
SIAM J. APPL. MATH.
Vol. 32, No. 2, March 1977

SPECTRAL ANALYSIS OF NETWORKS WITH
RANDOM TOPOLOGIES*

ULF GRENANDER AND JACK W. SILVERSTEINf

Abstract. A class of neural models is introduced in which the topology of the neural network has
been generated by a controlled probability model. It is shown that the resulting linear operator has a
spectral measure that converges in probability to a universal one when the size of the net tends to
infinity: a law of large numbers for the spectra of such operators. The analytical treatment is
accompanied by computational experiments.

1. The network. It is known that neural networks exhibit a great deal of
regularity. The topology of the network, which describes how its cells are
connected to each other, seems to be genetically determined at least on a global
level, so that the connections are certainly not completely random. On the other
hand, the details of the topology may vary from individual to individual within the
same species for higher animals. A model of such networks will therefore involve
controlled probabilities for connection, where probabilities are not all the same
but are controlled by distance and possibly other characteristics.

We shall investigate the spectral properties of networks based on such a
model and viewed as linear operators. When a signal is applied to the network the
response can be expressed in terms of the spectral properties of the operator, and
we will show that the spectral measure converges for increasing size to a universal
limit under weak conditions that will be made precise below.

The practical implication of this is that a law oflarge numbers]:orspectra exists
for such networks, so that when the size becomes large the influence of the
randomness in the ,topology will tend to zero. Before we begin the proof of this
result (the theorem in 2) we shall make some preliminary observations. Our
initial guess, based on these observations, was that the limit was a one-point
measure, a single spike. Computational experiments indicated that this was not
the case, however, and we are led to a quite different conjecture formulated in the
theorem.

Let us consider a network consisting of two sets of nodes, the inputs
enumerated by 1, 2,. ., n, and the outputs enumerated by ] 1, 2,. , m.
These nodes are the cells, the neurons, of the network. Synaptic connections are
established between some of the/-nodes and some of the j-nodes. There are no
connections between/-nodes and none between f-nodes.

Obviously real neural nets are quite heterogeneous and have a characteristic
three-dimensional architecture. To simplify the analysis, which will not be easy
anyway, we neglect heterogeneity and the three-dimensional aspect in this paper,
and hope to return to the more realistic case in a later publication.

The values of n and m are very large and m- dn, where the divergence
coefficient d is assumed to be an integer. We are particularly interested in
diverging nets, d > 1.
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A set of probabilities {p; h -s, -s + 1, , s} controls the establishment
of connections. For a given value of there will be a connection
(i + h) d e (e 0, 1, 2,. , d 1) with probability

Ip’ mod if h mod n <_- s,

Pi’i= IP(h mod n)-n if (h mod n)- n _->-s,

0 otherwise.

The number s < n/2 is called the spread of the network. Figure 1.1 gives an
example of connections with d 3. Figure 1.2 gives the matrix of probabilities of
connections for the case when n 5, d 2, s 1. Notice the cyclic arrangement of
the probabilities. It is imposed only for mathematical convenience so that
unnecessary complications can be avoided.
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0 0 0 0 P-1 P-1 Po Po P P[
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The average connectivity Cn is then

(1.1)

and we shall assume that Cn - with n. It is connected to ] we shall let the
strength vii of this connection be / 1 or 1 with probability 1/2 each. All the choices
will be carried out independently of each other.

Once this has been done we have a rectangular matrix denoted by V- (Vik)
which can be viewed as a linear operator carrying the input vector x {xi} to the
processors. If d 1, then V is a square matrix. The ]th processor takes the input
from the ith node, +xi or zero, and amplifies it by a factor a, which is some
positive number not necessarily greater than one, and then transmits it back along
the same wire and with the same change of sign if any.

This implies that the returned vector can be written as y VA VT"x where A
is diag [al, a2, am]. The aj’s represent long term memory and they will slowly
change due to the varying input patterns. In this paper we shall not study the
development of long term memory and we shall put A I, the identity operator.
This is the tabula rasa hypothesis: the young network does not carry out any
nontrivial information processing. The development of the network in time, in
particular learning and adaptation, will be discussed in a future paper.

