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1. Introduction
For n = 1, 2, . . . let X = Xn = (Xij), T = Tn, and T

1/2
n , denote, respectively, an n×N

matrix consisting of i.i.d. standardized complex entries (EX11 = 0, E|X11|2 = 1), an n×n

nonnegative definite matrix, and any square root of T . For any square matrix A having real
eigenvalues, let FA denote the empirical distribution function (e.d.f.) of its eigenvalues.
The matrix Bn = (1/N)T 1/2

n XX∗T 1/2
n can be viewed as the sample covariance matrix of

a broad class of random vectors, T
1/2
n X·1 (X·j denoting the jth column of X). Previous

work on understanding the behavior of the eigenvalues of Bn when n and N are large
but have the same order of magnitude has been on FBn and on the extreme eigenvalues
when T = I, the identity matrix. Assuming N = N(n) with n/N → c > 0 as n → ∞
and FT D−→ H, a proper p.d.f. it is known that almost surely FBn converges weakly to
a nonrandom p.d.f. F (see Silverstein (1995)). Proving this result, along with describing
F (which can be explicitly expressed in only a few cases), is best achieved with the aid of
the Stieltjes transform, defined for any p.d.f. G by

mG(z) ≡
∫

1
λ− z

dG(λ) z ∈ C+ ≡ {z ∈ C : Imz > 0}.

Because of the inversion formula

G([a, b]) =
1
π

lim
η→0

∫ b

a

ImmG(ξ + iη)dξ

(a, b continuity points of G), weak convergence of p.d.f.’s can be proven by showing con-
vergence of Stieltjes transforms.

For each z ∈ C+, m = mF (z) is a solution to the equation

m =
∫

1
t(1− c− czm)− z

dH(t),

which is unique in the set {m ∈ C : −(1−c)/z +cm ∈ C+}. Let Bn = (1/N)X∗TX. Since
the spectra of Bn and Bn differ by |n−N | zero eigenvalues, it follows that

FBn =
(

1− n

N

)
I[0,∞) +

n

N
FBn ,

from which we get

mF Bn (z) = − (1− n/N)
z

+
n

N
mF Bn (z) z ∈ C+,

and with F denoting the limit of FBn we have

F = (1− c)I[0,∞) + cF,

1



and

mF (z) = − (1− c)
z

+ cmF (z) z ∈ C+.

It follows that

mF = −z−1

∫
1

1 + tmF
dH(t),

for each z ∈ C+, m = mF (z), is the unique solution in C+ to the equation

m = −
(

z − c

∫
t dH(t)
1 + tm

)−1

, (1.1)

and mF (z) has an inverse, explicitly given by

z(m) = − 1
m

+ c

∫
t dH(t)
1 + tm

. (1.2)

Much of the analytic behavior of F can be inferred from these equations (see Silverstein

and Choi (1995)). Indeed, continuous dependence of F on c and H is readily apparent from

(1.2), and the inversion formula, and it can be shown that F
D−→ H as c → 0. Moreover, it

is shown in Silverstein and Choi (1995) that, away from zero, F has a continuous density.

As an example Figure 1 (a) is the graph of the density when c = .1 and H places mass .2,

.4, and .4 at, respectively, 1, 3, and 10.

The focus of this paper is on intervals of R+ lying outside the support of F . The

inverse (1.2) can be used to identify these intervals, mainly because, on any such interval,

mF exists and is increasing. Consequently its inverse will also exist and will be increasing

on the range of this interval. Silverstein and Choi (1995) confirms each m in this range is

such that −1/m lies outside the support of H. Therefore, plotting (1.2) on R and observing

the range of values where it is increasing will yield the complement of the support of F , and,

together with c (to determine whether there is any mass at zero), the complement of the

support of F . Figure 1 (b) provides an illustration. It is the graph of (1.2) corresponding

to the density in (a).
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Fig 1. (a) Graph of the limiting density when c = .1 and H places mass .2, .4, and .4 at,
respectively, 1, 3, and 10. (b) The graph of x = −m−1+c

∫
t(1+tm)−1dH(t) corresponding

to (a). The bold lines on the vertical axis indicate the support of the density, the set in R+

remaining after removing intervals where the graph is increasing. Using the fact that the
density at x ∈ R+ is equal to (cπ)−1 times the imaginary part of mF (x) (see Silverstein
and Choi (1995)), the graph in (a) was created by applying Newton’s method to (1.2) for
values of z = x in the support.

For large n one would intuitively expect no eigenvalues to appear on a closed interval
outside the support of F . This of course cannot be inferred from the limiting result on
FBn . The two important cases when T = I have been settled. Here the support of F

lies on [(1 − √
c)2, (1 +

√
c)2], with the addition of zero when c > 1. When the entries
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of X come from the upper left portion of a doubly infinite array of independent random
variables having finite fourth moment, Yin, Bai, and Krishnaiah (1988), and Bai and Yin
(1993) show, respectively, the largest eigenvalue of Bn converges a.s. to (1 +

√
c)2, and

the min(n,N)th largest (which is the smallest eigenvalue when c < 1) converges a.s. to
(1 − √

c)2 (we remark here that in Bai, Silverstein, and Yin (1988), it is proven that
E|X11|4 < ∞ is necessary for the former to hold).

Extensive computer simulations, performed in order to show the importance of the
spectral limiting results to the detection problem in array signal processing (Silverstein and
Combettes (1992)), resulted in no eigenvalues appearing where there is no mass in the limit.
Under reasonably mild conditions, this paper will provide a proof of this phenomenon,
again in the form of a limit theorem as n →∞.

It will be necessary to impose stronger conditions on the eigenvalues of Tn than simply
weak convergence of FTn to H. For this, if we let F c,H denote F and cn = n/N , then
F cn,Hn is the “limiting” nonrandom d.f. associated with the “limiting” ratio cn and d.f.
Hn. As will be seen, the conditions on Hn are reflected in F cn,Hn .
Theorem 1.1. Assume
(a) Xij , i, j = 1, 2, ... are i.i.d. random variables in C with EX11 = 0, E|X11|2 = 1, and
E|X11|4 < ∞.
(b) N = N(n) with cn = n/N → c > 0 as n →∞.

(c) For each n T = Tn is n×n Hermitian nonnegative definite satisfying Hn ≡ FTn
D−→ H,

a p.d.f.
(d) ‖Tn‖, the spectral norm of Tn is bounded in n.
(e) Bn = (1/N)T 1/2

n XnX∗
nT

1/2
n , T

1/2
n any Hermitian square root of Tn, Bn =

(1/N)X∗
nTnXn, where X = Xn = (Xij), i = 1, 2, . . . , n, j = 1, 2, . . . , N .

(f) Interval [a, b] with a > 0 lies outside the support of F c,H and F cn,Hn for all large n

Then P( no eigenvalue of Bn appears in [a, b] for all large n ) = 1.

Using the results on the extreme eigenvalues of (1/N)XX∗ we see that the interval
can also be unbounded. In particular we have

Corollary. If ‖Tn‖ converges to the largest number in the support of H, then ‖Bn‖ con-
verges a.s. to the largest number in the support of F . If the smallest eigenvalue of Tn

converges to the smallest number in the support of H, then c < 1 (c > 1) implies the
smallest eigenvalue of Bn (Bn) converges to the smallest number in the support of F (F ).

Theorem 1.1 is proven by showing the convergence of Stieltjes transforms at an ap-
propriate rate, uniform with respect to the real part of z over certain intervals, while the
imaginary part of z converges to zero. Besides relying on standard results on matrices,
the proof requires well-known bounds on moments of martingale difference sequences, as
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well as an extension of Rosenthal’s inequality to random quadratic forms. The proof of
the latter will be given in the appendix. Statements of most of the mathematical tools
needed will be given in the next section. Section 3 establishes a rate of convergence of
FBn , needed in proving the convergence of the Stieltjes transforms. The latter will be
broken down into two parts (section 4 and 5), while section 6 completes the proof.

It is mentioned here that Theorem 1.1 is actually only part of the important phe-
nomena observed in simulations. It can be shown that on any interval JH with endpoints
outside the support of H, there corresponds for c sufficiently small, an interval JF,c with
endpoints being boundary points of the support of F satisfying F (JF,c) = H(JH). This
should be viewed in the finite but large dimensional case as the eigenvalues of Bn being a
“smoothed” deformation of the eigenvalues of Tn, continuous in the ratio of dimension to
sample size. Simulations reveal that the number of eigenvalues of Bn appearing in JFn,cn

is exactly the same as the number of eigenvalues of Tn in JHn . The formulation of the
conjecture naturally arising from this is simply

n(Fn(JF,c)− F cn,Hn(JF,c)) → 0 a.s.

