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EIGENVALUES AND EIGENVECTORS OF LARGE
DIMENSTONAL SAMPLE COVARIANCE MATRICES

Jack W. Silverstein”

ABSTRACT. Limit theorems will be reviewed on the eigenvalues of a class
of sample covariance matrices where the number of vector samples and

the vector dimension are on the same order of magnitude. The main re-
sult states that the empirical distribution function of the eigenvalues
converges almost surely to a nonrandom distribution function, as the
dimension approaches infinity. The author will then present his re-
sults in describing the behavior of the eigenvectors of these matrices.
The results suggest similarity between the measure on the appropriate
orthogonal group induced by the matrix of eigenvectors and Haar measure.

1. INTRODUCTION

A sample covariance matrix is a random matrix whose entries consist of
sample variances and covariances of the components of a random vector X. When
these components are known to have 0 mean the matrix takes on the form
(1/s)VVT, where V is n xs and its columns form an i.i.d. sample of the
n-dimensional vector X. These matrices are fundamental to multivariate sta-
tistics, the eigenvalues (all real, nonnegative) and eigenvectors (forming an
orthonormal set) being used, for example, in principal component analysis, and
hypothesis testing. Any knowledge of the spectral behavior is crucial to
present applications, and at the same time would suggest new approaches to
statistical problems.

Except for the Wishart case where X 1s multivariate normal, most of the
analysis done on sample covariance matrices has been on large samples, keeping
n fixed and letting s + ». The following is a review of results when the
components of X are themselves i.i.d.. They are limit theorems, providing
information about the behavior of the eigenvalues and eigenvectors when n and
s are both large and on the same order of magnitude. The theorems pertain to
a sequence {Mn}:=1 of matrices defined as follows:
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For each n 1let Vn be nxs consisting of 1.1.d. mean 0 variance 1

random variables Vi; with distribution common for all n. Assume s = s(n)
with s/n>y>0 as n+>e. Llet M = (1/s)VnVI.

The next section reviews the major results on the eigenvalues of Mn for
n large. The third section outlines the work of the author in describing the

behavior of the eigenvectors of Mn.

2. EIGENVALUES

The main result on the eigenvalues of Mn states that the empirical dis-
tribution function of the eigenvalues of Fn (that is, for every x, Fn(x) =
%—x (numbers of eigenvalues of Mn 5_x)) converges to a nonrandom limit. We
have

THEOREM 1. ([5], [8], [16]) If there exists a & > 0 such that

as
E(]v]]|2+6) < =, then for every x €R, Fn(x) — Fy(x) as n » =, where for
0<yc<l,
Fy(x) = f,(x)
g Y- (=R =0 1f (=57 < x < (10)°)
0 otherwise
and for 1 <y < =,
1,:(x) X
Fo(x) = (1 - Hrtx) +J £ (t)dt.
Y ¥’ [0,s) (1-#?)2 y

This result forms a common intersection of the three references cited,
each one considering a different class of matrices. Only [16] deals specifi-
cally with sample covariance matrices, the random vector X having independent
but not necessarily identically distributed components. This paper establishes
the a.s. convergence under the specified moment condition on Vi1-

The other two papers, motivated from topics outside of multivariate
statistics, allow the columns of Vn to vary in distribution. In [8] the
matrices are formed as an analogue of the operator defined by the one-dimen-
sional Schroedinger equation with random potential. In [5] they arise from a
neural network model for the generation of neural connections of a hypothe-
tical organism at birth. The techniques used in [5] and [16] (and in much of
the work on Mn) involve the study of the limiting behavior of {tr Mr}:=1
which, divided by n, are the moments of Fn’ Moments were not used in [8],
but rather the Stieltjes transform of Fn, which is shown to converge in
probability to the solution of a certain integral equation.

Other work on the eigenvalues of M, will be reviewed briefly.
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In [3], [15] it was shown that if there exists a & > 0 such that
E(IV]TGI) < (or E(Iv]]|4+6) < =) then the largest eigenvalue of M, con-
verges almost surely (a.s.) or in probability (i.p.) to (1 + /") In N4
the a.s. convergence of the smallest eigenvalue to (1 - %7)2 for y <1 is
established in the Wishart case (vH = N(0,1)).

Central limit theorems have been proven (under various additional assump-
tions) for the standardized sums of powers of the eigenvalues ([1], [6]) as
well as for the standardized log of the determinant (141, (6]).

The last result to be mentioned concerns the eigenValues (all real, non-
negative) of the central multivariate F matrix, formed from two independent
Wishart matrices. Let {Mﬁ} denote matrices with Vi1 = N(0,1) and %—» a
as n=+oo, In []2], [13], [17], [18] the following is shown.

For M%, Mﬁ independent y > 0, 0 < y' <1, the empirical distribution

1
function of the eigenvalues of Mﬁ(Mﬁ )'1 converges a.s. to Fy ME where for
O<yc<T,
(x)
! =
Foyt (%) oy
L T
_ Zix(xy ) b2 X if b.l < x < b2,
0 otherwise,
where
b=<1-/1-(1-y) -fT) (1+/1— IEDIAEAAG
1 T -y 1T-y
and for y > 1,
1 X
Fys.y.(X) (] B y)I[oam) fb f.Vsyl(t)dt

3. EIGENVECTORS

Let OnAnOn be the spectral decomposition of Mn with the eigenvalues
of Mn arranged in nondecreasing order along the diagonal of Ay, The eigen-
vectors are then the columns of 0 and 0 € 0 » the n x n orthogonal
group (this decomposition can a1ways be constructed on a probability space with
0n an O -valued random matrix). There is only one case where the eigenvectors
of Mn are completely understood, namely, the case when V11 is N(0,1).
Then it is well known that 0n is Haar distributed on on. From this fact
the conjecture was raised in [9], [10] that 0 for general 1 is "close"
to being Haar distributed for n large, or equ1va1ent1y the measure 0 in-
duces on 0n approaches Haar measure in some sense as n + w.