A more realistic model is one in which the backward transmission property is
not assumed, that is, when y AVx. However, we return to the original network
if we consider another aspect of the tabula rasa hypothesis" the young network is
not biased toward any input. It will be biased if IIV xll- x VV x is much larger
for some vector x than other vectors having the same length as x. In either case we
are led to the investigation of the spectral measure of the operator VV7 which is
the main goal of this paper.

The controlled randomness of the network is in accordance with current
biological theories. It is believed that all neural connections in the brain cannot be
genetically encoded, and that some must be left to chance. But, if this is so, how
can one account for the similar capabilities among animals in a species? We
attempt to reconcile this question by investigating common properties of realiza-
tions of our model. By making use of the high dimensionality of the network, we
try to formulate and prove limit theorems that can be applied to it and that imply
that within the same species individuals have (asymptotically) the same spectral
properties for their operator.

At first we were concerned only with nondiverging connections, i.e., d 1. If
the tabula rasa hypothesis is fully satisfied one would have VV7" I. This was, in
fact, our first conjecture, that for n large enough, VV7 with high probability was
close to I. Since E((1/n)xsum of all eigenvalues of VVT) E((1/n)tr VVT")
C,,, we were led to investigating the normalized operator W 1/Cn VV7". We did
this in a series of mathematical experiments in which we generated several V’s and
for each one plotted the eigenvalue distribution of W, hoping the eigenvalues
would cluster around 1. They clearly did not, as can be seen from the graphs in Fig.
1.3, so that we had to discard the conjecture. But we noticed the consistency
between the distributions, which suggested to us that perhaps some other type of
limit law was governing the eigenvalues.
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It was then hypothesized that perhaps we could get W close to I if the
connections diverged, V now being a n x dn matrix. Subsequent simulations
seems to support this (Fig. 1.4). Again it appeared that a limit law was involved. So
we finally conjectured that we could with high probability get W as close to I as we
please by making first n and then d large enough.

Let us begin our study with some preliminary observations. We could attempt
to measure how close (1/x/)VT is to being an isometric operator, since an
operator A: R" Ra" is isometric iff A TA L For each x R we calculate

We get

(1.2)

var ( 11V xll=) E( ll Vxll4) [E( n V xll

E(VkiVk’i)XkXk’.
kk’

Since E(VkiVk,i)= 0 if k # k’ and =Pki if k k’ we have

(1.3) (1 )E V xll= 1

since for each k, Yi Pk C,, (see Fig. 1.2). We also have

(1.4)

ili2
kk2k3k4

l)k i )k2ilXk1Xk21")k3i2l")k4i2Xk3Xk4 )
". 2 2Pkli,Pk2i2XklXk2+3

i,i2
klk2

2 2 4PkiPk2iXk xk. + ., PkiXk
ik

kk2, Pkilx,x,(C,,-Pk2i,)+3
il kl#k2

klk2

2 4aklk2XklX2 -" Cn E Xk
k

(where ak,k---- .,, Pk,iPki)
22 lXkC2 E XlXk2-- E ak,k_X

kk2 kk2

+ 3 Y’, x, ak,k2Xkz-- axe, + C,, E x
kl k
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(where a aoo d Y. (pT,)2)

-c E x,xk+2 E +(C,, 3a) Ex.aklkzXklX k2
kk2 kk2 k

Therefore

(1 5) var IIVxll= 2 E ak,k:X,x2k+(C,,--3a)Yx
kak2 k

Assume C, -3a _-> 0 for n sufficiently large. For these n the maximum value
of (1.5) over unit vectors is attained for x (1, 0,- , 0).