Its truth is currently being investigated.

2. Mathematical tools
We list in this section results needed to prove Theorem 1.1. Throughout the rest

of the paper constants appearing in inequalities are represented by K and occasionally
subscripted with variables they depend on. They are nonrandom and may take on different
values from one appearance to the next.

Referenced results below concerning moments of sums of complex random variables
were originally proven for real variables. Extension to the complex case is straightforward.
Lemma 2.1 (Burkholder (1973)). Let {Xk} be a complex martingale difference sequence
with respect to the increasing σ-field {Fk}. Then for p ≥ 2

E

∣∣∣∣
∑

Xk

∣∣∣∣
p

≤ Kp

(
E

(∑
E(|Xk|2|Fk−1)

)p/2

+ E
∑

|Xk|p
)

.

Lemma 2.2 (Burkholder (1973)). With {Xk} as above, we have, for p > 1

E
∣∣∣∑ Xk

∣∣∣p ≤ KpE
(∑

|Xk|2
)p/2

.

Lemma 2.3 (Rosenthal (1970)) If {Xk} are independent non-negative, then for p ≥ 1

E
(∑

Xk

)p

≤ Kp

((∑
EXk

)p

+
∑

EXp
k

)
.
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Lemma 2.4 (Dilworth (1993)). With {Fk} as above, {Xk}k≥1 a sequence of integrable
random variables, and 1 ≤ q ≤ p < ∞ we have

E

( ∞∑
k=1

|E(Xk|Fk)|q
)p/q

≤
(

p

q

)p/q

E

( ∞∑
k=1

|Xk|q
)p/q

.

The following lemma is found in most probability textbooks.
Lemma 2.5. (Kolmogorov’s inequality for submartingales). If X1, . . . , Xm is a submartin-
gale, then for any α > 0

P(max
k≤m

Xk ≥ α) ≤ 1
α

E(|Xm|).

The next one has a straightforward proof.
Lemma 2.6. If for all t > 0, P (|X| > t)tp ≤ K for some positive p, then for any positive
q < p

E|X|q ≤ Kq/p

(
p

p− q

)
.

Lemma 2.7 (proof in appendix). For X = (X1, . . . , Xn)T i.i.d. standardized (complex)
entries, C n× n matrix (complex) we have for any p ≥ 2

E|X∗CX − trC|p ≤ Kp

((
E|X1|4trCC∗

)p/2

+ E|X1|2ptr (CC∗)p/2

)
.

Lemma 2.8 (Corollary 7.3.8 of Horn and Johnson (1985)). For r × s matrices A and B

with respective singular values σ1 ≥ σ2 ≥ · · · ≥ σq, τ1 ≥ τ2 ≥ · · · ≥ τq, where q = min(r, s)
we have

|σk − τk| ≤ ‖B −A‖ for all k = 1, 2, . . . , q.

Lemma 2.9 ((3.3.41) of Horn and Johnson (1991)). For n × n Hermitian A = (ai j) with
eigenvalues λ1, ..., λn, and convex f we have

n∑
i=1

f(ai i) ≤
n∑

i=1

f(λi).

Lemma 2.10 (Lemma 2.6 of Silverstein and Bai (1995)). Let z ∈ C+ with v = Imz, A and
B n× n with B Hermitian, and r ∈ Cn. Then

∣∣tr (
(B − zI)−1 − (B + rr∗ − zI)−1

)
A

∣∣ =
∣∣∣∣r
∗(B − zI)−1A(B − zI)−1r

1 + r∗(B − zI)−1r

∣∣∣∣ ≤ ‖A‖
v

.

6



Lemma 2.11 (Lemma 2.3 of Silverstein (1995)). For z = x + iv ∈ C+ let m1(z), m2(z)
be Stieltjes transforms of any two p.d.f.’s, A and B n× n with A Hermitian non-negative
definite, and r ∈ Cn. Then

a) ‖(m1(z)A + I)−1‖ ≤ max(4‖A‖/v, 2)

b) |trB((m1(z)A+I)−1−(m2(z)A+I)−1)| ≤ |m2(z)−m1(z)|n‖B‖ ‖A‖(max(4‖A‖/v, 2))2

c) |r∗B(m1(z)A + I)−1r − r∗B(m2(z)A + I)−1r|
≤ |m2(z)−m1(z)|‖r‖2‖B‖‖A‖(max(4‖A‖/v, 2))2

(‖r‖ denoting Euclidean norm on r).

Lemma 2.12 (Lemma 2.4 of Silverstein and Bai (1995)). For n× n Hermitian A and B

‖FA − FB‖ ≤ 1
n

rank(A−B),

‖ · ‖ here denoting sup norm on functions.

Basic properties on matrices will be used throughout the paper, the two most common
being: trAB ≤ ‖A‖tr B for Hermitian nonnegative definite A and B, and for A n× n and
r ∈ Cn, for which both A and A + rr∗ are invertible

r∗(A + rr∗)−1 =
1

(1 + r∗A−1r)
r∗A−1.

At one point in Section 3 the two-dimensional Stieltjes transform is needed. Its defini-
tion and relevant properties are given here. For a p.d.f. F (x, y) defined on R2 it is defined
as

m(z1, z2) =
∫

1
(x− z1)(y − z2)

dF (x, y)

for all z1 = x1 + iv1, z2 = x2 + iv2 v1 6= 0, v2 6= 0. Due to the inversion formula

F ([a, b]× [c, d]) = − 1
π2

lim
v↓0

∫
[a,b]×[c,d]

m(z1, z2)−m(z̄1, z2)−m(z1, z̄2) + m(z̄1, z̄2)dx1dx2

v1 = v2 = v, whenever F (∂([a, b]×[c, d])) = 0, weak convergence of p.d.f.’s on R2 is assured
once convergence of their Stieltjes transforms is verified on a countable collection of points
(z1, z2) dense in some open set in C2.
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3. A rate on FBn

We begin by simplifying our assumptions.
Because of assumption (d) in Theorem 1.1 we can assume ‖Tn‖ ≤ 1.
For C > 0 let Yij = XijI[|Xij |≤C] − EXijI[|Xij |≤C], Y = (Yij) and B̃n =

(1/N)T 1/2
n YnY ∗

n T
1/2
n . Denote the eigenvalues of Bn and B̃n by λk and λ̃k (in decreas-

ing order). Since these are the squares of the kth largest singular values of (1/
√

N)T 1/2
n Xn

and (1/
√

N)T 1/2
n Yn (respectively), we find using Lemma 2.8

max
k≤n

|λ1/2
k − λ̃

1/2
k | ≤ (1/

√
N)‖Xn − Yn‖.

Since Xij − Yij = XijI[|Xij |>C] − EXijI[|Xij |>C], from Yin, Bai, and Krishnaiah (1988) we
have with probability one

lim sup
n→∞

max
k≤n

|λ1/2
k − λ̃

1/2
k | ≤ (1 +

√
c)E1/2|X11|2I[|X11|>C].

Because of assumption (a) we can make the above bound arbitrarily small by choosing C

sufficiently large. Thus, in proving Theorem 1.1 it is enough to consider the case where
the underlying variables are uniformly bounded.

In this case it is proven in Yin, Bai, and Krishnaiah (1988) that there exists a sequence
{kn} satisfying kn/ log n →∞ such that for any η > (1 +

√
c)2

E‖(1/N)XnX∗
n‖kn ≤ ηkn

for all n sufficiently large. It follows then that λmax, the largest eigenvalue of Bn, satisfies.

