2× sup

t∈[0,(1−√y)2]

|Xn(Fn(x))| i.p.−→ 0.

Therefore, we have (by Theorem 4.1 of [2])

Xn
(
Fn(F−1

n (·))
) D−→W ◦ in D[0, 1].

Notice if v11 has a density then we would be done with this case of the proof since

for n ≤ s the eigenvalues would be distinct with probability 1, so that Xn
(
Fn(F−1

n (·))
)

=

Xn(·) almost surely. However, for more general v11, the multiplicities of the eigenvalues

need to be accounted for.

For each Mn let λ(1) < λ(2) < · · · < λ(t), (m1,m2, . . . ,mt), and (a1, a2, . . . , at) be

defined as above. We have from (2.1)

(2.3) ρ
(
Xn(·),Xn(Fn(F−1

n (·)))
)

= max
1≤i≤t

1≤j≤mi

√
n

2

∣∣∣∣∣∣∣∣∣∣∣
a2
i

j∑
`=1

z2
m1+···+mi−1+`

mi∑
k=1

z2
m1+···+mi−1+k

− j

n

∣∣∣∣∣∣∣∣∣∣∣
.

The measurable function h on D[0, 1] defined by

h(x) = ρ(x(t), x(t − 0))

is continuous on C [0, 1] (note that h(x) = lim
δ↓0
w(x, δ) where w(x, δ) is the modulus of

continuity of x) and is identically zero on C [0, 1]. Therefore (using Corollary 1 to Theorem

5.1 of [2]) h
(
Xn(Fn(F−1

n (·)))
) D−→ 0, which is equivalent to

(2.4) max
1≤i≤t

√
n

2

∣∣∣a2
i −

mi

n

∣∣∣ i.p.−→ 0.
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For each i ≤ t and j ≤ mi we have

√
n

2

a2
i

j∑
`=1

z2
m1+···+mi−1+`

mi∑
k=1

z2
m1+···+mi−1+k

− j

n

 =

(a)

√
n

2
(a2
i −

mi

n
)

j∑
`=1

z2
m1+···+mi−1+`

mi∑
k=1

z2
m1+···+mi−1+k

+

(b)

√
n

2

mi

n

a2
i

j∑
`=1

z2
m1+···+mi−1+`

mi∑
k=1

z2
m1+···+mi−1+k

− j

mi

 .

From (2.4) we have the maximum of the absolute value of (a) over 1 ≤ i ≤ t converges

in probability to zero. For the maximum of (b) we see that the ratio of chi-square random

variables is beta distributed with parameters p = j/2, q = (mi − j)/2. Such a random

variable with p = r/2, q = (m − r)/2 has mean r/m and fourth central moment bounded

by Cr2/m4 where C does not depend on r and m. Let bmi ,j represent the expression

in parentheses in (b). Let ε > 0 be arbitrary. We use Theorem 12.2 of [2] after making

the following associations: Sj =
√
mibmi,j , m = mi, u` =

√
C/mi, γ = 4, α = 2, and

λ = ε
√

2n/mi. We then have

P

(
max

1≤j≤mi

∣∣∣∣√n

2

mi

n
bmi,j

∣∣∣∣ > ε

∣∣∣∣Mn

)
≤ C ′m2

i

4n2ε4
.

By Boole’s inequality we have

P

 max
1≤i≤t

1≤j≤mi

∣∣∣∣√n

2

mi

n
bmi,j

∣∣∣∣ > ε

∣∣∣∣Mn

 ≤ C ′

4ε4
max
1≤i≤t

mi

n
.

Therefore

(2.5) P

 max
1≤i≤t

1≤j≤mi

∣∣∣∣√n

2

mi

n
bmi ,j

∣∣∣∣ > ε

 ≤ C ′

4ε4
E

(
max
1≤i≤t

mi

n

)
.

7



We have Fn(x)
a.s.−→ Fy(x) =⇒ sup

x∈[0,∞)

|Fn(x)−Fy(x)| a.s.−→ 0 =⇒ (since Fy is continu-

ous on (−∞,∞)) sup
x∈[0,∞)

|Fn(x)−Fn(x−0)| a.s.−→ 0, which is equivalent to max
1≤i≤t

mi/n
a.s.−→ 0.

Therefore, by the dominated convergence theorem, we have the left hand side of (2.5) −→ 0.

We therefore have (2.3)
i.p.−→ 0 and we conclude (again from Theorem 4.1 of [2]) that

Xn
D−→W ◦ in D[0, 1].