Therefore

(1.6)

1
max var IIWxll2 =-512a + C, 3a]
Ilxll-- Cn

Since (1.6)-->0 as n-->o we can conclude that for n sufficiently large, and for
x R" we can with high probability get I1( a/4-U.) Wxll2 as close as we want to Ilxll2.
But this does not imply (1/4,)V7" can be made nearly isometric. We should

2 I
15
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0 3 4 d=l
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FIG. 1.3

d=l
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FIG. 1.4. Note" for all graphs, n 40, s 2,p 1/2-1/2 x Ihl,-2 _--< h _-< 2

consider n orthonormal vectors, say, xl, , x,,
(1! c )ll V x, 2 1 for each of them. For any e > 0 we get

and see whether

(1.7) -> 1-Y. prob
1 Vx 1

using Chebyshev’s inequality. Since Ph < bn where b > 0 we have for n suffi-
ciently large (assuming again C,- 3a => 0)

Under the above assumption we cannot get (1.7) as close to one as desired unless d
is large enough too.
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Clearly this argument is not sufficient and we need a deeper analysis of the
problem. To start this, let us note that our present object of study is the spectral
properties of the W operator for large values of n. It is a symmetric and

(n) i=nonncgativc definite random operator. Denote its eigenvalues by A
1, 2,. , n and the spectral measure characterized in terms of the spectral d.f.

(1.9t Fn(A)=
1
#(A,

n

on the nonnegative real line. Of course Fn () is a stochastic process. The main
problem here is whether F, converges and whether this limit is universal, i.e., does
not depend upon the controlling probabilities.

Before proceeding to the analysis let us mention that in our work on long
term memory we are mainly interested in many-layered models, where there are
many sets of processors connected in a cascade fashion. The present one-layer
model will however bring out the relevant mathematical facts clearly enough.

2. Convergence of spectrum. With C C,, Ph P, eli Pij we prove the
following

THEOREM. Assume C-c as n . Given d, let

d + 1 2",/- d + 1 + 24’-d
bl b2 and g(u)=

d d

Then, for each , {F, (a )} converges in probability to:

d4(u-bO(b.-u)
2ru

blu<-b2

0

(2.1) F(A) g(u) du for

1

for u <- ba,

bl -<A -_< b2,

for u >-b2.

The proof is not easy but we see no hope of simplifying it at present. To do this
some radically different approach would be needed.

Our strategy of proof is based on 8 lemmas. We first derive the limiting values
of the expected moments of the eigenvalues, i.e.

_1 A -(tr Wr)
ni=l n

Using a combinatorial argument we then show that these values satisfy a differ-
ence equation. Next we prove the convergence of the moments in probability to
these values. We then solve the difference equation with the aid of the generating
function which we invert in the complex domain, arriving at F(). We finish by
showing the convergence in probability of F(A) to F(a) using a standard
argument from measure theory.
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Proofoftheorem" We will begin with the case of no divergence, i.e., d 1. Our
first task is to find, for each integer r 1, the limiting value of"

(2.2)

X l’)ik l)i-k l’)i2k21")i3k2 l)irkrl’)il
’"ir

k x’"k,.

1
nCr il ir

kl k,

E(19ik l)i2k Di,k,l)ilkr ).

Many of these terms are zero. As in (1.3) the only nonzero terms are those in
which each Vik appearing in the term is repeated an even number of times.
Consider one way of grouping the Vik’S in this manner. For example, one way is to
take all terms (ikl) (i2kl), (i2, k2) (i3, kz) (il, k,) and (il, ka) # (i2, k2).
In this example there are two groups. Taking all terms where the Vk’S are equal is
another way of grouping. We can perform the sum in (2.2) by summing on each
type of grouping. Given one of these we have

(2.3) , PabPa2b2" Par,b,,
ar,

bl."br,

where r’ -<_ r and constraints on a ar,, bl br, due to the original restrictions.
Notice that we do not sum on all values of a at,, bl br, since, for example,
(al, bl) cannot equal (a2, b2). We illustrate for the case when r= 3. Then (2.2)
becomes

(2.4) E - W3 E(Vilk,Vi2k,V,2kVi3k3Vi3k3Vi,k3).- il’"ir
k...k,,

Notice that some groupings cannot be done. For example, it is not possible to
group V,k with Vk and have Vk in another group since (il, kl) will equal (i2, k2)
which will make Vik V,kl Vik. One legitimate way of grouping is to take
(i, k)= (i2, k) (i2, k2)= (i3, k2), (i3, k3)= (i, k3) and (i3, k3) # (i, k). Letting
(a 1, bl) denote indices for the first group and (a2, b2) for the second group, we find
that (2.3) becomes

(2.5) Z Pab,Palb,..
ala2
blb2

Here, r’ 2 and we must constrain a with az. It is clear we do not take terms
where (albl) (a2, b2). Notice that ba and b2 are free in the sense that they are not
constrained to each other.