P (λmax ≥ K) = o(N−`), (3.1)

for any K > (1 +
√

c)2 and any positive `.
Also, since tr (CC∗)p/2 ≤ (trCC∗)p/2, we get from Lemma 2.7 when X1 is bounded

E|X∗
· 1CX· 1 − trC|p ≤ Kp(trCC∗)p/2 (3.2)

where Kp also depends on the distribution of X· 1. From (3.2) we easily get

E|X∗
· 1CX· 1|p ≤ Kp((trCC∗)p/2 + |trC|p). (3.3)

Throughout the paper, variable z = x + iv will be the argument of any Stieltjes
transform. Let mn = mF Bn and mn = mF B

n . For j = 1, 2, . . . , N , let qj = (1/
√

n)X· j
(X· j denoting the jth column of X), rj = (1/

√
N)T 1/2

n X· j , and B(j) = Bn
(j) = Bn − rjr

∗
j .
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In Silverstein (1995) the formula

mn(z) = − 1
N

N∑
j=1

1
z(1 + r∗j (B(j) − zI)−1rj)

is derived. It is easy to verify

Imr∗j ((1/z)B(j) − I)−1rj ≥ 0.

Therefore, for each j
1

|z(1 + r∗j (B(j) − zI)−1rj)| ≤
1
v
, (3.4)

It is also shown in Silverstein (1995) that

1
n

tr (−zmn(z)Tn − zI)−1 −mn(z) ≡ wn(z) =
1
N

N∑
j=1

−1
z(1 + r∗j (B(j)− zI)−1rj)

dj (3.5)

where

dj = q∗j T 1/2
n (B(j) − zI)−1(mn(z)Tn + I)−1T 1/2

n qj − 1
n tr (mn(z)Tn + I)−1Tn(Bn − zI)−1.

The next task is to prove for v = vn ≥ N−1/17 and for any subsets Sn ⊂ [0,∞)
containing at most n elements the almost sure convergence of

max
x∈Sn

|wn(z)|
v5

n

to zero. Let m(j)(z) = − (1−cn)
z + cnm

F
B(j) (z). From Lemma 2.10 we have

max
j≤N

|mn(z)−m(j)(z)| ≤ 1
Nv

. (3.6)

Moreover, it is easy to verify that m(j)(z) is the Stieltjes transform of a p.d.f., so that
|m(j)(z)| ≤ v−1

Write for each j ≤ N dj = d1
j + d2

j + d3
j + d4

j where

d1
j = q∗j T 1/2

n (B(j)−zI)−1(mn(z)Tn+I)−1T 1/2
n qj−q∗j T 1/2

n (B(j)−zI)−1(m(j)(z)Tn+I)−1T 1/2
n qj

d2
j = q∗j T 1/2

n (B(j)− zI)−1(m(j)(z)Tn + I)−1T 1/2
n qj − 1

n tr (m(j)(z)Tn + I)−1Tn(B(j)− zI)−1

d3
j = 1

n tr (m(j)(z)Tn + I)−1Tn(B(j) − zI)−1 − 1
n tr (m(j)(z)Tn + I)−1Tn(Bn − zI)−1.
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and

d4
j = 1

n tr (m(j)(z)Tn + I)−1Tn(Bn − zI)−1 − 1
n tr (mn(z)Tn + I)−1Tn(Bn − zI)−1.

In view of (3.4), it is sufficient to show the a.s. convergence of

max
j≤N,x∈Sn

|di
j |

v6
(3.7)

to zero for i = 1, 2, 3, 4.
Using ‖(A − zI)−1‖ ≤ 1/v for any Hermitian matrix A we get from Lemma 2.11 c)

and (3.6)

|d1
j | ≤ 16

‖X· j‖2
n

1
Nv4

.

Using (3.2) it follows that for any ε > 0, p ≥ 2, and all n sufficiently large

P

(
max

j≤N,x∈Sn

|d1
j |

v6
> ε

)
≤ nP

(
max
j≤N

∣∣∣∣‖X· j‖2
n

− 1
∣∣∣∣ 16
Nv10

> ε/2
)

≤ Kp
nN

(Nv10)p
ε−pn−p/2,

so (3.7) a.s.−→ 0 when i = 1 and for any vn ∈ (N−1/10, 1].
Using Lemma 2.10 and Lemma 2.11 a) we find

v−6|d3
j | ≤

4
nv8

,

so that (3.7) a.s.−→ 0 for i = 3 and for any vn = N−δ with δ ∈ [0, 1/8).
We get from Lemma 2.11 b) and (3.6)

v−6|d4
j | ≤ 16

1
Nv10

,

so that (3.7) a.s.−→ 0 for i = 4, and for any δ ∈ [0, 1/10).
Using (3.2) we find for any p ≥ 2

E|v−6d2
j |p

≤ Kp
1

v6pnp
(trT 1/2

n (B(j)−zI)−1(m(j)(z)Tn+I)−1Tn(m(j)(z)Tn+I)−1(B(j)−zI)−1T 1/2
n )p/2

= Kp
1

v6pnp
(tr (m(j)(z)Tn + I)−1Tn(m(j)(z)Tn + I)−1(B(j) − zI)−1Tn(B(j) − zI)−1)p/2

≤ (using Lemma 2.11 a)) Kp
1

v6pnp

1
v2·p/2

(tr (B(j) − zI)−1Tn(B(j) − zI)−1)p/2
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= Kp
1

(nv7)p
(trTn(B(j) − zI)−1(B(j) − zI)−1)p/2 ≤ Kp

1
(nv7)p

(n/v2)p/2

= Kp
1

(n1/2v8)p
.

We have then for any ε > 0 and p ≥ 2

P( max
j≤N,x∈Sn

|v−6d2
j | > ε) ≤ Kp

1
εp

nN

(n1/2v8)p
.

Thus, maxx∈Sn |wn(z)|v−5 a.s.−→ 0 for any nonnegative δ ≤ 1/17 since we have shown
for any positive `, we have for all p sufficiently large and for all ε > 0

P(max
x∈Sn

|wn(z)|v−5
n > ε) ≤ Kpε

−pn−`.

Moreover, for the sequence {µn} with µn = N1/68 we have for any vn = N−δ with δ ≤ 1/17

P(µn max
x∈Sn

|wn(z)|v−5
n > ε) ≤ Kpε

−pn−`. (3.8)

We now rewrite wn totally in terms of mn. With Hn ≡ FT , and using the identity

mn(z) = − (1− cn)
z

+ cnmn(z)

we have wn =

1
cn

(
−cn

z

∫
dHn(t)
1 + tmn

−mn −
(1− cn)

z

)
=

mn

cnz

(
− cn

mn

∫
dHn(t)
1 + tmn

− z − (1− cn)
mn

)

=
mn

cnz

(
−z − 1

mn

+ cn

∫
t dHn(t)
1 + tmn

)
.

Let

ω = −z − 1
mn

+ cn

∫
t dHn(t)
1 + tmn

.

Then ω = wnzcn/mn.
Returning now to F cn,Hn and F c,H , let m0

n = mF cn,Hn and m0 = mF c,H . Then m0

solves (1.1), its inverse is given by (1.2),

m0
n =

1

−z + cn

∫ t dHn(t)
1+tm0

n

, (3.9)

and the inverse of m0
n, denoted z0

n, is given by

z0
n(m) = − 1

m
+ cn

∫
t dHn(t)
1 + tm

. (3.10)
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From (3.10) and the inversion formula for Stieltjes transforms it is obvious that F cn,Hn
D−→

F c,H , as n →∞. Therefore, from assumption (f) an ε > 0 exists for which [a− 2ε, b + 2ε]
also satisfies (f). This interval will stay uniformly bounded away from the boundary of
the support of F cn,Hn for all large n, so that for these n both supx∈[a−2ε,b+2ε]

d
dxm0

n(x) is
bounded and −1/m0

n(x) for x ∈ [a− 2ε, b + 2ε] stays uniformly away from the support of
Hn. Therefore for all n sufficiently large

sup
x∈[a−2ε,b+2ε]

(
d

dx
m0

n(x)
)∫

t2 dHn(t)
(1 + tm0

n(x))2
≤ K. (3.11)

Let a′ = a−ε, b′ = b+ε. On either (−∞, a′] or [b′,∞), each collection of functions in λ,
{(λ− x)−1 : x ∈ [a, b]}, {(λ− x)−2 : x ∈ [a, b]}, form a uniformly bounded, equicontinuous
family. It is straightforward, then, to show

lim
n→∞ sup

x∈[a,b]

|m0
n(x)−m0(x)| = 0, (3.12)

and

lim
n→∞ sup

x∈[a,b]

∣∣∣∣ d

dx
m0

n(x)− d

dx
m0(x)

∣∣∣∣ = 0 (3.13)

(see, for example, p. 17, problem 8 of Billingsley (1968)). Since for all x ∈ [a, b], λ ∈ [a′, b′]c,
and positive v ∣∣∣∣ 1

λ− (x + iv)
− 1

λ− x

∣∣∣∣ <
v

ε2

we have for any sequence of positive vn converging to 0

lim
n→∞ sup

x∈[a,b]

|m0
n(x + ivn)−m0

n(x)| = 0. (3.14)

Similarly

lim
n→∞ sup

x∈[a,b]

∣∣∣∣Imm0
n(x + ivn)
vn

− d

dx
m0

n(x)
∣∣∣∣ = 0. (3.15)

Expressions (3.11), (3.12), (3.14), and (3.15) will be needed in the latter part of Section
5.