For y > 1 we assume n is sufficiently large so that n/s > 1. Then Fn(0) = m1/n ≥
1 − (s/n) > 0. For t ∈ [0, 1− (1/y)] define F−1

y (t) = (1 − √y)2. For t ∈ (1 − (1/y), 1]

we have F−1
n (t)

a.s.−→ F−1
y (t). Define as before F̃−1

n (t) = max
(
(1 − √y)2, F−1

n (t)
)
. Again,

ρ(F̃−1
n , F−1

y )
a.s.−→ 0, and from (2.2) (and Theorem 4.4 of [2]) we have

Xn
(
Fn(F̃−1

n (t))
) D−→W ◦

Fy(F−1
y (t))

=

{
W ◦1−(1/y) for t ∈ [0, 1− (1/y)],

W ◦t for t ∈ [1− (1/y), 1].

We have

ρ
(
Xn
(
Fn(F−1

n (·))
)
,Xn

(
Fn(F̃−1

n (·))
))

= sup
x∈[0,(1−√y)2]

|Xn
(
Fn(x)

)
−Xn

(
Fn((1 −√y)2)

)
|

D−→ sup
x∈[0,(1−√y)2]

|W ◦Fy(x) −W ◦Fy((1−√y)2)| = 0

which implies

ρ
(
Xn
(
Fn(F−1

n (·))
)
,Xn

(
Fn(F̃−1

n (·))
)) i.p.−→ 0

Therefore (by Theorem 4.1 of [2])

Xn
(
Fn(F−1

n (·))
) D−→W ◦

Fy(F−1
y (·)).

For t < Fn(0) + 1
n

Xn(t) =

√
n

2

a2
1

[nt]∑
i=1

z2
i

nFn(0)∑
`=1

z2
`

− [nt]

n



=
a2

1√
Fn(0)

√
nFn(0)

2


[nt]∑
i=1

z2
i

nFn(0)∑
`=1

z2
`

− [nt]

nFn(0)

 + [nt]
nFn(0)

√
n
2 (a2

1 − Fn(0))
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Notice that
√

n
2 (a2

1 − Fn(0)) = Xn(Fn(0)).

For t ∈ [0, 1] let ϕn(t) = min( t
Fn(0) , 1), ϕ(t) = min( t

1−(1/y) , 1), and

Yn(t) =

√
n

2


[nt]∑
i=1

z2
i

n∑
`=1

z2
`

− [nt]

n

 .

Then ϕn
i.p.−→ ϕ in D0 ≡ {x ∈ D[0, 1] : x(1) ≤ 1} (see [2], p.144), and for t < Fn(0) + 1

n

YnFn(0)(ϕn(t)) =

√
nFn(0)

2


[nt]∑
i=1

z2
i

nFn(0)∑
`=1

z2
`

− [nt]

nFn(0)

 .

For all t ∈ [0, 1] let

Hn(t) =
a2

1√
Fn(0)

YnFn(0)(ϕn(t)) +Xn(Fn(0))
(

[nFn(0)ϕn(t)]
nFn(0) − 1

)
+Xn

(
Fn(F−1

n (t))
)
.

Then Hn(t) = Xn(t) except on intervals [mn ,
m+1
n ) where 0 < λm = λm+1. We will show

Hn
D−→W ◦ in D[0, 1].

Let ψn(t) = Fn(0)t, ψ(t) = (1 − (1/y))t, and

Vn(t) =
1√
2n

[nt]∑
i=1

(z2
i − 1).

Then ψn
i.p.−→ ψ in D0 and

(2.6) Yn(t) =
Vn(t)− [nt]

n Vn(1)

1 +
√

2
nVn(1)

.

Since Xn
(
Fn(F−1

n (·))
)

and Vn are independent we have (using Theorems 4.4, 16.1 of

[2]) (
Xn
(
Fn(F−1

n (·))
)
, Vn, ϕn, ψn

) D−→
(
W ◦
Fy(F−1

y (·)),W ,ϕ, ψ,
)

where W is a Weiner process, independent of W ◦. We immediately get ([2], p.145)(
Xn
(
Fn(F−1

n (·))
)
, Vn ◦ ψn, ϕn

) D−→
(
W ◦
Fy(F−1

y (·)),W ◦ ψ,ϕ
)
.

9



Since Vn(ψn(t)) =
√
Fn(0)VnFn(0)(t), we have

ρ(Vn ◦ ψn,
√

1− (1/y)VnFn(0)) = |
√
Fn(0)−

√
1− (1/y)| sup

t∈[0,1]

|VnFn(0)(t)|
i.p.−→ 0.

Therefore

(2.7)
(
Xn
(
Fn(F−1

n (·))
)
, VnFn(0), ϕn

) D−→
(
W ◦
Fy(F−1

y (·)),
1√

1−(1/y)
W ◦ ψ,ϕ

)
.