Given r, let Sr be the set of all groupings, where each s eSr will
contribute a nonnegligible amount to E((1/n) tr Wr) in the limit.

LEMMA 1. For each s Sr, r’ r, i.e., s S pairs up the 1)ik’S exactly.
Proof. We can bound (2.3) by first removing all pairs.aibi where either a or bi

is not constrained (note that for each Pab either a or b must be repeated in another
factor). Each time we remove any single ones we can bound (2.3) by removing the
Po, along with the indices aik, and multiplying the resulting sum by C. After



SPECTRAL ANALYSIS OF NETWORKS 507

this is done, choose any b and sum on it. If there are factors P,,rbr such that b is
constrained with bt,, we can bound the sum by removing these t factors and their
indices, and multiplying the result by .,hPth (since Y’. ei,"’’ e,,<--l-I=l (Y e)l/t).
Note that for each Pab that is removed there is still a P,,rbr where a and at, are
constrained to each other, that is not removed, since all free indices are eliminated
before. We then remove all single Pa,,’S, then factors, and so on. In the end we will
have

(2.6) (2.3) =< (nC I-I p <-- nC" p

where + r" r’, -> 2. If only single Pab’S are removed at each step, then we
obviously will not have the second factor. In this case define q 0. Since q is
obviously <Y, t we see that r’ <r implies (1/(nC))x(2.3)O as n.

Note in the proof at any time we clumped we could have done so on an a
instead of a b. It ig also evident that for s &, q 0. So we conclude that S, is the
set of all constraints that exactly pair up the Vk’S and at each step (as done in
Lemma 1) a single Pb can be removed.

LEMA 2. ForeachsS (2.3)--- nC so thatE((1/n) tr W)f(r)=number
of elements in &, as n o.

Proo[. Given s &, either some a or some bi is free. Suppose b is free (and,
of course, a is not). Then

(2.7)
(2.3)= Y. Palbl’’’Pai_lb,_.Pai+bj+l’’" Parb,(C--EPa,,b,,)

a...ai-.a,+...a,, t’
b,...b,-.b,+ ,...b,

where for each term j’ ranges on indices where (a,, b,)= (a,,, b,,). But since from
(2.6)

E ealb,’’’eai-lb,-,Pai+lbi+,’’’ea,b, O(ncr-1)
aa’..ai-ai+,".a,
b...bi-bi+...b,

and since t P,,rbr <- r we have

1 1 E Pa,b,’’’Pa,_,b,-,Pa,+,b,+,’’’Pa,t,,C.(2.8)
nC

x (2.3)
nC ,"’-,+,",

b...b-b,+...b,

It is clear we can do this at every step. Therefore (2.3)- nC.
We introduce an essential tool that will enable us to get a recursion relation

for {f(r)}r= 1. We call it clock notation. The basic notation is in Fig. 2.1. Each
number corresponds to a Vk and the indices show the original constraints.
We can characterize an s & completely using clock notation. For each pair of
Vk’S draw a line. between the corresponding pair of numbers. Each number will
then have one and only one line from it. Each line will correspond to a Pb and
vice versa. It is easy to see that the only way a single Pat, can be removed is
when the line representing it connects two adjacent numbers on the clock.
Whenever a pair is removed the two places on the clock nearest the pair can be
considered adjacent and we then have a clock corresponding to an s &-l. For
example, if 1 and 2 are paired, then they can be removed and 2r and 3 are then
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ik
ik i2k
2r 2

i2k2
3

r+l

FIG. 2.1

adjacent, since il and i2 must be constrained. We can continue in this way until all
pairs are removed.

