
The AnnaLs of Probability
198{-r,  Vol. 13, No. 4, 1364-1368

THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL
WISHART MATRIX

By Jacx W. SllvERSTErNl

Weizmann Institutu of Science

-",l":ff;:::: Ti:TI i6, li,#i#Y;ll#: Hffi5': il, I ;;
n/s -' y € (0, 1) as s --+ oo. Then it is shown that the srfiallest eigenvalue of
M" converges almost surely to (1 - ,5), * s --+ co.

For each s : 1,2... let n: r?(s) be a posit ive integer such that n/s --+ y > 0
as s --+ cc. Let V" be an n X s matrix whose entries are i.i.d. N(0, 1) random
variables and let M": (I/s)V"V:.The random matrix V,V: is commonly re-
ferred to as the Wishart matrix W(1,, s).

It is well known [Mar0enko and Pastur (1967), Wachter (1978)] that the
empirical distribution function 4 of the eigenvalues of M, t.F"(r) = (I/n) x
(number of eigenvalues of M " < *)l converges almost r.rr"ly ur r -+ oo to a
nonrandom probability distribution function { having a density with positive
support on [(1 - tF)',(l + ,F>t], and when yi r, { yields additional mass on
{0}. It is also known fGeman (1980)] that the maximum eigenvalue I(** of M"
converges a.s. to (1 + ,F)'as s -+ oo. [The statement of thi. r"rult in Geman
(1980) has all the M, constructed from one doubly infinite array of i.i.d. random
variables. However, it is obvious from the proof that no relation on the entries of
V" for different s is needed.] These results are established under assumptions
more general on the entries of % than Gaussian distributed, involving conditions
on the moments of these random variables.

The present paper will prove the following

THnoRnvr. For y < I the smnllest eigerusalue Nfl," of M, conxerges a.s. to
( 1  -  

\ 6 ) '  o s s + o o .

The proof relies on GerSgorin's theorem [Ger3gorin (1931)] which states: Each
eigenvalue of an n X n complex matrix A : (or) lies in at least one of the disks

l z - a ; i l < L l o , ) ,
i+ j

j :  I , 2 , . - - , f t ,

in the complex plane.
Ger3gorin's theorem will be apptied to a tridiagonal matrix orthogonally

similar to M ". This result is rglevant to areas in multivariate statistics, foi
example regression or tests using the central multivariate F matrix, where the
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boundedness of the largest eigenvalue of M"', namely IA*"(s)]-t, is needed. The
truth of the theorem for non-Wishart matrices would also be important. How-
ever, as will be seen, the proof relies strongly on the variables being normal, so a
different method appears to be necessa-ry for more general sample covariance
matrices.

Pnoor oF THE TupoRnu. Since F, has positive support to the right of
(1 - t$l'we immediately have

l imsupN*" < (r - ,F)' a.s.

Assume s is sufficiently t;;" so that n < s.Let Ol be s X s orthogonal, its
first column being the normalization of the first row of V", the remaining columns
independent of the rest of V". The columns of O"1 can be constructed, for example,
by performing the Gram-Schmidt orthonormalization process to the first row of
V", together with s - 1 linearly independent nonrandom s-dimensional vectors.
We have that V,t : V"O: is such that its first row is (X",0,0,...,0), where Xj is

X2(s), X" ) 0, and the remaining rows are again made up of i.i.d. N(0, 1) random
variables. (It will also follow that X" i. independent of the remaining elements of
V"t but this fact will not be needed.)

Let O) be n x n orthogonal of the form

a l L

" n - l

where O)-, is orthogonal, its first row being the normalization of {(%tLrf:z (as
a vector in R'-t), the rest independent of V"1. Then V"' = OlV"t is of the form

W n - l ,  s -  I

where Y3-, ir x'( n - L), Yn- r 2
i.i.d. N(0, 1) random variables.