Notice that 1√
1−(1/y)

W ◦ ψ is again a Weiner process, independent of W ◦.

From (2.6) we have

Yn(t)− (Vn(t)− tVn(1)) = Vn(t)
t− [nt]

n +
√

2
n (tVn(1)− Vn(t))

1 +
√

2
nVn(1)

.

Therefore

(2.8) ρ
(
YnFn(0)(t), VnFn(0)(t)− tVnFn(0)(1)

) i.p.−→ 0.

From (2.7), (2.8), and the fact that Wt − tW1 is Brownian bridge it follows that(
Xn
(
Fn(F−1

n (·))
)
, YnFn(0), ϕn

) D−→
(
W ◦
Fy(F−1

y (·)), Ŵ
◦, ϕ
)

where Ŵ ◦ is another Brownian bridge, independent of W ◦.

The mapping h : D[0, 1]×D[0, 1]×D0 −→ D[0, 1] defined by

h(x1, x2, z) =
√

1− (1/y)x2 ◦ z + x1(0)(z − 1) + x1

is measurable, and is continuous on C [0, 1]× C [0, 1]×D ∩C [0, 1]. Also, from (2.4) we

have a2
1
i.p.−→ 1− (1/y). Finally, it is easy to verify

[nFn(0)ϕn(t)]

nFn(0)

i.p.−→ 0

Therefore, we can conclude (using Theorem 4.1 and Corollary 1 of Theorem 5.1 of [2])

Hn
D−→
√

1− (1/y)Ŵ ◦ ◦ ϕ+W ◦1−(1/y)(ϕ− 1) +W ◦
Fy(F−1

y (·)) ≡ H.

It is immediately clear that H is a mean 0 Gaussian process lying in C [0, 1]. It is a

routine matter to verify for 0 ≤ s ≤ t ≤ 1

E(HsHt) = s(1 − t).

10



Therefore, H is Brownian bridge.

We see that ρ(Xn,Hn) is the same as the right hand side of (2.3) except i = 1 is

excluded. The arguments leading to (2.4) and (2.5) (2 ≤ i ≤ t) are exactly the same as

before. The fact that max
2≤i≤t

mi/n
i.p.−→ 0 follows from the case y ≤ 1 since the non-zero

eigenvalues (including multiplicities) of AAT and ATA are identical for any rectangular A.

Thus

ρ(Xn,Hn)
i.p.−→ 0

and we have Xn converging weakly to Brownian bridge.

3. A new condition for weak convergence. In this section we establish two

results on random elements of D[0, b] needed for the proof of the Theorem 1.1. In the

following, we denote the modulus of continuity of x ∈ D[0, b] by w(x, ·):

w(x, δ) = sup
|s−t|<δ

|x(s)− x(t)|, δ ∈ (0, b].

To simplify the analysis we assume, for now, b = 1.

Theorem 3.1. Let {Xn} be a sequence of random elements of D[0, 1] whose proba-

bility measures satisfy the assumptions of Theorem 15.5 of [2], that is, {Xn(0)} is tight,

and for every positive ε and η, there exists a δ ∈ (0, 1) and an integer n0, such that, for all

n > n0, P(w(Xn, δ) ≥ ε) ≤ η. If there exists a random element X with P(X ∈ C [0, 1]) = 1

and such that

(3.1)

{∫ 1

0

trXn(t)dt

}∞
r=0

D−→
{∫ 1

0

trX(t)dt

}∞
r=0

as n→∞

((D) in (3.1) denoting weak convergence on R∞), then Xn
D−→ X.

Proof. Note that the mappings

x −→
∫ 1

0

trx(t)dt

are continuous in D[0, 1]. Therefore, by Theorems 5.1 and 15.5, Xn
D−→ X will follow if

we can show the distribution of X is uniquely determined by the distribution of

(3.2)

{∫ 1

0

trX(t)dt

}∞
r=0

.
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Since the finite dimensional distributions of X uniquely determine the distribution of

X, it suffices to show for any integer m and numbers ai, ti, i = 0, 1, . . . ,m with 0 = t0 <

t1 < · · · < tm = 1, the distribution of

(3.3)
m∑
i=0

aiX(ti)

is uniquely determined by the distribution of (3.2).

Let {fn}, f be uniformly bounded measurable functions on [0,1] such that fn → f

pointwise as n→∞. Using the dominated convergence theorem we have

(3.4)

∫ 1

0

fn(t)X(t)dt →
∫ 1

0

f(t)X(t)dt as n→∞.

Let ε > 0 be any number less than half the minimum distance between the ti’s.