However, an s Sr cannot have any lines (in its clock representation)
crossing, since a pair can only be removed if all numbers between them (on either
side of the clock) are removed. This is impossible if two lines cross. We have
therefore

LEMMA 3. Sr
_
B, where B is the set of all constraints (given r), with clock

representations having exact pairings and no crossing.
It is easy to see that for any b B such that a Pab can be removed the

resulting constraint will be in B_I.
LEMMA 4. Sr Br.
Proof. It remains to show that for any r’-<r, b B,,=),some Pajbj can be

removed. Then b B, must be in S,.
CLAIM. For r >--2, b B, has at least two Pajbj’S that can be removed.
We prove this by using induction on r and clock notation, r 2 is obvious.

Assume its true for all r’ <_- r. Given b B,/I draw it in dock notation. Suppose 1 is
paired with m.

Case 1. The line will split the clock up into 2 parts, one representing a b B,1,

and the other representing one in Br, r, r2 <-- r. If both rl and rE are _>-- 2, then the
inductive hypothesis will imply that each part will have at least two adjacent .pairs,
at least one pair on each side must be on the original clock. If either r or rE or both
are 1, then it is clear we will have two pairs on the original clock.

Case 2. m -r or 2. Then 1-m is one pair and the remaining clock which
represents a constraint in Br has two pairs, at least one being on the original clock.

LEMMA 5. With f(O)=- 1 we have

(2.9) f(r) . f(r-j)f(j- 1), r--> 1.
=1
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Proof. We just count how many clock configurations there are. 1 can be
connected to 2, 4, 6,..., 2r. When 1-2 we get f(0)f(r-1). When 1-4 we get
f(1)f(r-2), etc. Therefore f(r)== f(r-j)f(j-1),

We next look at

(2.10) g(VilklViEk" Vi,k,,Vilk,VilkVik" Vik;).

’SAgain, we see that the only nonvanishing terms are those whose Vik pair up.
Given one type of pairing we can write

(2.11) Y Pa,b, Pa,,b,,
ar,

k"’kr’

with constraints on al""ar,, bl"’" br, due to the original restrictions. As in
Lemma 1 it is not difficult to see that this pairing can contribute a nonnegligible
amount to

E(( tr W)2)
in the limit only if r’ 2r. Also at any step we cannot remove any Pajbj that is a
pairing of a Vik and a Vrk’ since neither aj nor bj will be free. We can only remove a
Pajb that pairs adjacent Vk’S or adjacent Vi,k,’S. By induction we conclude that

tr nC2, Y
ia’"i,.,k l.’.k,.
...iLk [...k

(2.12) E(Vik Vi,,,k,,,Vik’,,

Therefore var ((l/n) tr W)- 0.
LEMMA 6. (l/n) tr W converges in probability to f(r).
Proof. Given e > 0 we have

P(Inl-tr W’-f(r)>e)_-<P(l,l-tr Wr-E(nl-tr W)
(2.13)

n
tr W) -f(r)
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Using Chebyshev’s inequality we get

(2.14)

1
tr W -f(r)

n

var ((l/n) tr Wr)<e 2
8

Since both terms go to 0 as n --> oo, we are done.
We generalize now to the case where the connections diverge by a factor of

d -> 1. The matrix V (vu) will be n x dn.
As before we connect in a circular fashion. Recall that C is now d Eh Ph"

Given a row, when the probabilities are summed across the columns we get C.
Given a column, the sum of the probabilities across the rows is C/d (see Fig. 1.2).
We follow along the same way as in the case d 1. The relevant constraints on the
indices when evaluating E((1/n)tr W’) are the same, except the value on each
constraint will not be 1. Whenever a Pajbj is removed we get C if the removal is
done by summing on bj, and C/d if it is done on a# except when we are down to the
end, since Yb Pab nC. Let f(r) lim,_,ooE((1/n) tr W’).

We will use a slightly different notation we call zig-zag notation. The natural
constraints on the i’s and k’s can clearly be seen in Fig. 2.2.