Let m0
2 = Imm0

n. We have then from (3.9)

m0
2 =

vn + m0
2cn

∫ t2 dHn(t)
|1+tm0

n|2∣∣∣−z + cn

∫ t dHn(t)
1+tm0

n

∣∣∣2
. (3.16)

12



For any real x, by Lemma 2.11 a),

m0
2cn

∫
t2 dHn(t)
|1 + tm0

n|2
= cnIm

(∫
t dHn(t)
1 + tm0

n

)

≤ cn||T (I + Tm0
n)−1|| ≤ 4cn/vn.

It follows that 
 m0

2cn

∫ t2 dHn(t)
|1+tm0

n|2

vn + m0
2cn

∫ t2 dHn(t)
|1+tm0

n
|2




1/2

< 1−Kv2
n, (3.17)

for some positive constant K.
Let mn = m1 + im2, where m1 = Re mn, m2 = Immn. We have mn satisfying

mn =
1

−z + cn

∫ t dHn(t)
1+tmn

− ω
, (3.18)

and

m2 =
vn + m2cn

∫ t2 dHn(t)
|1+tmn|2 + Imω∣∣∣−z + cn

∫ t dHn(t)
1+tmn

− ω
∣∣∣2

. (3.19)

From (3.9) and (3.18) we get

mn −m0
n =

(mn −m0
n)cn

∫ t2 dHn(t)
(1+tmn)(1+tm0

n)(
−z + cn

∫ t dHn(t)
1+tmn

− ω

)(
−z + cn

∫ t dHn(t)
1+tm0

n

)

+mnm0
nω. (3.20)

From Cauchy-Schwarz, (3.16), (3.17) and (3.19) we get, when |Imω/vn| < 1
∣∣∣∣∣∣∣∣
cn

∫ t2 dHn(t)
(1+tmn)(1+tm0

n)(
−z + cn

∫ t dHn(t)
1+tmn

− ω

)(
−z + cn

∫ t dHn(t)
1+tm0

n

)
∣∣∣∣∣∣∣∣

≤


cn

∫ t2 dHn(t)
|1+tmn|2∣∣∣−z + cn

∫ t dHn(t)
1+tmn

− ω
∣∣∣2




1/2 
cn

∫ t2 dHn(t)
|1+tm0

n|2∣∣∣−z + cn

∫ t dHn(t)
1+tm0

n

∣∣∣2



1/2

=


 m2cn

∫ t2 dHn(t)
|1+tmn|2

vn + m2cn

∫ t2 dHn(t)
|1+tmn|2 + Imω




1/2 
 m0

2cn

∫ t2 dHn(t)
|1+tm0

n|2

vn + m0
2cn

∫ t2 dHn(t)
|1+tm0

n|2




1/2

13



≤

 m0

2cn

∫ t2 dHn(t)
|1+tm0

n|2

vn + m0
2cn

∫ t2 dHn(t)
|1+tm0

n|2




1/2

≤ 1−Kv2
n. (3.21)

We claim that on the set {λmax ≤ K1}, where K1 > (1 +
√

c)2, for all n sufficiently
large, |mn| ≥ 1

2µ−1
n vn whenever |x| ≤ µnv−1

n . Indeed, when x ≤ −vn or x ≥ λmax + vn

|mn| ≥ |Remn| ≥
K1 + µnv−1

n

(K1 + µnv−1
n )2 + v2

n

≥ 1
2µnv−1

n

for n large. When −vn < x < λmax + vn

|mn| ≥ |Immn| ≥
vn

(K1 + vn)2 + v2
n

≥ µ−1
n vn

for n large. Thus the claim is proven.
Therefore, when |x| ≤ µnv−1

n , on the set {|wn| ≤ v4
n} ∩ {λmax ≤ K1} we have for n

large |z| ≤ 2µnv−1
n and

|Im(ω)| ≤ |cnzwn/mn| ≤ Kµ2
nv−2

n |wn| < vn.

Therefore, by (3.20) and (3.21), we have

|mn −m0
n| ≤ K−1v−2

n |mnm0
nω|

= K−1v−2
n |cnzm0

nwn| ≤ K ′v−4
n µn|wn|.

It is easy to verify that for n large, when either |x| > µnv−1
n , |wn| > v4

n, or λmax > K1

|mn −m0
n| ≤ 3µ−1

n vn + 2v−1
n (I[|wn|>v4

n] + I[λmax>K1]).

Therefore, for n large, we have

max
x∈Sn

v−1
n |mn(z)−m0

n| ≤ K ′µn max
x∈Sn

|wn|v−5
n

+3µ−1
n + 2v−2

n max
x∈Sn

(
I[|wn|>v4

n] + I[λmax>K1]

)
.

Therefore, from (3.1) and (3.8) we find for any positive ε and `

P(v−1
n max

x∈Sn

|mn(z)−m0
n| > ε) ≤ Kpε

−pn−` (3.22)

for all p sufficiently large, whenever δ ≤ 1/17.
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We now assume the n elements of Sn to be equally spaced between −√n and
√

n.
Since for |x1 − x2| ≤ 2n−1/2,

|mn(x1 + ivn)−mn(x2 + ivn)| ≤ 2n−1/2v−2
n

|m0
n(x1 + ivn)−m0

n(x2 + ivn)| ≤ 2n−1/2v−2
n ,

and when |x| ≥ √
n, for n large

|mn(x + ivn)| ≤ 2n−1/2 + v−1
n I[λmax>K1]

|m0
n(x + ivn)| ≤ 2n−1/2

we conclude from (3.22) and (3.1), that for any positive ε and `

P(v−1
n sup

x∈R
|mn(x + ivn)−m0

n(x + ivn)| > ε) ≤ Kpε
−pn−` (3.23)

for all sufficiently large p, whenever δ ≤ 1/17.
Let E0(·) denote expectation and Ek(·) denote conditional expectation with respect

to the σ-field generated by r1, · · · , rk. Let `, `′ > 0 be arbitrary. Choose ` > `, let p be
suitably large so that (3.23) holds with ` replaced by `, and r ≡ `p/(``′) is greater than 1.
Since Ek(v−`′

n supx∈R |mn(x + ivn)−m0
n(x + ivn)|`′), k = 0, . . . , N forms a martingale, it

follows from Jensen’s inequality, Lemmas 2.5, 2.6 and (3.23) that for any positive ε

P(max
k≤N

Ek(v−`′
n sup

x∈R
|mn(x + ivn)−m0

n(x + ivn)|`′) > ε)

≤ ε−rE(v−r`′
n sup

x∈R
|mn(x + ivn)−m0

n(x + ivn)|r`′) ≤ ε−rK
`/`
p

`

`− `
n−`

whenever δ ≤ 1/17. In particular, we have for δ ≤ 1/17

lim
n→∞max

k≤N

Ek(supx∈R |mn(x + ivn)−m0
n(x + ivn)|2)

v2
n

= 0 with probability 1. (3.24).

Let λ1 ≤ λ2 · · · ≤ λN be the eigenvalues of Bn and write

mj = mout
j + min

j j = 1, 2

where
mout

2 (x + iv) =
1
N

∑
λj∈[a′,b′]

v

(x− λj)2 + v2
,
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mout
1 (x + iv) =

1
N

∑
λj∈[a′,b′]

x− λj

(x− λj)2 + v2
.