Notice for the indicator function I[a,b] we have the sequence of continuous “ramp” functions

{Rn(t)} with

Rn(t) =

{
1 t ∈ [a, b],

0 t ∈ [a− 1
n , b+ 1

n ]c,

and linear on each of the sets [a − 1
n
, a], [b, b + 1

n
], satisfying Rn ↓ I[a,b] as n → ∞.

Notice also that we can approximate any ramp function uniformly on [0,1] by polynomials.

Therefore, using (3.4) for polynomials appropriately chosen, we find that the distribution

of

(3.5)

m−1∑
i=0

ai

∫ ti+ε

ti

X(t)dt + am

∫ 1

1−ε
X(t)dt

is uniquely determined by the distribution of (3.2).

Dividing (3.5) by ε and letting ε → 0 we get a.s. convergence to (3.3), (since X ∈
C [0, 1] with probability one), and we are done.

Theorem 3.2. Let X be a random element of D[0, 1]. Suppose there exists constants

B > 0, γ ≥ 0, α > 1, and a random nondecreasing, right-continuous function F : [0, 1] →
[0, B] such that, for all 0 ≤ t1 ≤ t2 ≤ 1 and λ > 0

(3.6) P(|X(t2)−X(t1)| ≥ λ) ≤ 1

λγ
E[(F (t2)− F (t1))α].

Then for every ε > 0 and δ, an inverse of a positive integer, we have

(3.7) P(w(X, δ) ≥ 3ε) ≤ KB

εγ
E

[
max
j<δ−1

(F ((j + 1)δ)− F (jδ))
α−1

]
,
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where j ranges on positive integers, and K depends only on γ and α.

This theorem is proven by modifying the proofs of the first three theorems in section

12 of [2]. It is essentially an extension of part of a result contained in Theorem 12.3 of

[2]. The original arguments, for the most part, remain unchanged. We will indicate only

the specific changes and refer the reader to [2] for details. The extensions of two of the

theorems in [2] will be given below as lemmas. However, some definitions must first be

given.

Let ξ1, . . . , ξm be random variables, and Sk = ξ1 + · · ·+ ξk (S0 = 0). Let

Mm = max
0≤k≤m

|Sk| and

M ′m = max
0≤k≤m

min(|Sk|, |Sm − Sk|).

Lemma 3.1 (extends Theorem 12.1 of [2]). Suppose u1, . . . , um are non-negative

random variables such that

P(|Sj − Si| ≥ λ, |Sk − Sj| ≥ λ) ≤ 1

λ2γ
E

[( ∑
i<`≤k

u`

)2α]
<∞, 0 ≤ i ≤ j ≤ k ≤m

for some α > 1
2 , γ ≥ 0, and for all λ > 0. Then, for all λ > 0

(3.8) P(M ′m ≥ λ) ≤ K

λ2γ
E[(u1 + · · ·+ um)2α],

where K = Kγ,α depends only on γ and α.

Proof. We follow [2], p. 91. The constant K is chosen the same way and the proof

proceeds by induction on m. The arguments for m = 1 and 2 are the same, except, for the

latter, (u1 + u2)2α is replaced by E(u1 + u2)2α. Assuming (3.8) is true for all integers less

than m, we find an integer h, 1 ≤ h ≤ m such that

E[(u1 + · · ·+ uh−1)2α]

E[(u1 + · · · + um)2α]
≤ 1

2
≤ E[(u1 + · · ·+ uh)2α]

E[(u1 + · · ·+ um)2α]
,

the sum on the left hand side being 0 if h = 1.

Since 2α > 1, we have for all nonnegative x and y

x2α + y2α ≤ (x+ y)2α.

We have then

E[(uh+1 + · · ·+ um)2α] ≤ E[(u1 + · · ·+ um)2α]− E[(u1 + · · ·+ uh)2α]

≤ E[(u1 + · · ·+ um)2α](1− 1
2 ) = 1

2 E[(u1 + · · · + um)2α].
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Therefore, defining U1, U2,D1,D2 as in [2], we get the same inequalities as in (12.30)-

(12.33) ([2], p. 92) with u2α replaced by E[(u1 + · · ·+um)2α]. The rest of the proof follows

exactly.

Lemma 3.2 (extends Theorem 12.2 of [2]). If, for random nonnegative u`, there exists

α > 1 and γ ≥ 0 such that, for all λ > 0

P(|Sj − Si| ≥ λ) ≤ 1

λγ
E

[( ∑
i<`≤j

u`

)2α]
<∞, 0 ≤ i ≤ j ≤m

then

P(Mn ≥ λ) ≤
K ′γ,α
λγ

E[(u1 + · · ·+ um)2α], K ′γ,α = 2γ(1 +K 1
2γ,

1
2α

).