In this example r 5. Vi,k is represented by the pair of circles labeled il and
k 1, V=k by i2 and k 1, etc. Any constraint can be given by filling in the circles with
symbols where a symbol appearing twice means a constraint on the two indices.
For example the constraint given in Fig. 2.3 can be represented by:

abacda.xx yy y

Removing a Pajb and reducing to an s e Sr-1 corresponds to removing a
symbol on one level whose two symbols next to it on the other level are the same,
and then closing up the gap. For example, after removing 2-3 in Fig. 2.3, we get

aacda.x y y y

Note that Eab eab will correspond to either

a a or a
x x x.

So, for s S, we find out how many 1/d’s we have by counting how many times we
have reduced the zig-zag figure by removing a symbol on the top and closing up

il i2 i3 i4 i5 il

0 0 0 0 0 0

0 0 0 0 0
kl k2 k3 k4 ks

FIG. 2.2
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10

FIG. 2.3

the gap on the bottom, until we reach

a a or a
x x x.

If N(s) is the number of times this is done for s, then the value we get for the sum is
(l/d)v’>, and f(r) sS (1/d)s>.

Let h(r) be the value we get if we get a lid every time we sum on a bi instead
of an a. We could have just as well put the k’s on the top and the i’s on the bottom
in zig-zag notation. For this reason f(r) h (r). Note that [(1) 1. With f(O) I we
have

LEMMA 7. f(r)= ((d- 1)/d)f(r- 1)+(l/d) =1 f(J- 1)f(r-j), d 1, 2, 3,
..,r_>l.

Note. For both d 1 and d > 1 we have a quadratic difference equation. The
crucial fact is that it is of convolution type so that we can use a generating function
technique to solve it.

Proof. It is easy to see that the formula holds for r- 1. As in Lemma 4 we
consider what values we get when, in clock notation, 1 is connected to
2, 4, 6, , 2r. When 1-2, in zig-zag notation we will get as shown in Fig. 2.4. For
each s St-1 we will get N(s) reductions from the top until we are at

a a a.
x y

a a a

r- 1 circles

FIG. 2.4
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Since there are no more reductions from the top we sum up and getf(r- 1). When
1-2L r => -> 2, we get Fig. 2.5 and so we must take into account the combining of
every pair sl and s2 where Sl $i-1 and s2 Sr-i (s SoN(s) 1). If M(s) is
defined in the same way as N(s) except considering k’s instead of i’s, we will get
M(sl) N(s2) removals before the figure is reduced to

a x a a,x X y

and we will get one more reduction from the top. Summing, we get (1/d)h(j-
1)f(r-j) (1/d)f(j- 1)f(r-j). Therefore,

1
f(j_ 1)f(r-j)=

a- 1 1
f(j_ 1)f(r-j).f(r) =f(r- 1)+ d f(r- 1)+

i--1i=2

LEMMA 8. The generatingfunction G" C C. defined by G(z) Y.=o f(r)z is
well defined and analytic in a neighborhood of O.

Proof. The auxiliary function

b(r)=_[d + l r2 2 r2 r2

d (r- 1)2+ (r- 1)2
+
d(r- 1)--3 log r(r- 2)

is bounded above for all r_->3 so we can find a >= 1 such that f(2)<=a2/4 and
b(r) <=a. We show by induction that f(r)<=a’/r2 for r >= 1. Since f(1)= 1 the cases
r 1, 2 are already satisfied. Assume the statement is true for all r’< r, r _>-3.

Then

f(r)
d-1 1

f(j_ l)f(r_)
d /(r-1)+i=1

d+l 2 1 r--2

Z f(j- 1)(r-j)f(r 1)+ f(r 2)f(1)+i=3d

d + 1 ar-1 2 ar-1 ar-1 [rs-.2 1=<---- (r- 1)------- (r-2)---------i3 (j- 1)2(r-j)2
(2.15)

<ar-l( d + lr2 2r2 r212r-’ dx
r2 \;---1)2+d(r-2)---------+ (x- 1)2(r-x)2

a [d + 1 r2 2 r2 r2

=---\ d (r- 1)-----+ d(r- 2)2
+
d(r- 1)

log r(r-2)

a

]- circles

(C)ooo(C)