Since it is difficult to make statements about measures defined on dif-

ferent spaces, mappings were considered from the orthogonal groups '{On} onto
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a common space, inducing a sequence of measures on the space. The limiting be-
havior of these measures should be known for Vi1 = N(0,1). The conjecture
could then be formulated in terms of whether the same limiting behavior holds
for other distributions on Vi1

Consider the following mappings into D[0,1], the space of right continu-
ous functions with left-hand limits (e.g., [2], p. 109) on [0,1]:

Choose  x, eR", l[xnll = 1 (nonrandom), Let (yqs¥ps +vs yn) = 0'x
and define Xn € D[0,1] as

Xn(t) = (n/2)1/2< :E:] (yE - %)) ([ ] = greatest integer function).

These mappings are considered mainly because they carry over much of the
uniformity of Haar measure, they are a natural extension of mappings studied
earlier ([9], [10]), and because their 1imiting behavior is known, namely

D o
Xn — W as n=+

where W® is Brownian bridge and D denotes weak convergence of random ele-
ments in D[0,1] ([2]). This property follows from the fact that when 0n is
Haar distributed, len js uniformly distributed on the unit sphere in R",
which in turn can be represented by normalizing a vector of i.i.d. N(0,1)
random variables. The basic theory of weak convergence in D[0,1] can then
be applied.

Under the assumption E(|v11
of the largest eigenvalue) it follows that Xn lé» Wo s equivalent to

|4+6) < » (ensuring the convergence i.p.

Xn(Fn(x)) 2 w{ = wgy(x) as n 4+

on D[0,») ([7]) where Wl is Brownian bridge composed with F_(x) (we
F (x) y

remark that weak convergence on D[0,») 1is equivalent to weak convergence on
D[0,b] (under the natural projection) for every b > 0).

It has been my goal to see whether Xn(Fn(x)) N wi holds more generally.
Results consistent with this property holding, an important necessary condi-
tion, and a partial answer have been determined, and will be given below.

Previous work before considering Xn is summarized in

THEOREM 2. ([9], [10], [11]) If all moments of v, exist, then for
every

Xn(t) a.s.
t € [0,1], —> 0 as n-o forany {x } with |{x || =1.
w n n

This result is like a Law of Large Numbers. It indicates to some degree
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the uniformity of O;xn over the unit sphere in R".

From the next result we see that at least one additional condition must
be satisfied on the distribution of Vi1-

THEOREM 3 ([10]) If the maximum eigenvalue of Mn converges i.p. to

(1+ % and 1f %, B W0 for x_ = (1,0,0,...,0)7, then E(v],) = 3,

Therefore some further similarity of the distribution of 11 to N(0,1)
is required.

The following theorem is like a Central Limit Theorem. It demonstrates
again that there is some invariant behavior of the eigenvectors of M beyond
Theorem 2, provided E( ?1) 3.

THEOREM 4 ([11]) If E(v$1) = 3 and all moments of 1 exist, then

for any {x } with [|x.[| =

(*) {f; ACERCAOI S {f(“f) £ (x) dwy} as 0w

i=1 (1-[7) =1
for fi(x) = X! (here D denotes convergence in distribution on R~). More-
over if E(v?]) # 3, then sequences {x}, llxnll = 1, exist for which

{[m x1an(Fn(x))} fails to converge in distribution to anything.
0 i=1

If E(v?]) =3 and E(|v ]Im < m m=1,2,... and some a, then for
any  {x.}, [{x ] =1, (%) ho1ds for f, ana]yt1c at 0, f,(0) = 0, with

radius of convergence greater than (1 + ¢’3

The conclusions of Theorems 2 and 4 follow from the truth of Xn-EL w°,

S0 these theorems support this property. The theorems also demonstrate invari-
ant behavior of the mappings 0, LN Xn/Jﬁ (€ D[0,1]) and the left side of

(*) (€ R™) which lend support in itself to the similarity of 0n to Haar
measure for n large.

The first part of Theorem 4 yields uniqueness of any weak 1imit X of
a subsequence on [0,b] provided P(X € C[0,b]) = 1. Then X —2> wy
would follow from tightness and the weak limit of any convergent subsequence
being continuous.

We conc]ude with the partial answer promised earlier. Essentially,

(F (x)) 2 wy is now known to hold on a class of nongaussian V11 's, but
on]y for certa1n unit vectors {x 1.

Recent work has shown the first part of Theorem 4 to be true under the
condition E(lv]]l8) <o, Also, by extending the results in Section 12 of [2],
a certain tightness criterion has been established. With it I have proved:

If vyp fis symmetrically distributed about 0, E(v?1) = 3 and

E(|V11|8) < =, then Xn(Fn(x)) 2 wi follows for
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.
X=(i—]~,ii',...,i'i>.
n m v vy

I hope that subsequent work will show when Xn(F (x)) 2 w{ more gen-

n

erally.
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