Proof. Following [2] we have for 0 ≤ i ≤ j ≤ k ≤m

P(|Sj−Si| ≥ λ, |Sk−Sj| ≥ λ) ≤ P
1
2 (|Sj−Si| ≥ λ)P

1
2 (|Sk−Sj| ≥ λ) ≤ 1

λγ
E

[( ∑
i<`≤k

u`

)2α]
,

so Lemma 3.1 is satisfied with constants 1
2γ,

1
2α. The rest follows exactly as in [2], p.

94, with (u1 + · · · + um)α in (12.46), (12.47) replaced by the expected value of the same

quantity.

We can now proceed with the proof of Theorem 3.2. Following the proof of Theorem

12.3 of [2] we fix positive integers j < δ−1 and m and define

ξi = X

(
jδ +

i

m
δ

)
−X

(
jδ +

i− 1

m
δ

)
, i = 1, 2, . . . ,m.

The partial sums of the ξi’s satisfy Lemma 3.2 with

ui = F

(
jδ +

i

m
δ

)
− F

(
jδ +

i− 1

m
δ

)
.

Therefore

P

(
max

1≤i≤m

∣∣∣∣X (jδ +
i

m
δ

)
−X (jδ)

∣∣∣∣ ≥ ε) ≤ K

εγ
E[(F ((j + 1)δ)− F (jδ))α] K = K ′γ,α.

Since X ∈ D[0, 1] we have

P

(
sup

jδ≤s≤(j+1)δ

|X(s)−X(jδ)| > ε

)

= P

(
max

1≤i≤m

∣∣∣∣X (jδ +
i

m
δ

)
−X (jδ)

∣∣∣∣ > ε for all m sufficiently large

)
≤ lim

m
inf P

(
max

1≤i≤m

∣∣∣∣X (jδ +
i

m
δ

)
−X (jδ)

∣∣∣∣ ≥ ε) ≤ K

εγ
E[(F ((j + 1)δ)− F (jδ))α].
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By considering a sequence of numbers approaching ε from below we get from the continuity

theorem

(3.9) P

(
sup

jδ≤s≤(j+1)δ

|X(s) −X(jδ)| ≥ ε
)
≤ K

εγ
E[(F ((j + 1)δ)− F (jδ))α].

Summing both sides of (3.9) over all j < δ−1 and using the corollary to Theorem 8.3 of [2]

we get

P(w(X, δ) ≥ 3ε) ≤ K

εγ
E

[ ∑
j<δ−1

(F ((j + 1)δ)− F (jδ))α
]

≤ K

εγ
E

[
max
j<δ−1

(F ((j + 1)δ)− F (jδ))α−1(F (1)− F (0))

]
≤ KB

εγ
E

[
max
j<δ−1

(F ((j + 1)δ)− F (jδ))α−1

]
,

and we are done.

For general D[0, b] we simply replace (3.1) by

(3.10)

{∫ b

0

trXn(t)dt

}∞
r=0

D−→
{∫ b

0

trX(t)dt

}∞
r=0

as n→∞

and (3.7) by

(3.11) P(w(X, bδ) ≥ 3ε) ≤ KB

εγ
E

[
max
j<δ−1

(F (b(j + 1)δ)− F (bjδ))
α−1

]
,

j and δ−1 still positive integers.

4. Completing the proof. We finish up by verifying the conditions of Theorem 3.1.

Theorem 4.1. Let E(v11) = 0, E(v2
11) = 1, and E(v4

11) < ∞. Suppose the sequence

of vectors {~xn}, ~xn = (xn1, xn2, . . . , xnn)T , ‖~xn‖ = 1 satisfies

(4.1)
n∑
i=1

x4
ni −→ 0 as n→∞.

Then (1.5) holds.

Proof. Let v̄ij = v̄ij(n) = vijI(|vij|≤n1/4) − E(vijI(|vij|≤n1/4)), and let M̄n = 1
s V̄nV̄

T
n ,

where V̄n = (v̄ij). We have E(v̄11) = 0, E(v̄2
11)→ 1, and E(v̄4

11)→ E(v4
11) as n→∞.

The main part of the proof in [11] establishing (1.5) (under the additional assumption

E(v4
11) = 3) relies on a multidimensional version of the method of moments, together with
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the fact that (1.5) holds in the Wishart case. It is shown that for any integer m ≥ 2 and

positive integers r1, r2, . . . , rm, the asymptotic behavior of

(4.2) nm/2E
[(
~xTn M̄

r1
n ~xn − E(~xTn M̄

r1
n ~xn)

)(
~xTn M̄

r2
n ~xn − E(~xTn M̄

r2
n ~xn)

)
· · ·
(
~xTnM̄

rm
n ~xn − E(~xTn M̄

rm
n ~xn)

)]
depends only on E(v̄2

11) and E(v̄4
11). Using the fact that (4.2) converges to the appropriate

limit when v11 is N(0,1), (1.5) follows when E(v4
11) = 3.

