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{w,»j}, i,j=1,2,.., be iid. random variables and for each n let
M,=(1n) W, WL, where W,=(w,), i=1,2,..,p; j=1,2,.,n; p=p(n), and
p/n— y>0as n— co. The weak behavior of the largest eigenvalue of M, is studied.
The primary aim of the paper is to show that the largest eigenvalue converges
in probability to a nonrandom quantity if and only if E(w,)=0 and
n*P(lwyy| = 1) =o(1), the limit being (1 + y)? E(Wfl). © 1989 Academic Press, Inc.

1. INTRODUCTION

Let {w,}, i,j=1,2,.., be iid random variables and for each n let

M,=(1/n) W, WL, where W,=(w,), i=1,2,.,p;j=1,2,..,n; p=p(n),
and p/n— y>0 as n— co. The matrix M, can be viewed as the sample
covariance matrix of n samples of a p-dimensional vector containing ii.d.
components, where p and n are large but on the same order of magnitude.
Denote the largest eigenvalue of M, by An.,(M,). In [3] it is proven that
if E(wj)<o and E(w;)=0 then A,,(M,)—->**(1 +\/3;)2 E(w}))
n — oo, while in [1] it is shown that lim sup,, A, (M,) = co almost surely
if E(w},)=o0. Thus the almost sure behavior of 4...(M,) is essentially
understood. The aim of this paper is to establish its weak limiting behavior.
We will prove the following

THEOREM. We have

(@) Apa(M,) converges in probability to a nonrandom quantity if
and only if E(w,)=0 and n*P(lw,|=n)=o0(1), the Ilimit being

(1+/¥)> E(w?).
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(b) If lim sup, n*P(lwy,| = n) >0, then for any K >0
lim sup,, P(Ah.(M,,) = K) > 0.

(c) If lim sup, n*P(lwy,| = n) = o, then for any K >0
lim sup,, P(A . (M,) = K)=1.

(d) IfE(w,,)=0andlim sup, n*P(|w,;| = n) < oo, then { Ao (M)} 4
is bounded in probability.

Thus convergence in probability holds only under a slight weakening of
the condition needed for almost sure convergence. For case (d) we remark
here that, due to the known limiting behavior of the empirical distribution
function of the eigenvalues of M, [2], we have liminf, A, (M,)>
(1 +\/- (wi,) almost surely, implying any limiting distribution of a
weakly converging subsequence of {Amax(M,)}y>; must have mass in
[(1+\/_)2 (wi,), o). Other than that, no additional information is
known, for example, whether Amax(M,) converges in distribution or how
the distribution of any weakly convergent subsequence of {1...(M,)}°,
depends on w;.

The proof of the theorem will be given in the next section. It relies on
part of the proof of the main theorem in [3], as well as the fact that
Amax(M,) is bounded below by each diagonal element of M,,.

2. PROOF OF THE THEOREM

Assume E(w,,)=0 and n*P(Jw,| =n)=o(1). Without loss of generality
we may assume E(w? )= 1. It then follows that n*P(lw,,| = e\/_) =o(1) for
every ¢ > 0. From this it is straightforward to construct a sequence (6.}
of positive numbers such that §, — 0, J, logn — 0, and n P(|w ] >
5n\/_) —0as n— .

Let wy=wy(n)=w;l ., <s./n). (7, belng the indicator function on the
set A), and define M,=(1/n) W,WT, where W, is pxn with (i, j)th
element ;. Then

P(Aai(M,) # Amae (M) <npP(Iwy| 2 0,/n) >0 as n—oo. (21)

Let w, = w,(n) =w;— E(W,), and define M, = (1/n) W, W?T, where W, is
pXn w1th (i, j)th element W,. Let || Bl denote the spectral norm of any
matrix B (that is, |B|| = 122 (BBT)) and let 1,, denote the m-dimensional

max

vector consisting of 1’s. Then

A2 (BT,) = A2 (M,)] < —= [E(0 )] 1,171 = /P [E(# ).

max max

f
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Since E(w,;) =0, E(w?,)=1, we have

[EGP3 )1 = B30 Loy » 5, /m)| SPY2(wyy| = 8,4/n).