We then multiply %' on the
form

0 and Wn-1,s-1 is  (n -  1)  X (s  -  1) ,  made up of

right by an s X s orthogonal matnx O-" of theo

| : 0

X " 0
Yr_ t

0

:
0

I t  o  o  o \

1 3 I
I ' o3-' I'
\ o  I

of O"2-, is the normalization of the first row of

9

s

where the first column W n - \ ,  s  -  l r
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and then multiply V!O! on the left by an
and so on. In the end we will have the
O, and Q such that

appropriate n x n orthogonal matrix,
existence of two orthogonal matrices

OnV9":

x " 0 0 0
Yn_t  X"_,  o  0

0 Yn_z xr_ �z  0

0 0 : :

0 0 0 0 Y . Y O-  I  ' ^ s - ( n - l ;

> 0. The fact that these ran

tl
o l '

6J
domwhere X! is X'Q), Xi ) 0, and \2 ir x'( j), Yj

variables are independent will not be needed.
It follows that M" ir orbhogonally similar to a tridiagonal matrix, the first and

last rows being, respectively,

( t /  t ) (  x" '  ,  x,Yn- 1,  o,  .  .  .  ,  o)  ,

( t / t ) (0,0,  .  .  . ,  o,  x"_,*rYr,Yf + x:- , ' ,*r) ,

while the three nonzero elements in the 7 * lst row ( j : I,2,...,n - 2) are

( t / t ) (x"  - i * ty , - j ,yn ' - j  +  x ! - i ,  x " - jyn- r - , ) .

By Ger3gorin's theorem we have that

N*" > minlft l t)(x"' - x"yn-r),(t/r)(v, '  + x:-n*L x"-,*ryr),
(2)

i Tii, 0/il(vI-i + x?-i

We have x2(I)/m + ".".0 and xzQD/tn
(0, 1) as s -+ oo we have

(t/tXx"?.- X,Y,-r) - u.".1 - 6,
( t / txyr '  + X:-n*L X"-n*rYr) *u. , .1 - . /  as s --+ co.

Notice I - y > 1- , ly , (1 - ,Fl ' .
Applying Markov's inequality to P(exp( tX'(m) - tm) > exp(/se)) and

P(exp( -ty'(*) + tnl) > exp(tse)) for sufficiently small f > 0, it is straightfor-
ward to show for any e > 0 the existence of an o € (0, 1) depending only on s
such that

P ( t (  x ' ( m ) / ' )  - ( * / t ) l  '  ' )  <  2 a "

for all s > 0 and all positive integers nt, < s.
Therefore we can apply Boole's inequality on 2n - 2 (< constant' s) events

to conclude that for any e > 0

t( "-,,Tf,_1-="1( x!,/r) - */rl > e o' #3I ,l(v|/') 
- */rl ' ')

- ( x "  - i+ rYn- i *  X"  - iY , - i - , ) ) . | .

- ".".1 as m-+ cc. Since !ftt-- , =
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is summable. Therefore

|  , /  - . e  ,  \  . / - - e  .  \  .  . lmax 
["-, ,y32-="1( 

xI,/t) - */tl '  
#3I ,l(vL/') 

- */tl] -. ".0 as s -+

We have

1367

0 0 .

Ai =l1l')(vi-i + xI-i - (X"-r*

-  ( t"  -  i ) /s + ("  -  i ) / '  - (
1Yn-j

Gr

-r- ') )

K;-7W

Yn

E
*J

r Y
L )

x"

+

+

J

=l(v] - , t ' )  -@-i ) /s l  * l (  x !_, /s)  - f ' - i ) / ' l

Using the inequality lqb - abl < lq' - a2t/2b' - 6zf/z + lol lb' - b2ltz *
lbllq2 - azf /2 for a, b, e,0 nonnegative, together with the fact that the nonran-
dom fractions making up Ai arc bounded by 1, we conclude that

i23 ! 'A ' { -u ' " 'o  
ass+ oo '

The expression

( n  -  j ) / '  + ( s  -  i l / ' - (

achieves its smallest value when j : 1, for which we get

(n - r)/ '  +(" - r)/ '-(M=T/s +,1ft - \6
-) y+ 1 - z{y :  (r -  r5) '  as s + oo.

Therefore, from (2) we have

lim tr($" : (r - ,F)' a.s.
s + €

We note that the above proof can easily be modified to show N*^,. - (1 + ,F)'
f o r a l l y > 0 .
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( s - j + r ) / " i ( " - j ) / s

T/')

l iminf N*" > (r - ,F)' a.s.
s --r oo

which, together with (1) gives us
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