Define the sequence {Gm}∞m=1 of functions on R2 by

G∑n−1

j=1
(N(j)+1)+k

(x1, x2) = EkFBn(x1)FBn(x2),

for k = 0, 1, . . . , N(n). Clearly each Gm is a probability distribution function on R2, and
when m =

∑n−1
j=1 (N(j)+1)+k, the two-dimensional Stieltjes transform, m

(G)
m (x1+iv1, x2+

iv2) of Gm is Ekmn(x1 + iv1)mn(x2 + iv2). Obviously, when δ = 0, (3.24) implies that,
with probability one supx1,x2∈R |m(G)

m (x1 + iv1, x2 + iv2)−m0
n(x1 + iv1)m0

n(x2 + iv2)| → 0
as m → ∞ for countably many (v1, v2) forming a dense subset of an open set in the first
quadrant (bounded uniformly away from the two axes). We conclude that with probability
one, Gm(x1, x2) converges weakly to F c,H(x1)F c,H(x2).

Since the integrands of

∫
[a′,b′]c×[a,′b′]c

dEkFBn(x1)FBn(x2)
((x− x1)2 + v2)((x− x2)2 + v2)

and
∫

[a′,b′]c

dEkFBn(x1)
(x− x1)2 + v2

on their respective domains are uniformly bounded and equicontinuous for x ∈ [a, b], it
follows as in (3.13) that

max
k

sup
x∈[a,b]

Ek

∣∣∣∣m
in
2 (x + iv)

v
− d

dx
m0(x)

∣∣∣∣
2

a.s.−→ 0, (3.25)

for any v = vn → 0.
Therefore, from (3.24) and (3.25) we have

max
k≤N

sup
x∈[a,b]

v−2
n Ek

(
mout

2 (x + ivn)
)2 a.s.−→ 0. (3.26)

From (3.26) we can infer a bound on the number of eigenvalues in [a, b]. Notice
NFBn(A) is the number of eigenvalues of Bn in the set A. Let en denote the left side of
(3.26). For any x ∈ [a, b]

en ≥ 1
N2

max
k≤N

Ek


 ∑

λj∈[a,b]∩[x−vn,x+vn]

1
(x− λj)2 + v2

n




2

≥ max
k≤N

N2Ek

(
FBn{[a, b] ∩ [x− vn, x + vn]})2

4v4
nN2

,
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and since the number of intervals of length 2vn needed to cover [a, b] is d(b− a)/2vne, we
find Ek

(
FBn{[a, b]})2 ≤ (b− a)2v2

nen. Therefore

max
k≤N

Ek

(
FBn{[a, b]})2

= oa.s.(v2
n) = oa.s.(N−2/17),

which implies
max
k≤N

Ek(FBn{[a, b]}) = oa.s.(vn) = oa.s.(N−1/17).

The above arguments apply to [a′, b′] as well, so we also have

max
k≤N

Ek

(
FBn{[a′, b′]})2

= oa.s.(v2
n) = oa.s.(N−2/17) (3.27)

and
max
k≤N

Ek(FBn{[a′, b′]}) = oa.s.(vn) = oa.s.(N−1/17). (3.28)

4. Convergence of mn − Emn

We now restrict δ = 1/68, that is, v = vn = N−1/68.
Our goal is to show that

sup
x∈[a,b]

Nvn|mn − Emn| → 0 a.s. as n →∞ (4.1)

Write D = Bn − zI, Dj = D − rjr
∗
j , and Djj = D − (rjr

∗
j + rjr

∗
j ) j 6= j. Then

mn = 1
n tr (D−1). Let us also denote

αj = r∗j D−2
j rj −N−1tr (D−2

j Tn), aj = N−1tr (D−2
j Tn),

βj =
1

1 + r∗j D−1
j rj

, bn =
1

1 + N−1Etr (TnD−1
1 )

,

γj = r∗j D−1
j rj −N−1E(tr (D−1

j Tn)), γ̂j = r∗j D−1
j rj −N−1tr (D−1

j Tn).

We first derive bounds on moments of γj and γ̂j . Using (3.2) we find for all p ≥ 2

E|γ̂j |p ≤ KpN
−pE(trT 1/2

n D−1
j TnD̄−1

j T 1/2
n )p/2 ≤ KpN

−p/2v−p
n . (4.2)

Using Lemmas 2.2 and 2.10 we have for p ≥ 2

E|γj − γ̂j |p = E|γ1 − γ̂1|p = E

∣∣∣∣ 1
N

N∑
j=2

EjtrTnD−1
1 − Ej−1trTnD−1

1

∣∣∣∣
p

17



= E

∣∣∣∣ 1
N

N∑
j=2

EjtrTn(D−1
1 −D−1

1j )− Ej−1trTn(D−1
1 −D−1

1j )
∣∣∣∣
p

= E

∣∣∣∣ 1
N

N∑
j=2

(Ej−Ej−1)
r∗j D−1

1j TnD−1
1j rj

1 + r∗j D−1
1j rj

∣∣∣∣
p

≤ Kp
1

Np
E

( N∑
j=2

∣∣∣∣(Ej−Ej−1)
r∗j D−1

1j TnD−1
1j rj

1 + r∗j D−1
1j rj

∣∣∣∣
2)p/2

≤ KpN
−p/2v−p

n .

Therefore
E|γj |p ≤ KpN

−p/2v−p
n . (4.3)

We next prove that bn is bounded for all n. We have bn and β1 both bounded in
absolute value by |z|/vn (see (3.4)). From the equation relating mn to the βj ’s (above
(3.4)) we have Eβ1 = −zEmn. Using (3.24) we get

sup
x∈[a,b]

|E(mn(z))−m0
n(z)| = o(vn).

Since m0
n is bounded for all n, x ∈ [a, b] and v we have supx∈[a,b] |Eβ1| ≤ K.

Since bn = β1 + β1bnγ1 we get

sup
x∈[a,b]

|bn| = sup
x∈[a,b]

|Eβ1 + Eβ1bnγ1| ≤ K + K
1/2
2 v−3

n N−1/2 ≤ K.

Since |mn(x1 + ivn)−mn(x2 + ivn)| ≤ |x1−x2|v−2
n , we see that (4.1) will follow from

max
x∈Sn

Nvn|mn − Emn| → 0 a.s.

where Sn now contains n2 elements, equally spaced in [a, b].
We write

Emn −mn = − 1
n

N∑
j=1

EjtrD−1 − Ej−1trD−1

=
1
n

N∑
j=1

[Ej − Ej−1]
(

r∗j D−2
j rj

1 + r∗j D−1
j rj

)

=
1
n

N∑
j=1

(Ej − Ej−1)
r∗j D−2

j rj

1 + N−1EtrTnD−1
j

+
1
n

N∑
j=1

(Ej − Ej−1)
r∗j D−2

j rj(N−1Etr TnD−1
j − r∗j D−1

j rj)

(1 + N−1EtrTnD−1
j )2
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+
1
n

N∑
j=1

(Ej − Ej−1)
r∗j D−2

j rj(N−1EtrTnD−1
j − r∗j D−1

j rj)2

(1 + N−1EtrTnD−1
j )2(1 + r∗j D−1

j rj)

=
bn

n

N∑
j=1

Ejαj − b2
n

n

N∑
j=1

Ejaj γ̂j

−b2
n

n

N∑
j=1

(Ej − Ej−1)(αjγj − r∗j D−2
j rjβjγ

2
j )

≡ W1 −W2 −W3.

Let Fnj be the spectral distribution of the matrix
∑

k 6=j rkr∗k. From Lemma 2.12 and
(3.27) we get

max
j

Ej(Fnj([a′, b′]))2 = o(N−2/17) = o(v8
n) a.s. (4.4)

Define
Bj = I[Ej−1Fnj([a′,b′])≤v4

n]∩[Ej−1(Fnj([a′,b′]))2≤v8
n].

Then Bj = I[EjFnj([a′,b′])≤v4
n]∩[Ej(Fnj([a′,b′]))2≤v8

n] a.s. and we have

P

( N⋃
j=1

[Bj = 0], i.o.
)

= 0.

Therefore we have for any ε > 0,

P

(
max
x∈Sn

|NvnW1| > ε, i.o.

)

≤ P

(([
max
x∈Sn

∣∣∣∣vn

N∑
j=1

Ej(αj)
∣∣∣∣ > ε

] N⋂
j=1

[Bj = 1]
) ⋃( N⋃

j=1

[Bj = 0]
)

, i.o.

)

≤ P

(
max
x∈Sn

∣∣∣∣vn

N∑
j=1

Ej(αj)Bj

∣∣∣∣ > ε, i.o.

)
,

where ε = infn nε/(Nbn) > 0 since bn is bounded. Note that for each x ∈ R {Ej(αj)Bj}
forms a martingale difference sequence.

