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ON THE RANDOMNESS OF EIGENVECTORS GENERATED FROM
NETWORKS WITH RANDOM TOPOLOGIES*

JACK W. SILVERSTEIN?

Abstract. A model for the generation of neural connections at birth led to the study of W, a random,
symmetric, nonnegative definite" linear operator defined on a finite, but very large, dimensional Euclidean
space ]. A limit law, as the dimension increases, on the eigenvalue spectrum of W was proven, implying that
realizations of W (being identified with organisms in a species) appear totally different on the microscopic level
and yet have almost identical spectral densities.

The present paper considers the eigenvectors of W. Evidence is given to support the conjecture that,
contrary to the deterministic aspect of the eigenvalues, the eigenvectors behave in a completely chaotic
manner, which is described in terms of the normalized uniform (Haar) measure on the group of orthogonal
transformations on a finite dimensional space. The validity of the conjecture would imply a tabula rasa
property on the ensemble ("species") of all realizations of W.

1. The conjecture. In [1] we presented neural networks constructed at birth. The
connections between neurons are generated according to a controlled probability
model, the assumptions being consistent with known limitations on genetic coding. This
led to the study of W, a random, symmetric, nonnegative definite linear operator
defined on n-dimensional space, where n is very large. Each realization of W can be
viewed as describing the neural state of a particular organism from some population or
species. A limit law (n ) on the eigenvalue spectrum was proven, which implies that
the spectrum of W is close to a fixed one. Thus, realizations of W look totally different
on the microscopic level, yet have almost identical spectral densities.

Let us briefly mention how W is constructed. For a given positive integer d, an
n dn matrix P (P0) of probabilities which is formed under rather general conditions,
is used to construct the random n dn matriJ V=(v0.). All elements of V are
independent, and each vii is either 1 or -1 with equal probability, or zero, and
Prob (v i 1) Pii. Each row of P is a rotation of the first row. Let C be the sum of the
first row of P. Then

1 7-w vv

The matrix V contains the connection characteristics between a group of n
neurons synapsing onto another group of dn neurons. Thus, the synaptic strength
between neuron in the first group and neuron/" in the second group is given by Vii. The
structure of P allows the model to have a homogeneous behavior in the establishment of
connections. A spatial consideration can also be imposed on the network by choosing
the first row of P accordingly. However, the only condition needed for the limit law is to
have C as n -.In the theory developed for neural networks [2], [3] patterns of the external world
are represented as vectors, and become input to the network. The complete spectral
decomposition of W reveals the initial response characteristics of the network on its
environment. For example, at birth the network will be predisposed toward the
eigenvectors of W with large eigenvalues. Since W is randomly generated, the
assignment of eigenvectors to eigenvalues will vary from one realization of W to
another. The manner in which the eigenvectors vary is the main topic of the paper.
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We will provide evidence supporting the conjecture that the behavior of the
eigenvectors is completely chaotic. An attempt at formalizing this conjecture is the
following: Let O( O(n)) be a random n x n orthogonal matrix distributed according
to the normalized uniform (Haar) measure on the orthogonal group n. Let Dn be a
fixed n x n diagonal matrix with nonnegative diagonal elements arranged in nonde-
creasing order and such tb.at the spectrum of Dn approaches the limiting spectrum of W
as n c. The conjecture is that for n large the distribution of W’ =- ODnOr is close (in
some sense) to the distribution of W.

In connection with neural networks it is shown in 1] that W can be made as close to
the identity matrix as desired by choosing first d sufficiently large and then n sufficiently
large. This implies a tabula rasa property on each realization of W: no input from the
external world is preferred at birth. When d is not very large, any realization of W is
genetically biased toward certain inputs and against others. However, the validity of the
conjecture would imply that no genetic bias to the external world is preferred by the
ensemble of all realizations of W. Thus, in biological terms, a tabula rasa property
would still exist, but now on the "species" of organisms rather than for an individual
organism.

In relation to real biological systems, the reader is referred to the remarks made in
3 of [1]. The present conclusion is not intended to support tabula rasa, but rather to

demonstrate what properties an ensemble of networks can possess under the particular
assumptions making up the controlled probability model. It is felt, however, that this
mathematical approach to modeling the generation of neural connections can be of
some help in understanding the development of several substructures in the nervous
system.