X X

FIG. 2.5

r-] circles
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We can easily find G(x), x R in a neighborhood of the origin. Let be the
convolution function of {f(r)}r_-0 with itself, and the generating function of
{(r)}r_-0. Then,

(216) f(r)
d-1
d f(r-1)+ of(r-l)

and

x x(d- 1)
(2.17) G(x)- 1 =x(d- 1)

G(x)+ (x)=----Z- d
X

(2.18)

and

(2.19)

xG2(x)+(x(d 1)-d)G(x)+d =0

G(x)
d-x(d- 1) +/(x(d- 1)-d)2-4 dx

2x

Since G(0) 1 we conclude that for z C in a neighborhood of the origin we
have

(2.20)
G(z)

d-z(d- 1)-/(z(d- 1)- d)2-4 dz
2z

Note that because of the square root function in (2.19) we must be careful how we
extend G analytically into C, that is, we must continue G on the right branch of the
Riemann surface.

We determine the function

(2.21) dp(t)= Y’, f(r)(it)r

by invoking the theorem (Titchmarsh [ 1]) that says

a(z)= E a,z", b(z)= Z b,z",
r=O r=O

both analytic in a neighborhood of 0 imply c(y)= Er__O a,b,y" is analytic in a
neighborhood of 0 and can be given by

(2.22)
27ri

a
z/z

where the contour is around the origin where both a(z) and b(y/z) are analytic.
With a(z) G(z), b(z) e we have

(2.23) b(t) O(z)e’’/z-
Z
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(2.24)

For d => 2,

(z(d- 1)-d)2-4 dz (d- 1)2[z 2 2dz d2

-(d-1----+ (d- 1)-----dE

(d-l)[z2 2d(d + l)z
+(d L 1)](d- 1)

(d 1)2[(z a,)(z a2)]

where a and a2 (with a < a2) are given by

x/4d__Z(_d + 1)2 4d2 )(2d(d+)+ )4 (d\ (--1) " (d-1 _---S- +2

(2.25)
d(d+ 1) d (d+l)

(d- 1)-------+ (d- 1) 1).- 1
d

(d- 1)2[(d
+ 1) :t: 2x/--d].

It is not difficult to see that 0<aa <d/(d- 1) <a2. Therefore, for d ---2

(2.26)

d
(d- l,(-(Z-d ,1)-’,/(z-aa,(z-a2,)

G(z)
2z

For d 1 we get

(2.27) G(z)
1-41 4z

2z

We will work first with d >_-2. G(z) can be rewritten as

(2.28)

(d 1)(-r3e’_ r,r et’(’+=)/z+’D)
io2Re

where R, rl, r2, r3, 0, 0a, 02, 03 can be seen in Fig. 2.6. The reason we have r in the
exponential is because the square root function must be positive on the real line to
the left of a, i.e., when 0 0x 02 03 rr. Elementary trigonometry tells us that
as R oo, rx/R -+ 1, and 0 -+ 0, 1, 2, 3. From (2.28) we see, as R oo, G(z) 0
for each 0.

We integrate along the path in Fig. 2.7.
Noting the discontinuity of the square root function across the line between

aa and a2 we get in the limit

1 f2, (it/R)e-iO(t)-7--:. Jo G(Re’) e dO
A’n’t

(2.29)
1 Ia"= 4Z-(X a1)(X a2) e

2rr
(d-l) X2
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Since G(R ei) e (it/n)e-’ is uniformly bounded for all R we use the bounded
convergence theorem to conclude that the second term in (2.29) converges to
zero.

Therefore

(2.30) b(t)
(d- 1)/’la 4L,X-al)(-az)t, e it/x

27r Jal x

Letting u 1Ix we get

(a- 1/a

b(t) | 4-(1/u al)(1/u a2) e itu du
27r 1/a2

(2.31) =(d- 1_.__) f /" J-aa2(u- 1/al)(U- 1/az) e" du
2 Ol/a2 U

fb 4(U bl)(b2 u)
due

2 u

where b (d + 1 2/d, b2 (d + 1 +2/d.
For d 1 we proceed similarly, noting that the square root function must be

-2i ei/2 (see Fig. 2.8)
Since G(R e) 0 uniformly in 0 as R m we get

1 x-1/4
et/x lfo44(t)

x
ax 4]/u- /4 e’u au

/4
(2.32)

1 f444_u i,u

J02
e du.