Therefore,

|AYV2 (M) — A2 (M) -0 as n— oo. (2.2)

max max

From (2.1) and (2.2) we see that

Xmax(Mn)_imax(Mn)i&’ 0 as n— 0.

At this point the same arguments in Section 4 of [3] can be applied to
Amax(M,), since the assumptions needed on W are identical. Therefore, we
have

Ama(M,) =25 (14/y)F as n— oo,

and the sufficiency part of (a) is proven.

Suppose n*P(|w,;|=n)=o0(1) but E(w,;;)=as0. Then the matrix
M, = (1/n)(W,—-1,1)(W,—1,1])" satisfies the conditions of (a).
Moreover, we have

1/2

()~ |
max n \/;

However, |[(1//n) al,17|=./plal. Therefore, Ana(M,)/pa>—"*1 as
n — oo. This verifies the necessity of E(w;;)=0 in (a).
Assume now lim sup, n*P(|w,,| =n)>0. For any K >0 we have

12
<A

max

(M,).

al, 1}

1 r
P(}‘max(Mn) = K) =P <max ; Z Wi) K>
i gt

co(r( ). e

where w{, w,, ... are i.i.d. having the same distribution as w,,. We need then
to investigate the limiting behavior of nP((1/n)37_, wf)K ). Since
E(w?,)=1 we have nP(w?, > nK)=o0(1) (we remark here the need for the
second moment of w,, to be finite. If E(w?,) were infinite, then from the
strong law of large numbers applied to (1/n)>7_, wfj we would have
Amax(M,) =35 00 as n— o0). We have
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>P <L}j (wf?nK))

—1
S nP(w?, 3 nK) — " pa2 S k) S 2w 2 0K) (24)

[\9]

for n sufficiently large.

It is a simple matter to show limsup,n’P(w} >nK)>0, and if
lim sup, n*P(|w,,| = n)=co, then limsup,n n*P(w?, = nK) = co. Therefore,
from (2.3) and (2.4) we get lim sup, P(A,(M,) = K)>0 for any positive
K which verifies (b) and the necessity of n P(lw11|>n)—0(1) in (a).
Moreover, we get lim sup, P(A,.(M,)=>K)=1 if limsup,n P(lw,, | =n)
= o0, proving (c).

Fmally, assume lim sup, n*P(|w;,| =n) < oo. Define w,, W, M, W i
W,, M, as above but with §,=1 for each n. We immediately get (2.2),
since nP(|wy,| >\/_)—o(1) We have

A2 (M) — N2 (M)

max max

< yw, = = (%(»Vn—lV»(W;é-Wuﬂj

~ \/’ max

1 . . 1/2
<Qmm—mmm—mﬁ>.
n

Therefore, for any K >0 we get from Chebyshev’s inequality

P(I212(M,) = 22(M,)| = K)

E(Zl—l Z_;I—l W I n)) pE(W111Lt11>n))
nk? K?

(2.5)

Using integration by parts, it is straightforward to show for any random
variable X and m>1

m
n" ~'E(] X I(|X|>n))<m sup x"P(1X] = x).

— 1 xe[nc0)

Therefore, with m =2 we conclude from (2.2) and (2.5) that

(A2 (M,)— A2 (M)}, (2.6)

max max

is bounded in probability.



WEAK LIMIT OF LARGEST EIGENVALUE 311

Now, the main part of the proof in [3] of showing A, (/,)—>*

=]

(1+ \/;)2 for an appropriately chosen sequence {5,}_, involves proving

for any z> (1 +\/;)2,
T E ((Ml)k) < (2.7)

n=1 z

for appropriately chosen {k,}>_,. Of course, (2.7) implies

n=1"
P(Amar(M,) > z infinitely often )= 0.

However, if 6,=1 and k,=[logn] (where [x] is the integer part of x),
then the same arguments in [3] can be used to show (2.7) for all z suf-

ficiently large. Therefore, for some z>0, limsup, i, (#M,)<z almost
surely. This together with (2.6) being bounded in probability give us (d).
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