The evidence is based on properties of real valued functions defined on the spectral
family {P} of M W or W’, where for eaqh a [0, oe), P is the projection operator
of the space spanned by the eigenvectors of M with eigenvalues <_-a. The results, stated
and proven in the next section, are limit tb.eorems, the convergence being in probability
(i.p.) as n oo, and they show the limits to be the same for W and W’. Theorems 1 and 3
are concerned with the limiting value of x rPx, where for each n, x R is an arbitrary

i.p.
but fixed, unit vector. They assert that for M W or W’, x rPx F(a) as n o0,
where F is the limiting spectral distribution function of W.

This property of W is probably ot enough to prove the conjecture but it does help
in strengthening our belief. It enables us to rule out possibilities. In particular, we can
eliminate the case that at least one eigenvector is fixed but might be assigned to different
eigenvalues from one realization of W to another. This is so since if x is one of these
eigenvectors x rPWax is either 0 or 1. The mean and second moment of this quantity are
then equal so that the only limiting values that can be reached in probability would be 0
or 1. (Since x rPWx is bounded between 0 and 1, convergence in probability to one value
implies the variance approaches 0.) The distribution function F is continuous so that a
continuum of values must be taken on.

We also considered the quantity H(Ma, M2)---= (l/n) tr (M1- M2)2, where tr is the
trace function, originally as a measure of differences between eigenspaces of two
realizations W, W2 of W. Small values of H(PWal, Pav:) would indicate that the
eigenspace corresponding to eigenvalues of W in [0, a] does not vary greatly, whereas
not-so-small values would suggest the opposite. At the same time we used H as a
possible means of supporting the conjecture. Theorem 2 shows that for two indepen-

i.p.
dent realizations W,W of W’, H(pW;,pW;)---,h(a)2F(a)(1-F(a)). The
graph of h for d I is displayed in Fig. 1. Two computer simulations were carried out to
calculate values of H(pW ’1, pWa ).
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FIG. 1. Solid curve is h(a) (d 1). x and denote two separate simulations ol H(Pw, Paw{) (d= 1,
n 100).

For each simulation (n 100) h(a) was determined for five values of a, and these
points are plotted in Fig. 1. The agreement is quite good. i.p.

We then proceeded to establish a proof that H(paWl, paW2)--- h(a) as nm.
This result is Theorem 4 in the next section.

Since the complete spectral decomposition of an operator in finite dimensional
space can be gotten from its spectral family, we feel that the results characterize
completely the spectral family of W, so that the conjecture is likely to be true. We are
currently trying to prove this. Since the probability space of n x n matrices is changing
for increasing n, it appears to be difficult to establish the result in terms of a limit
theorem. However, there are ways of formalizing the conjecture without the need for an
underlying space. Let /xn and /x’ be the Borel measures generating W and W’
respectively. Let Bn be some class of Borel sets of n x n matrices whose description does
not depend upon n, and which generates all Borel sets. For example, B, could be the
compact sets, or perhaps the complete set of Borel sets. Then one could try to prove a
statement such as the following: for any e > 0, there exists an N such that for all n -> N,
It, (A) -/x ’,, (A)[ < e for all A Bn. In view of the current state of probability theory this
is a strong statement concerning two measures which is usually difficult to prove.
Nonetheless, in our case we remain optimistic.

2. The results. Theorems 3 and 4 rely heavily on the arguments used and the
results established in 1]. We will refer back to this paper when necessary. Therefore it
will be assumed that the reader is familiar with [1]. Theorems 1 and 2 use the following
properties of the uniform (Haar) measure on ,:

1. If O , is uniformly distributed, then O7" is uniformly distributed.
2. For fixed A , and O 7, uniformly distributed, A0 and 0A are both

uniformly distributed.
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3. If Oa fin and O2 fin are independent and uniformly distributed then O102 is
uniformly distributed.

4. If x R is a fixed unit vector, and O ft, is uniformly distributed, then the
distribution of Ox on Sn-x, the surface of the unit sphere in R n, is uniform, i.e.
generated from the surface element on S,-1.