By Lemma 2.1 and (3.2), we have for each x ∈ [a, b] and p ≥ 2

E

∣∣∣∣vn

N∑
j=1

Ej(αj)Bj

∣∣∣∣
p

≤ Kp

(
E

( N∑
j=1

Ej−1|vnEj(αj)Bj |2
)p/2

+
N∑

j=1

E|vnEj(αj)Bj |p
)
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≤ Kp

(
E

( N∑
j=1

Ej−1v
2
nN−2Bjtr (T 1/2

n D−2
j TnD

−2

j T 1/2
n )

)p/2

+ Nvp
nE|α1|p

)

≤ Kp

(
vp

nN−pE

( N∑
j=1

BjEj−1tr (D−2
j D

−2

j )
)p/2

+ Nvp
nN−pE(tr (T 1/2

n D−2
1 TnD

−2

1 T 1/2
n ))p/2

)

≤ Kp

(
vp

nN−pE

( N∑
j=1

BjEj−1tr (D−2
j D

−2

j )
)p/2

+ v−p
n N1−p/2

)
.

Let λkj denote the kth smallest eigenvalue of
∑

k 6=j rkr∗k. We have

N∑
j=1

BjEj−1trD−2
j D

−2

j

=
N∑

j=1

BjEj−1

[ ∑
λkj /∈[a′b′]

1
((λkj − x)2 + v2

n)2
+

∑
λkj∈[a′b′]

1
((λkj − x)2 + v2

n)2

]

≤
N∑

j=1

(nε−4 + Bjv
−4
n Ej−1nFnj([a′, b′])) ≤ KN2.

Therefore

P

(
max
x∈Sn

∣∣∣∣vn

N∑
j=1

Ej(αj)Bj

∣∣∣∣ > ε

)
≤ n2Kp,εN

−p/68

which is summable when p > 204. Therefore, maxx∈Sn |W1| = o(1/Nvn) a.s.

Proving

max
x∈Sn

|W2| = o(1/Nvn) a.s. (4.5)

is handled the same way. We get using Lemma 2.1, (3.2), and the fact that |aj | ≤ n
N v−2

n

E

∣∣∣∣vn

N∑
j=1

Ej(aj γ̂j)Bj

∣∣∣∣
p

≤ Kp

(
E

( N∑
j=1

Ej−1|vnEj(aj γ̂j)Bj |2
)p/2

+
N∑

j=1

E|vnEj(aj γ̂j)Bj |p
)

≤ Kp

(
vp

nN−pE

( N∑
j=1

BjEj−1(|aj |2trD−1
j D

−1

j )
)p/2

+ N1−pv−p
n (trD−1

j D
−1

j )p/2

)

≤ Kp

(
vp

nN−pE

( N∑
j=1

BjEj−1(|aj |2trD−1
j D

−1

j )
)p/2

+ v−2p
n N1−p/2

)
.
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This time

N∑
j=1

BjEj−1(|aj |2trD−1
j D

−1

j ) ≤
N∑

j=1

BjEj−1N
−2n

∑
k

1
((λkj − x)2 + v2

n)2
∑

k

1
(λkj − x)2 + v2

n

≤
N∑

j=1

BjN
−2nEj−1(nε−4 + v−4

n nFnj([a, b]))(nε−2 + v−2
n nFnj([a, b])) ≤ KN2,

so that (4.5) also holds.
Using Lemmas 2.2, 2.10, (3.2), and (4.3) we get

E

∣∣∣∣vn

N∑
j=1

(Ej − Ej−1)(αjγj − rjD
−2
j rjβjγ

2
j )

∣∣∣∣
p

≤ Kpv
p
nNp/2(E|α1γ1|p + v−p

n E|γ1|2p)

≤ Kpv
p
nNp/2(N−p(E(trD−2

1 D
−2

1 )p)1/2N−p/2v−p
n + v−3p

n N−p)

≤ Kpv
p
nNp/2(N−pNp/2v−2p

n N−p/2v−p
n + v−3p

n N−p) = 2KpN
−p/2v−2p

n .

Thus we get maxx∈Sn |W3| = o(1/Nvn) a.s. and, consequently, (4.1).
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5. Convergence of expected value
Our next goal is to show that, for v = N−1/68.

sup
x∈[a,b]

|Emn −m0
n| = O(1/N). (5.1)

We begin by deriving an identity similar to (3.5). Write Bn−zI−(−zEmn(z)Tn−zI)
=

∑N
j=1 rjr

∗
j − (−zEmn(z))Tn. Taking first inverses and then expected value we get

(−zEmnTn − zI)−1 − E(Bn − zI)−1

= (−zEmnTn − zI)−1E

[ N∑
j=1

rjr
∗
j − (−zEmn(z))Tn(Bn − zI)−1

]

= −z−1
N∑

j=1

Eβj

[
(Emn(z)Tn+I)−1rjr

∗
j (B(j)−zI)−1− 1

N
(Emn(z)Tn+I)−1TnE(Bn−zI)−1

]

= −z−1NEβ1

[
(Emn(z)Tn + I)−1r1r

∗
1D−1

1 − 1
N

(Emn(z)Tn + I)−1TnED−1

]
.

Taking the trace on both sides and dividing by −N/z, we get

cn

∫
dHn(t)

1 + tEmn

+ zcnE(mn(z))

= Eβ1

[
r∗1D−1

1 (EmnTn + I)−1r1 − 1
N

Etr (EmnTn + I)−1TnD−1

]
. (5.2)

We first show

sup
x∈[a,b]

N−1

∣∣∣∣Etr (EmnTn + I)−1TnD−1 − Etr (EmnTn + I)−1TnD−1
1

∣∣∣∣ = O(N−1). (5.3)

From (4.4) we get

sup
x∈[a,b]

E(trD−1
1 D

−1

1 )2 ≤ E(nε−2 + v−2
n nFn1([a′, b′]))2 ≤ KN2 (5.4)

and
sup

x∈[a,b]

Etr D−2
1 D

−2

1 ≤ E(nε−4 + v−4
n nFn1([a′, b′])) ≤ KN. (5.5)

Also, because of (3.24) and the fact that −1/m0
n(z) stays uniformly away from the eigen-

values of Tn for all x ∈ [a, b], we must have

sup
x∈[a,b]

‖(Emn(z)Tn + I)−1‖ ≤ K (5.6)
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Therefore, from (3.3), (4.3), (5.4)–(5.6), and the fact that supx∈[a,b] |bn| is bounded, we get

left side of (5.3) = N−1 sup
x∈[a,b]

|Eβ1r
∗
1D−1

1 (EmnTn + I)−1TnD−1
1 r1|

≤ N−1 sup
x∈[a,b]

(|bn| · |Er∗1D−1
1 (EmnTn + I)−1TnD−1

1 r1|

+E|β1bnγ1r
∗
1D−1

1 (EmnTn + I)−1TnD−1
1 r1|)

≤ KN−1 sup
x∈[a,b]

(N−1|EtrT 1/2
n D−1

1 (EmnTn + I)−1TnD−1
1 T 1/2

n |

+ v−1
n (E|γ1|2)1/2(E|r∗1D−1

1 (EmnTn + I)−1TnD−1
1 r1|2)1/2)

≤ KN−1 sup
x∈[a,b]

(N−1Etr D−1
1 D

−1

1 + v−1
n N−1/2v−1

n N−1(EtrD−2
1 D

−2

1 + E(trD−1
1 D

−1

1 )2)1/2)

≤ KN−1.

Thus (5.3) holds.
From (3.2), (5.4), and (5.6) we get

sup
x∈[a,b]

E|r∗1D−1
1 (EmnTn + I)−1r1 −N−1trD−1

1 (EmnTn + I)−1Tn|2

≤ KN−2 sup
x∈[a,b]

Etr D−1
1 D

−1

1 ≤ KN−1 (5.7)

Next we show

sup
x∈[a,b]

N−2E|tr (EmnTn + I)−1TnD−1
1 − Etr (EmnTn + I)−1TnD−1

1 |2 ≤ KN−1. (5.8)

Let

β1j =
1

1 + r∗j D−1
1j rj

, b1n =
1

1 + N−1Etr (TnD−1
12 )

, and γ1j = r∗j D−1
1j rj−N−1E(tr (D−1

1j Tn)).