This is the only place in the proof in [11] that refers to the value of E(v4
11), the

remaining arguments depending on this value only to the extent of it being finite, and thus

apply to the present case. Therefore, we will be done if we can show that (4.1) implies

the asymptotic behavior of (4.2) depends only on E(v̄2
11). Although it will be necessary to

repeat some of the discussion in the original proof, we refer the reader to [11] for specific

details.

We have (dropping the dependency of n on the components of ~xn)(
sr1+···+rm

nm/2

)
× (4.2) =

(4.3)
∑

xi1xj1 · · · ximxjmE
[
(v̄i1k1

1
v̄i12k1

1
· · · v̄i1r1k1

r1
v̄j1k1

r1
− E(v̄i1k1

1
v̄i12k1

1
· · · v̄i1r1k1

r1
v̄j1k1

r1
))

· · · (v̄imkm
1
v̄im

2
km

1
· · · v̄imrmkmrm v̄jmkmrm − E(v̄imkm

1
v̄im

2
km

1
· · · v̄imrmkmrm v̄jmkmrm ))

]
,

where the sum is over i1, j1, i12, . . . , i
1
r1 , k

1
1, . . . , k

1
r1 , . . . , i

m, jm, im2 , . . . , i
m
rm , k

m
1 , . . . , k

m
rm .

We consider one of the ways the two set of indices

I ≡ {i1, j1, i12, . . . , i
1
r1
, . . . , im, jm, im2 , . . . , i

m
rm
}, and K ≡ {k1

1, . . . , k
1
r1
, . . . , km1 , . . . , k

m
rm
}

can each be partitioned. Associated with the two partitions are the terms in (4.3) (for

n large) where indicies are equal in value if and only if they belong to the same class.

We consider only those partitions corresponding to terms in (4.3) that contribute a non-

negligible amount to (4.2) in the limit. Let ` be the number of classes of I indices containing

only one element from J ≡ {i1, j1, i2, j2, . . . , im, jm}. Let d denote the number of classes

of I indices containing no elements from J , plus the number of classes of K indices. Then

the contribution to (4.3) of those terms associated with the two partitions is bounded in

absolute value by

(4.4) Cn(`/2)+dE
(
|v̄i1k1

1
, . . . , v̄j1k1

r1
, . . . , v̄imkm1 , . . . , v̄jmkmrm |

)
the expected value being one of those associated with the two partitions. We can write

this expected value in the form

A1
a1b1

A2
a2b2
· · ·Ar′ar′br′
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where Ajajbj corresponds to v̄ajbj appearing in (4.4), so that if v̄ajbj appears t times, then

Ajajbj = E(|v̄tajbj |). There are r′ distinct elements of V̄n involved in (4.4). For each ordered

pair (aj , bj) either aj or bj will be repeated in at least one other ordered pair (see [11]).

We say that aj or bj is free if it does not appear in any other ordered pair.

From [11] it was argued that d = r1+· · ·+rm−(m/2)−(`/2), for each j Ajajbj = E(v̄2
11)

or E(v̄4
11), and, for our purposes, we can assume without loss of generality that each I class

containing no element from J has at least two elements, and any Ajajbj for which bj is free

involves v̄ptqt ’s for at least two different t’s. We continue the argument from this point.

We immediately conclude that the number of I classes containing no elements from

J , and the number of K classes are, respectively, bounded by 1
2 (r1 + · · · + rm −m) and

1
2 (r1 + · · · + rm). We can also conclude that ` = 0, since any I class containing only one

element from J implies an element of V̄n apearing in (4.4) an odd number of times, which

is impossible. Therefore, we can conclude that there are 1
2
(r1 + · · · + rm) K classes, and

1
2 (r1 + · · ·+ rm −m) I classes containing no elements from J , which further implies no I

class exists containing an element from J and an element from (I − J). Therefore, the I

classes split up into separate J and I−J classes, and each K class and I−J class consists

of two elements.

Now, if Ajajbj = E(v̄4
11) for some j, then either aj or bj must be associated with a class

containing at least three elements, forcing aj to be associated with a J class consisting of

at least four elements. Therefore, the sum of the terms in (4.3) associated with the two

partitions, divided by (sr1+···+rm)/nm/2, will be bounded by

C ×
n∑
i=1

x4
i

and because of (4.1) these terms will not contribute anything to (4.2) in the limit. We

conclude that the asymptotic behavior of (4.2) depends only on E(v̄2
11), and we are done.