The first three properties follow almost directly from the invariant property of the
Haar measure on ft,. The fourth one seems just as obvious but is not as easy to prove.
We will give a proof using spherical harmonics and the associated addition theorem (a
good reference for this topic is [4]). A spherical harmonic is the restriction to $,-1 of a
homogeneous polynomial defined on R" satisfying Laplace’s equation. A basis for
L2(Sn_x, 09), where w denotes uniform measure, can be made consisting entirely of
spherical harmonics. Let S ={S,,/: j 1,... N(m); m 0, 1, 2,...} denote such a
basis. Here, S,,,/is a spherical harmonic of degree rn and N(m) is the number of linearly
independent spherical harmonics of degree m. The addition theorem implies that for
each rn and y, z Sn_l

N(m)

(2.1) E S,,a(y)Sa(z)
/=1

depends only on the value of (y, z). Let (2.1) be equal to &((y, z)).
Another important property of S is that the span of S is dense in C(S._I), the space

of continuous functions on S.-1, with respect to the supremum norm. Therefore, the
span of S is dense in Ll(Sn_l,/.), where tz is an arbitrary Borel measure on S.-1
being a compact Hausdorff space implies C(Sn_I) is dense in LI(S._I,/z) ), so that/z is
uniquely determined by the values

(2.2) Cm,/ Is Sma(y) d/z(y), j 1, 2," ", N(m), m O, 1, 2,.

Let Ix now be the measure on Sn-1 generated by Ox. Since this mapping from ff onto
S,-1 is continuous,/z is a Borel measure. Also,/z is rotationally invariant, i.e. for any
Borel set A c S,,-1 and any fixed O ,, tz(0A) =/x(A). We will show that these two
properties uniquely characterize

For Zl, z2 Sn-1 let O ff be such that Oz2 zl. Then

(2.3)
I8 6((Y, Z1)) d(y)- Is 6((Y, Oz2>) di(y) Is 6(<OY’ z2>) d(y)

Is 6((Y, z2)) dtz(y).

The last equality is due to the fact that z is rotationally invariant. Therefore inte-
grating (2.1) with respect to y will result in a linear combination of orthonormal
spherical harmonics equalling a constant, which is also a spherical harmonic. Therefore
for all b _-> 1, Cm,i 0, thus establishing the uniqueness of a Borel, rotationally invariant
probability measure on Sn-1.

THZOREM 1. For each n let x R be a fixed unit vector. Then ]:or any a [0, o)

(2.4) --.F(a) as n-
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Proof. Let mn be the number of eigenvalues of W’ less than or equal to a. Let
y O rx. Then
(2.5) x rpW’x y.

i=1

By property 4, y is uniformly distributed on the unit sphere. This random vector
can be generated by normalizing an N(0, I) distributing vector (I being the n n
identity matrix). Therefore xrpW’x is beta distributed with parameters p m,,/2,
q (n m)/2, so that

(2.6) E(xrpW ,x) p m-F(a) asnoo
p+q n

and

(2.7) Var(xpW’x)=(p+q)Z(p+q+l) n n+2]0 asn-+oo

which implies (2.4).
THEOREM 2. If W’ and W’2 are two independent generations of W’, then for every

pair of nonnegative a, a2

(2.8)
1 W; W )2

i.p.
-tr (Pal -Pa2 ----> F(aa)+F(a2)-2F(al)F(a2).
n

Proof. Let m in number of eigenvalues of WI < ai, 1, 2. By Property 3 and the
invariant property of the trace under similarity transformations we have

(2.9)
1 W W;)2 1 w; 2-tr(Pal -Pa2 =-rr(D-P)

where D is the diagonal matrix having its first m nl diagonal entries equal to one and the
rest 0, and W is another W’ generation. Simplifying further we have

(2.10)

1 w;)2 ml m2 1 w; 1
tr (D -P2 +--tr DP, tr P;D

m2 2 ".m_ Z (pW;a2 ii.
n n ni=l

Let 0 =(Oii) be the orthogonalizing matrix of W;, and let O. denote the jth
column of O. Then

(2.11) pW; O.iO.i
i=1

and

(2.12)
1 - 1 mln m

Y’. (paW2;)ii Y’. 2 0’.
H i=1 /’/ i=1/=1

Because of properties 1 and 4 each row and column of O is uniformly distributed on
S-1. Using the formulas in (2.6) and (2.7) for the mean and variance of a beta
distribution we get

2

(2.13) E
1 (e;)i F(aa)F(a2) as n m
hi= n
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and

(2.14)

and

mZn 2 m2, + 2,S((j__l Oi)2) m.___.nn (n+2/

(2.15) E( 2 2 1
OijOiT)= fori=i’,j#:j’; ori#i’,j=j’.

n(n +2)

By property 2 all pairs (Oii, O,r) for #: i’, j #-/", are identically distributed since by
elementary transformations each can be brought to the (1, 1) and (2, 2) positions. The
expected value of 02110222 can be derived from the identity