As in the previous section, both β1j and b1n are bounded in absolute value by |z|/vn and
γ1j satisfies the same bound as in (4.3). Moreover, if we let X(1) denote X without its first
column, then one can easily derive

1
N−1 tr ( 1

N−1X∗
(1)TnX(1) − ( N

N−1z)I)−1 = 1
N tr ( 1

N X∗
(1)TnX(1) − zI)−1 = − 1

z(N−1)

N∑
j=2

β1j ,

and conclude that supx∈[a,b] |Eβ1j | and consequently supx∈[a,b] |b1n| are bounded.
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It is also clear that the bounds in (4.4), (5.4), and (5.5) hold when two columns of X

are removed. Moreover, with Fn12 denoting the e.d.f of
∑

j 6=1,2 rjr
∗
j we get

sup
x∈[a,b]

E(trD−1
12 D

−1

12 )4 ≤ E(nε−2 + v−2
n nFn12([a′, b′]))4

≤ KN4(ε−8 + v−8
n E(Fn12([a′, b′]))2) ≤ KN4

and
sup

x∈[a,b]

E(trD−2
12 D

−2

12 )2 ≤ E(nε−4 + v−4
n nFn12([a′, b′]))2 ≤ KN2.

With these facts and (3.3) and (5.6) we have

left side of (5.8) = sup
x∈[a,b]

N−2
N∑

j=2

E|(Ej − Ej−1)tr (EmnTn + I)−1TnD−1
1 |2

≤ 2N−2 sup
x∈[a,b]

N∑
j=2

E|β1jr
∗
j D−1

1j (EmnTn + I)−1TnD−1
1j rj |2

= 2N−1 sup
x∈[a,b]

E|(b1n − β12b1nγ12)r∗2D−1
12 (EmnTn + I)−1TnD−1

12 r2|2

≤ KN−1( sup
x∈[a,b]

E|r∗2D−1
12 (EmnTn + I)−1TnD−1

12 r2|2

+v−2
n (E|γ12|4E|r∗2D−1

12 (EmnTn + I)−1TnD−1
12 r2|4)1/2)

≤ KN−3 sup
x∈[a,b]

(E(trD−2
12 D

−2

12 )

+E(trD−1
12 D

−1

12 )2 + v−2
n N−1v−2

n (Etr (D−2
12 D

−2

12 )2 + E(trD−1
12 D

−1

12 )4)1/2)

≤ KN−3(N2 + Nv−4
n ) ≤ KN−1.

Thus we get (5.8)
Notice we get the same result if (EmnTn + I)−1 is removed from all the expressions,

that is, we have just shown

sup
x∈[a,b]

E|γ1 − γ̂1|2 ≤ KN−1.

Moreover, from (3.2) and (5.4), when p = 2

sup
x∈[a,b]

E|γ̂1|2 ≤ sup
x∈[a,b]

KN−2EtrD−1
1 D

−1

1 ≤ KN−1.

24



Therefore
sup

x∈[a,b]

E|γ1|2 ≤ KN−1. (5.9)

From (4.3), (5.2), (5.3), (5.7)–(5.9) we get

sup
x∈[a,b]

∣∣∣∣cn

∫
dHn(t)

1 + tEmn

+ zcnE(mn(z))
∣∣∣∣

≤ KN−1 + sup
x∈[a,b]

∣∣∣∣Eβ1

[
r∗1D−1

1 (EmnTn + I)−1r1 − 1
N

Etr (EmnTn + I)−1TnD−1
1

]∣∣∣∣

= KN−1+ sup
x∈[a,b]

|bn|2
∣∣∣∣E(γ1−β1γ

2
1)

[
r∗1D−1

1 (EmnTn+I)−1r1− 1
N

Etr (EmnTn+I)−1TnD−1
1

]∣∣∣∣

≤ K(N−1 + sup
x∈[a,b]

(E|γ1|2 + v−2
n E|γ1|4)1/2N−1/2)

≤ K(N−1 + (N−1 + v−2
n N−2v−4

n )1/2N−1/2) ≤ KN−1.

As in Section 3 we let

wn = −1
z

∫
dHn(t)

1 + tEmn(z)
− E(mn(z))

and

ωn = −z − 1
Emn

+ cn

∫
tdHn(t)

1 + tEmn

.

Then
sup

x∈[a,b]

|wn| ≤ KN−1,

ωn = wnzcn/Emn, and equation (3.20) together with the steps leading to (3.21) hold with
mn replaced with its expected value. From (3.10) it is clear that m0

n must be uniformly
bounded away from 0 for all x ∈ [a, b] and all n. From (3.24) we see that Emn must also
satisfy this same property. Therefore

sup
x∈[a,b]

|ωn| ≤ KN−1.

Using (3.11), (3.12), (3.14), and (3.15) it follows that supx∈[a,b] |m0
n| is bounded in n

and

sup
x∈[a,b]

m0
2cn

∫ t2 dHn(t)
|1+tm0

n
|2

vn + m0
2cn

∫ t2 dHn(t)
|1+tm0

n|2
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is bounded away from 1 for all n. Therefore, we get for all n sufficiently large

sup
x∈[a,b]

|Emn −m0
n| ≤ Kcnzm0

nwn ≤ KN−1,

which is (5.1).

6. Completing the proof
From the last two sections we get

sup
x∈[a,b]

|mn(z)−m0
n(z)| = o(1/Nvn) a.s. (6.1)

when vn = N−1/68. It is clear from the arguments used in Sections 3–5 that (6.1) is true
when the imaginary part of z is replaced by a constant multiple of vn. In fact we have

max
k∈{1,2... ,34}

sup
x∈[a,b]

|mn(x + i
√

kvn)−m0
n(x + i

√
kvn)| = o(1/Nvn) = o(v67

n ) a.s.

We take the imaginary part and get

max
k∈{1,2... ,34}

sup
x∈[a,b]

∣∣∣∣
∫

d(FBn(λ)− F cn,Hn(λ))
(x− λ)2 + kv2

n

∣∣∣∣ = o(v66
n ) a.s.

Upon taking differences we find

max
k1 6=k2

sup
x∈[a,b]

∣∣∣∣
∫

v2
n d(FBn(λ)− F cn,Hn(λ))

((x− λ)2 + k1v2
n)((x− λ)2 + k2v2

n)

∣∣∣∣ = o(v66
n ) a.s.

max
k1,k2,k3
distinct

sup
x∈[a,b]

∣∣∣∣
∫

(v2
n)2 d(FBn(λ)− F cn,Hn(λ))

((x− λ)2 + k1v2
n)((x− λ)2 + k2v2

n)((x− λ)2 + k3v2
n)

∣∣∣∣ = o(v66
n ) a.s.

...

sup
x∈[a,b]

∣∣∣∣
∫

(v2
n)33 d(FBn(λ)− F cn,Hn(λ))

((x− λ)2 + v2
n)((x− λ)2 + 2v2

n) · · · ((x− λ)2 + 34v2
n)

∣∣∣∣ = o(v66
n ) a.s.

Thus

sup
x∈[a,b]

∣∣∣∣
∫

d(FBn(λ)− F cn,Hn(λ))
((x− λ)2 + v2

n)((x− λ)2 + 2v2
n) · · · ((x− λ)2 + 34v2

n)

∣∣∣∣ = o(1) a.s.
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We split up the integral and get

sup
x∈[a,b]

∣∣∣∣
∫

I[a′,b′]c d(FBn(λ)− F cn,Hn(λ))
((x− λ)2 + v2

n)((x− λ)2 + 2v2
n) · · · ((x− λ)2 + 34v2

n)

+
∑

λj∈[a′,b′]

v68
n

((x− λj)2 + v2
n)((x− λj)2 + 2v2

n) · · · ((x− λj)2 + 34v2
n)

∣∣∣∣ = o(1) a.s. (6.2)

Now if, for each term in a subsequence satisfying (6.2), there is at least one eigenvalue
contained in [a, b], then the sum in (6.2), with x evaluated at these eigenvalues, will be
uniformly bounded away from 0. Thus, at these same x values, the integral in (6.2) must
also stay uniformly bounded away from 0. But the integral converges to zero a.s. since the
integrand is bounded and with probability one, both FBn and F cn,Hn converge weakly to
the same limit having no mass on {a′, b′}. Thus, with probability one, no eigenvalues of
Bn will appear in [a, b] for all n sufficiently large. This completes the proof of Theorem
1.1.