Combining the two results we get

d [ 4( bl)(b2- u) eit" duO(t)
u

(2.33)
a+-2 a++2

ba= bz= d=1,2,3,"’.
d d

It is not difficult to prove that

(2.34) ---d Ibb2 ,,/(u bl)(b2- u)
du 1, d 1, 2,

27r u

Since it is evident that b(t) can be analytically extended onto all of R, b(t) is the
characteristic function of a probability distribution G with density

(2.35)

cl 4(u- t,)(b- u)
g(u)= 2r u

0

bl < u < b2,

otherwise.
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z Re io
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Since b(t) is analytic in a neighborhood of 0, G is the only distribution with
moments

b

(2.36) [(r) urg(u) du, r 0, 1, 2,...,

so that F defined in (2.1) is uniquely determined by its moments.
We can now complete the theorem.
Let/zr(")= (l/n) tr W= (l/n) Zi=a hi" We know that

(2.37)
b2

rgu (u) du

{nj}j=l we can find, using ain probability as n Given any subsequence
diagonal argument, a subsequence {n;}_ {nj}j=l such that

(2.38) (nj) Ibb2tzr urg(u) du

for all r. Since F is continuous we have for each

(2.39) F,,;(A F(A).

Since this could be done for any subsequence of the natural numbers we conclude
that

(2.40) F,,(A)F(h)

in probability.
This concludes the proof of the theorem.
Figure 2.9 contains plots of g(u) for d 1, 5, 10, 20. They should be com-

pared with the graphs in Figs. 1.3 and 1.4.

4

3

2

1

2 3 4

d=5

FIG. 2.9
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d=10

2

FIG. 2.9. Continued

d=20

3. Remarks and conclusions. Symmetric random matrices have been dealt
with in the literature in two contexts. One is multivariate analysis. The other is
physics, where the pioneering work of Wigner [2], [3] led to the results which have
some resemblance to our theorem. He investigated the limiting spectra of
symmetric matrices having independent and symmetrically distributed (symmet-
ric about 0) elements, all sharing a common second moment, and proved the
famous semi-circle law. Wigner’s work has been extended by Grenander [5] and
Arnold [6]; see also Dyson [4].

In our situation we have dependent elements in the matrix that complicates
the analysis. A partial result in this case can be found in Arharov [7].

The simplest types of Toeplitz forms are those whose entries aij depend only
on li-jl: a stationarity condition. Such matrices have been studied in depth and
the limiting spectral measures are known (Grenander and Szego [8]). In our case
the matrix of probabilities generating the random matrix satisfies a stationarity
condition and this might lead one to expect a relationship between the present
analysis and Toeplitz theory. However, there seems to be no connection in
substance.

As far as we know this is the first attempt to analyze randomly connected
networks in terms of the spectrum they induce. We consider an ensemble
(population) of organisms whose network topologies may differ drastically on the
microscopic level. Our main result shows that in spite of this the global, spectral
properties are essentially the same: for large networks the local randomness does
not influence the spectral measure so that a law of large numbers has been
established. This could be compared with the classical way of deriving ther-
modynamic laws from statistical principles applied to the underlying mechanical
systems.

To continue this metaphor: it could be said that we have investigated only the
situation of (statistical) equilibrium. Evolutionary situations on the other hand
correspond, in our context, to learning and adaptation. We are currently inves-
tigating how the spectrum will develop in time in such cases.

We do not claim any biological evidence to support the information pro-
cessing in the forward-backward manner implied by the W operator. Instead our
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study should be viewed as a "Gedanken-experiment," where a postulated con-
trolled randomness generates the physiology of connections. A mathematical
technique is then developed for the spectral analysis of the network. It is
remarkable that although (under our hypothesis) two members of the species have
little in common on the microscopic level, they tend to have the same spectrum.
We believe that the technique used will be of value for more realistic models.
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