(2,16) 1= ( O1) ( O22)=E ((}- O/21) ( }- O2)),
i=1 j=l i=1 j=l

Using (2.15) we have

(2.17) l=n

so that

n(n +2)
+n(n-1)E(OxO2)

(2.18) .E(O10222) n+l
n(n-1)(n+2)"

Therefore, using (2.15) and (2.18) we have

(2.19)

mn 2 2E Ox2 O + m, (m n- 1)
.,= n(n +2)

(n+l)
n (n 1)(n + 2)

2

-n( 72)1+ (m2" 1)
(n_ 1)

and finally, using (2.12), (2.14), and (2.19)

((1_ m’,__ i)2) 12 (ma,,m2,, (m2,,+ 2’]
n n \n+2]

2

n(n+2) l+(m-l)(n_l)
(2.20) (F(a 1)F(a2))2 as n -+ oo

Therefore the variance of (2.12) goes to zero in the limit which implies the convergence
of (2.12) to F(al)F(a2) in probability. This together with (2.10) gives the result.

THEOREM 3. For each n let x R be a fixed unit vector. Then for any a [0, oo)

i.p.

(2.21) xrPx ---+ F(a) as n oo.

Proof. Let g be the density of F defined on [0, oo) (in 1] g was defined only on the
support of F’). As in [1] the rth moment of F is denoted by f(r).

We have

(2.22)
1

Yak11Ai2k l.)irkrl.)bkE((Wr)ab) C--7 ,2...,r
kl...k
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’Swhen a b the number of vik in each term of (2.22) having a must be odd.
Therefore in this case each term in (2.22) is zero so that

(2.23) E,((Wr)ab) O, a b.

It is evident that the distribution of (wr)ii is independent of i.

E((1/n) tr wr)f(r) as n-oo we have E((Wr))f(r) also. Therefore
Since

We find that

(2.25) E((x’Wx):)=CI-- S, xxx.,x,
ab
a’b’

Again we see the only nonzero term occurs when a, b, a’, b’ pair up. Therefore

1 2X(2.26) E((xTWrx)2) - 2 X
ab i2"’" ir

kx kv
i... i’
k ""k’r

1

ab

1 2 2a X X b+--7

E(1.)akl l)bkff.)ak Vbk’)

E(Yak VbkrVbk Yakv).
i2"’" ir
kl kv
i... i’r
k ...k’,

We can use the same reasoning as in 1]. We consider the constraints on the indices that
contribute a nonnegligible amount in the limit. From Lemma 1 of [1] we find that each
of these constraints will not pair a Vik with a Vi’k’, which implies that the last two terms in
(2.26) do not contribute anything in the limit. Therefore

(2.27) ((xWx):)’--r E X]X
ab

[E(x Wx)].
We conclude that for r 1, 2,

(2.28) TWx i.o.
x --f(r) as n.

Since f(r)= 0 urg(bl) du we have for any polynomial P(x)

(2.29) xTp(W)x P(u)g(u) du.
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If the eigenvalues of W were known to be uniformly bounded for all n almost
surely, then we can simply approximate the indicator function on [0, a by polynomials
and obtain the result. However, we are unable to show this. The following argument
therefore seems necessary.

For 0 < a < b let Ra,b (X) be the ramp function which is 1 for 0 -< x =< a, zero for x => b
and linearly decreasing from a to b. Let {U,,(x)} be a sequence of nonnegative
polynomials such that U,,, (x) >= R,,b (x) for all x -> 0, and U,,, (x) $ R,,b (x) for 0 --<_ x --< b.
This sequence can be formed, for example, by first considering a sequence {U (x)} of
ramp functions, all upper translates of Ra,b, with U < ulm-1 and UI,, $ Ra,b on [0, b].
We can then find polynomials {p,,} where each p,, approximates /UI,, sufficiently
closely so that we can let Um= p2

It is also possible to construct a sequence of polynomials {L,(x)} such that
L,,,(x)<=R,,b(X) for x ->0, and L,,(x) " R,,b(X) for 0--<x <-b. Start with a sequence {LI,,,}
of nonincreasing C functions defined on [0, b] such that L ’ R,b and

(2.30) inf IL(x)-L (x)l>0 for n>lm--1
x[O,b]

For fixed rn let e > 0 be the closest distance L has with L,_a and Lm+l. Let p,, be a
polynomial such that

(2.31) Ipm (x)- 4-L(x)} < min(1, 2b(1 + 2 maxx[O.b?/--L,(x))

for all x [0, b]. Then Lm(x)L,,,(0)-o p(y) dy is a nonincreasing polynomial with

(2.32)

]L.,(x) 1’-L.,(x)I p,(y) dy- L,(y) dy

p (y) dy (/2-L’m(y))2dy

--< IP,(Y)-x/-L(Y)I IP,,,(Y) + 4-L(y)l dy.