Let R+ denote the nonnegative reals and B+, B4
+ denote the Borel σ-fields on, re-

spectively, R+ and R4
+. For any n× n symmetric, nonnegative definite matrix B and any

A ∈ B+, let PB(A) denote the projection matrix on the subspace of Rn spanned by the

eigenvectors of B having eigenvalues in A (the collection of projections {PB((−∞, a]) :

a ∈ R} is usually referred to as the spectral family of B). We have trPB(A) equal to the

number of eigenvalues of B contained in A. If B is random, then it is straightforward to

verify the following facts:

a) For every ~xn ∈ Rn, ‖~xn‖ = 1, ~xTnP
B(·)~xn is a random probability measure on R+

placing mass on the eigenvalues of B.
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b) For any four elements PBi1j1(·), PBi2j2(·), PBi3j3(·), PBi4j4(·) of PB(·), the function defined

on rectangles A1 ×A2 ×A3 ×A4 ∈ B4
+ by

(4.5) E
(
PBi1j1(A1)PBi2j2(A2)PBi3j3 (A3)PBi4j4(A4)

)
generates a signed measure mB

n = m
B,(i1,j1,... ,i4,j4)
n on (R4

+,B4
+) such that |mB

n (A)| ≤ 1 for

every A ∈ B4
+.

When B = Mn we also have

c) For any A ∈ B+ the distribution of PMn(A) is invariant under permutation transfor-

mations, that is, PMn(A) ∼ OPMn(A)OT for any permutation matrix O (use the fact

that PB(·) is uniquely determined by {Br}∞r=1 along with OPB(·)OT = POBO
T

(·) and

{Mr
n}∞r=1 ∼ {(OMnO

T )r}∞r=1).

d) For 0 ≤ x1 ≤ x2

1
nP

Mn([0, x1]) = Fn(x1),

Xn(Fn(x1)) =
√

n
2

(
~xTnP

Mn([0, x1])~xn − 1
n tr(PMn([0, x1]))

)
, and

Xn(Fn(x2))−Xn(Fn(x1)) =
√

n
2

(
~xTnP

Mn((x1, x2])~xn − 1
ntr(PMn((x1, x2]))

)
.

Lemma 4.1. Assume v11 is symmetric. If one of the indices i1, j1, . . . , i4, j4 appears

an odd number of times, then mMn
n ≡ 0.

Proof. Assume first that v11 is bounded. Then λmax is bounded which implies mMn
n

has bounded support. Therefore, mMn
n is uniquely determined by its mixed moments ([7],

pp. 97-102). It is straightforward to show these moments can be expressed as

(4.6) E
(
(Mn

r1)i1j1(Mn
r2 )i2j2 (Mn

r3)i3j3(Mn
r4 )i4j4

)
for arbitrary nonnegative integers r1, . . . , r4. If, say r1 = 0 and i1 6= j1, then obviously

(4.6) is zero. We can assume then a positive power r` for which i` 6= j`. Upon expanding

(4.6) as a sum of expected values of products of entries of Vn we find each product contains

a vij appearing an odd number of times. Therefore, all mixed moments of mMn
n are zero,

implying mMn
n ≡ 0.

For arbitrary symmetric v11 we truncate. For any c > 0 let vcij = vijI(|vij|≤c), and

Mc
n = 1

sV
c
nV

c
n
T , where V cn = (vcij). For any realization of the vij ’s and A1×A2×A3×A4 ∈

B4
+

P
Mc
n

i1j1
(A1)P

Mc
n

i2j2
(A2)P

Mc
n

i3j3
(A3)P

Mc
n

i4j4
(A4) = PMn

i1j1
(A1)PMn

i2j2
(A2)PMn

i3j3
(A3)PMn

i4j4
(A4)
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for c large enough. Therefore, by the dominated convergence theorem we have (4.5) (with

B = Mn) equal to zero for all rectangles in B4
+, implying mMn

n ≡ 0.

Theorem 4.2. Assume v11 is symmetric and ~xn = (± 1√
n
,± 1√

n
, . . . ,± 1√

n
)T . Let

Gn(x) = 4Fn(x). Then

(4.7) E
(
(Xn(Fn(0)))4

)
≤ E

(
(Gn(0))2

)
,

and for any 0 ≤ x1 ≤ x2

(4.8) E
(
(Xn(Fn(x2))−Xn(Fn(x1)))4

)
≤ E

(
(Gn(x2)−Gn(x1))2

)
.