APPENDIX

We give here a proof Lemma 2.7. We first prove
Lemma A.1 For X = (X1, . . . , Xn)T i.i.d. standardized (complex) entries, B n × n Her-
mitian non-negative definite matrix we have for any p ≥ 1

E|X∗BX|p ≤ Kp

(
(trB)p + E|X1|2ptrBp

)
. (A.1)

Proof. Notice the result is trivially true for p = 1. For p > 1 we have

E|X∗BX|p ≤ Kp

(
E

∣∣∣∣
n∑

i=1

|Xi|2Bi i

∣∣∣∣
p

+ E

∣∣∣∣
n∑

i=2

Xi

∑
j<i

XjBi j

∣∣∣∣
p

+ E

∣∣∣∣
n∑

j=2

Xj

∑
i<j

XiBi j

∣∣∣∣
p)

= Kp

(
E

∣∣∣∣
n∑

i=1

|Xi|2Bi i

∣∣∣∣
p

+ 2E

∣∣∣∣
n∑

i=2

Xi

∑
j<i

XjBi j

∣∣∣∣
p)

. (A.2)

Using Lemmas 2.3 and 2.9

E

∣∣∣∣
n∑

i=1

|Xi|2Bi i

∣∣∣∣
p

≤ Kp

(
(trB)p +

n∑
i=1

E|X1|2p(Bi i)p

)

≤ Kp

(
(trB)p + E|X1|2ptrBp

)
.
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For 1 < p ≤ 2 we have using Lemma 2.2

E

∣∣∣∣
n∑

i=2

Xi

∑
j<i

XjBi j

∣∣∣∣
p

≤ KpE

( n∑
i=2

∣∣∣∣Xi

∑
j<i

XjBi j

∣∣∣∣
2)p/2

≤ Kp

( n∑
i=2

E

∣∣∣∣Xi

∑
j<i

XjBi j

∣∣∣∣
2)p/2

= Kp

(∑
j<i

|Bi j |2
)p/2

≤ Kp(trB2)p/2 ≤ Kp(trB)p.

Therefore (A.1) is true for p ∈ [1, 2]. We proceed by induction on k, where p ∈ [2k, 2k+1].
Assume (A.1) is true for p ∈ [2k−1, 2k], and suppose p ∈ [2k, 2k+1]. Since the first term in
(A.2) is bounded by the right side of (A.1), we need only consider the second term. Let
Fi = σ(X1, . . . , Xi). We have by Lemma 2.1

E

∣∣∣∣
n∑

i=2

Xi

∑
j<i

XjBi j

∣∣∣∣
p

≤ Kp

(
E

( n∑
i=2

∣∣∣∣
∑
j<i

XjBi j

∣∣∣∣
2)p/2

+ E|X1|p
n∑

i=2

E

∣∣∣∣
∑
j<i

XjBi j

∣∣∣∣
p)

.

Using Lemma 2.4 (with q = 2) we have

E

( n∑
i=2

∣∣∣∣
∑
j<i

XjBi j

∣∣∣∣
2)p/2

= E

( n∑
i=2

∣∣∣∣E
( n∑

j=1

XjBi j

∣∣∣∣Fi−1

)∣∣∣∣
2)p/2

≤ KpE

( n∑
i=2

∣∣∣∣
n∑

j=1

XjBi j

∣∣∣∣
2)p/2

≤ KpE

(
X∗B2X

)p/2

≤ (by the inductive hyp.) Kp

(
(trB2)p/2 + E|X1|2(p/2)trB2(p/2)

)

≤ Kp

(
(trB)p + E|X1|2ptrBp

)

(using 1 ≤ E|X1|s ≤ (E|X1|2s)1/2 ≤ E|X1|2s for s ≥ 2).
Using Lemma 2.1 we have

E|X1|p
n∑

i=2

E

∣∣∣∣
∑
j<i

XjBi j

∣∣∣∣
p

≤ KpE|X1|p
n∑

i=2

((∑
j<i

|Bi j |2
)p/2

+ E|X1|p
∑
j<i

|Bi j |p
)

≤ KpE|X1|p(1 + E|X1|p)
n∑

i=2

(∑
j<i

|Bi j |2
)p/2

≤ KpE|X1|p(1 + E|X1|p)
n∑

i=1

((B2)i i)p/2

≤ (by Lemma 2.9) ≤ KpE|X1|p(1 + E|X1|p)trBp ≤ KpE|X1|2ptrBp.

Therefore (A.1) is true for p ∈ [2k, 2k+1] and the proof of the lemma is complete.
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We can now prove Lemma 2.7 We have

E|X∗CX − trC|p

≤ Kp

(
E

∣∣∣∣
n∑

i=1

(|Xi|2 − 1
)
Ci i

∣∣∣∣
p

+ E

∣∣∣∣
n∑

i=2

Xi

∑
j<i

XjCi j

∣∣∣∣
p

+ E

∣∣∣∣
n∑

j=2

Xj

∑
i<j

XiCi j

∣∣∣∣
p)

.

Using Lemma 2.1

E

∣∣∣∣
n∑

i=1

(|Xi|2 − 1
)
Ci i

∣∣∣∣
p

≤ Kp

(( n∑
i=1

E
(|Xi|2 − 1

)2 |Ci i|2
)p/2

+
n∑

i=1

E
∣∣|X1|2 − 1

∣∣p |Ci i|p
)

≤ Kp

((
E|X1|4trCC∗

)p/2

+ E|X1|2p
n∑

i=1

|Ci i|p
)

.

(using
(
E

∣∣|X1|2 − 1
∣∣p)1/p ≤ (

E|X1|2p
)1/p +1 ≤ 2

(
E|X1|2p

)1/p). From Lemma 2.9 we have

n∑
i=1

|Ci i|p ≤
n∑

i=1

(CC∗)p/2
i i ≤

n∑
i=1

λi(CC∗)p/2.

Therefore

E

∣∣∣∣
n∑

i=1

(|Xi|2 − 1
)
Ci i

∣∣∣∣
p

≤ Kp

((
E|X1|4trCC∗

)p/2

+ E|X1|2ptr (CC∗)p/2

)
.

Using Lemma 2.1

E

∣∣∣∣
n∑

i=2

Xi

∑
j<i

XjCi j

∣∣∣∣
p

≤ Kp

(
E

( n∑
i=2

∣∣∣∣
∑
j<i

XjCi j

∣∣∣∣
2)p/2

+ E|X1|p
n∑

i=2

E

∣∣∣∣
∑
j<i

XjCi j

∣∣∣∣
p)

.

Using Lemma 2.4 (with q = 2),

E

( n∑
i=2

∣∣∣∣
∑
j<i

XjCi j

∣∣∣∣
2)p/2

= E

( n∑
i=2

∣∣∣∣E
( n∑

j=1

XjCi j

∣∣∣∣Fi−1

)∣∣∣∣
2)p/2

≤ KpE

( n∑
i=2

∣∣∣∣
n∑

j=1

XjCi j

∣∣∣∣
2)p/2

≤ KpE(X∗C∗CX)p/2

≤ (by lemma A.1) Kp

(
(trC∗C)p/2 + E|X1|2ptr (C∗C)p/2

)

= Kp

(
(trCC∗)p/2 + E|X1|2ptr (CC∗)p/2

)
.
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Using Lemma 2.1 we have

E|X1|p
n∑

i=2

E

∣∣∣∣
∑
j<i

XjCi j

∣∣∣∣
p

≤ KpE|X1|p
n∑

i=2

((∑
j<i

|Ci j |2
)p/2

+ E|X1|p
∑
j<i

|Ci j |p
)

≤ KpE|X1|p(1 + E|X1|p)
n∑

i=2

(∑
j<i

|Ci j |2
)p/2

≤ KpE|X1|p(1 + E|X1|p)
n∑

i=1

((CC∗)i i)p/2

≤ (by Lemma 2.9) KpE|X1|p(1 + E|X1|p)tr (CC∗)p/2 ≤ KpE|X1|2ptr (CC∗)p/2.

Therefore, E

∣∣∣∣
n∑

i=2

Xi

∑
j<i

XjCi j

∣∣∣∣
p

is bounded by the right side of inequality in Lemma 2.7.

Similarly, E

∣∣∣∣
n∑

j=2

Xj

∑
i<j

XiCi j

∣∣∣∣
p

is also bounded by the right side of the inequality, and the

proof of the lemma is complete.
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