Since Ip.-4-LI < 1, we have

(2.33)
Ip.(y) /4L1’.(y)[ pm(y)l / [x/-L 1’ (y)l

-<- 2/L’(y) + 1

for y [0, b]. Therefore

(2.34) IL.,(x)-L(x)[ <= b e_= e_
2b 2

so that L.,(x)<L.,+l(X)<R,,b(X). With {L.,} defined in this way we have
L,,,(x) R,,b(X) for all x 6 [0, b].

We have for all m, n

(2.35) xrL.( W)x <-- xrR,b(W)x <- xrU.( W)x.
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Given any subsequence {hi}j=1 we can find, using a diagonal selection argument, a
subsequence {n} _c {nj} such that for each m

(2.36) xTL,,(W)x Lm(u)g(u) du

and

(2.37) xTU,(W)x U,,(u)g(u) du

along {n}. We have, on this subsequence outside of a set of measure zero

(2.38) f L,,(u)g(u) du -<_lim xTR,,b(W)x --<lim xTR,,,bX <-- U,,(u)g(u) du.
ao

Using the monotone convergence theorem the two extremes approach the same value,
so that

T I0(2.39) x R,,b(W)x R,,,t,(u)g(u) du on {n}.

Since the original subsequence was arbitrary we have

i.p. I0(2.40) xTRa,b(W)x ----+ Ra,b(u)g(u) du.

For a such that 0 _-< a < a we have

(2.41) xTRal,(W)x <=xTpW x <-xTR,(W)x.

Using a similar argument as above we can therefore conclude that

(2.42)
i.p. I0xex g(u) du.

THEOREM 4. Let W1 and W2 be two independent generations of W. Then, for every
pair of nonnegative a 1, a2

(2.43)
1 w, W2_2 i.p.

tr (PI P,2 ----+ F(al) "+- F(a2) 2F(al)F(a2) as n -+ oo.
n

Proof. We have

1 )2 1
tr (paW, p2 (no. of eigenvalues of Wl al)

n n

(2.44)
1

+- (no. of eigenvalues of W2 _-< a2)

1 pWpW 1 pW2pWtr tra a,al a2n n

From [1] we know that the first two terms on the right hand side of (2.44) converge in
probability to F(al) and F(a2) respectively. The remaining two terms can be handled
with the aid of methods similar to those used in Theorem 3.
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For any pair of positive integers rl and r2 we have

tr W11W; =-tr E(W"’)E(Wr2)
(2.45) 1

E(Wi"?)E(Wi"?)
ni=l

E(WI )E( W15 - f(rl)f(r2) as n - o,

the second equality holding because of (2.23). We also have

E (( tr W W;2) 2)
(2.46) 1

"---- E E((Wrll )ilkl(Wrll )i2k2(W;2)ilkl(W;2)i2k2
El ilk

i2k2

1
r2 r2

-’ E E(WTkaWi2kE)E( WWik iEk
let k

i2k2

As in [1] and in Theorem 3 we can break down the last expression in (2.46) in terms of
’Sthe Vik and consider constraints on the indices contributing a nonnegligible amount in

the limit. Lemma 1 of [1] will enable us to conclude that

((1_ )) 1E tr W W; EE W)E( W,,)E(Wa)E(W,
ab

(2.47)

=- E(W,)E(Wa) -(f(r)(r2)).
Therefore

(2.48)
1 i.p.

tr WI wr2 ---- f(rl)f(r2) as n - oe

and for arbitrary polynomials P1, P2

(2.49)
1 i.p. (Io )(I( )tr PI(W)P2(W2) Px(u)g(u) du P2(u)g(u) du
H

The following statement can easily be proven: given A, B, A’, B’ all n x n
symmetric, positive semi-definite matrices with the eigenvalues of A and B being less
than or equal to the eigenvalues of A’ and B’ respectively. Then

(2.50) tr AB <= tr A’B’.

Therefore we can use the same polynomials approximating ramp functions in
Theorem 3 and use (2.50) to assert inequalities analogous to (2.35) and (2.41) and use
the same argument to conclude that

(2.51)
1 pWlpW2 i.p.

-tr_a -a F(al)F(a2) as n
n

This together with (2.44) yields (2.43).
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