Proof. With A = {0} in (4.7), A = (x1, x2] in (4.8) we use d) to find the left hand

sides of (4.7) and (4.8) equal to

(4.9)
1

4n2
E

(∑
i6=j

γijP
Mn
ij (A)

)4

where γij = sgn(~xn)i(~xn)j . For the remainder of the argument we simplify the notation

by supressing the dependence of the projection matrix on Mn and A. Upon expanding

(4.9) we use c) to combine identically distributed factors, and Lemma 4.1 to arrive at

(4.10) (4.9) =
(n−1)
n

(
12(n− 2)E(P 2

12P
2
13) + 3(n− 2)(n − 3)E(P 2

12P
2
34)

+12(n− 2)(n − 3)E(P12P23P34P14) + 2E(P 4
12)
)
.

We can write the second and third expected values in (4.10) in terms of the first

expected value and expected values involving P11, P22, and P12 by making further use of

c) and the fact that P is a projection matrix (i.e., P 2 = P ). For example, we take the

expected value of both sides of the identity

P12P23

(∑
j≥4

P3jP1j + P31P11 + P32P12 + P33P13

)
= P12P23P13

and get

(n− 3)E(P12P23P34P14) + 2E(P11P12P23P31) + E(P 2
12P

2
13) = E(P12P23P13).

Proceeding in the same way we find

(n − 2)E(P11P12P23P31) + E(P 2
11P

2
12) + E(P11P22P

2
12) = E(P11P

2
12) and

(n − 2)E(P12P23P13) + 2E(P11P
2
12) = E(P 2

12).
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Therefore

(n− 2)(n − 3)E(P12P23P34P14) = E(P 2
12) + 2E(P11P22P

2
12)

+2E(P 2
11P

2
22)− (n − 2)E(P 2

12P
2
13)− 4E(P11P

2
12).

Since P11 ≥ max(P11P22, P
2
11) and P 2

12 ≤ P11P22 (since P is nonnegative definite) we

have

(n − 2)(n − 3)E(P12P23P34P14) ≤ E(P11P22)− (n− 2)E(P 2
12P

2
13).

Similar arguments will yield

(n − 3)E(P 2
12P

2
34) + 2E(P 2

12P
2
13) + E(P 2

12P
2
33) = E(P 2

12P33) and

(n− 2)E(P 2
12P

2
13) + E(4

12) + E(P 2
11P

2
12) = E(P11P

2
12).

After multiplying the first equation by n− 2 and adding it to the second, we get

(n− 2)(n − 3)E(P 2
12P

2
34) + 3(n− 2)E(P 2

12P
2
13)

= (n − 2)E(P 2
12P33)− (n− 2)E(P 2

12P
2
33) + E(P11P

2
12)− E(P 2

11P
2
12)− E(P 4

12)

= E(P11P22) + E(P 2
11P

2
22)− 2E(P11P

2
22)− E(P 4

12) ≤ E(P11P22)− E(P 4
12).

Combining the above expressions we obtain

(4.9) ≤ 15
(n− 1)

n
E(P11P22).

Therefore, using c) and d), we get

(4.9) ≤ 15
n2 E(

∑
i6=jPiiPjj) ≤ E((4 1

n
trP )2) =

{
E
(
(Gn(0))2

)
for A = {0},

E
(
(Gn(x2)−Gn(x1))2

)
for A = (x1, x2],

and we are done.

We can now complete the proof of Theorem 1.1. We may assume E(v2
11) = 1. Choose

any b > (1 +
√
y)2. We have (1.3) and, by Theorem 4.1, (1.5), which imply{∫ b

0

xrXn(Fn(x))dx

}∞
r=0

D−→
{∫ b

0

xrW y
x dx

}∞
r=0

as n→∞,

so that (3.10) is satisfied. By Theorems 3.2 and 4.2 we have, for any n ≥ 16, (3.11) with

X = Xn(Fn(·)), F = 4Fn, B = 4, γ = 4, and α = 2. From (1.2) and Theorem 5.1 of [2]

we have for every δ ∈ (0, b]

w(Fn, δ)
i.p.−→ w(Fy , δ) as n→∞.

20



Since Fy is continuous on [0,∞), we apply the dominated convergence theorem to the

right hand side of (3.11) and find that, for every ε > 0, P(w(Xn(Fn(·)), δ) ≥ ε) can be

made arbitrarily small for all n sufficiently large by choosing δ appropriately. Therefore,

by Theorem 3.1, Xn(Fn(·)) D−→ W ◦Fy(·) in D[0, b], which implies Xn(Fn(·)) D−→ W ◦Fy(·) in

D[0,∞), and by Theorem 2.1 we conclude that Xn
D−→W ◦.
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