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Robust Estimates of Covariance Matrices
in the Large Dimensional Regime

Romain Couillet, Frédéric Pascal, and Jack W. Silverstein

Abstract— This paper studies the limiting behavior of a class
of robust population covariance matrix estimators, originally due
to Maronna in 1976, in the regime where both the number of
available samples and the population size grow large. Using tools
from random matrix theory, we prove that, for sample vectors
made of independent entries having some moment conditions, the
difference between the sample covariance matrix and (a scaled
version of) such robust estimator tends to zero in spectral norm,
almost surely. This result can be applied to various statistical
methods arising from random matrix theory that can be made
robust without altering their first order behavior.

Index Terms— Robust estimation, random matrix theory.

I. INTRODUCTION

MANY multi-variate signal processing detection and esti-
mation techniques are based on the empirical covari-

ance matrix of a sequence of samples x1, . . . , xn from a
random population vector x ∈ CN . Assuming E[x] = 0 and
E[xx∗] = CN , the strong law of large numbers ensures that,
for independent and identically distributed (i.i.d.) samples,

ŜN = 1

n

n∑

i=1

xi x
∗
i → CN

almost surely (a.s.), as the number n of samples increases.
Many subspace methods, such as the multiple signal classifier
(MUSIC) algorithm and its derivatives [1], [2], heavily rely on
this property by identifying CN with ŜN , leading to appropri-
ate approximations of functionals of CN in the large n regime.
However, this standard approach has two major limitations:
the inherent inadequacy to small sample sizes (when n is
not too large compared to N) and the lack of robustness
to outliers or heavy-tailed distribution of x . Although the
former issue was probably the first historically recognized, it is
only recently that significant advances have been made using
random matrix theory [3]. As for the latter, it has spurred a
strong wave of interest in the seventies, starting with the works
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from Huber [4] on robust M-estimation. The objective of this
article is to provide a first bridge between the two disciplines
by introducing new fundamental results on robust M-estimates
in the random matrix regime where both N and n grow large
at the same rate.

Aside from its obvious simplicity of analysis, the sample
covariance matrix (SCM) ŜN is an object of primal interest
since it is the maximum likelihood estimator of CN for x
Gaussian. When x is not Gaussian, the SCM as an approxima-
tion of CN may however perform very poorly. This problem
was identified in multiple areas such as multivariate signal
processing or financial asset management, but was particularly
recognized in adaptive radar and sonar processing where the
signals under study are characterized by impulsive noise and
outlying data. Robust estimation theory aims at tackling this
problem [5]. Among other solutions, the so-called robust
M-estimators of the population covariance matrix, originally
introduced by Huber [4] and investigated in the seminal work
of Maronna [6], have imposed themselves as an appealing
alternative to the SCM. This estimator, which we denote ĈN ,
is defined implicitly as a solution of1

ĈN = 1

n

n∑

i=1

u

(
1

N
x∗

i Ĉ−1
N xi

)
xi x

∗
i (1)

for u a nonnegative function with specific properties. These
estimators are particularly appropriate as they are the max-
imum likelihood estimates of CN for specific distributions
of x and some specific choices of u, such as the family of
elliptical distributions [7]. For any such u, ĈN is, up to a
scalar, a consistent estimate for CN for N fixed and n → ∞,
see [8]. The robust estimators are also used to cope with
distributions of x with heavy tails or showing a tendency to
produce outliers, such as when ‖x‖2 has a K-distribution often
met in the context of adaptive radar processing with impulsive
clutter [9]. In this article, the concept of robustness is to be
understood along this general theory.

A second angle of improvement of subspace methods has
recently emerged due to advances in random matrix theory.
The latter aims at studying the statistical properties of matrices
in the regime where both N and n grow large. It is known in
particular that, if x = AN y with y ∈ CM , M ≥ N , a vector
of independent entries with zero mean and unit variance,
then, under some conditions on CN = AN A∗

N and y, in

1Our expression differs from the standard convention where x∗
i Ĉ−1

N xi is
traditionally not scaled by 1/N . The current form is however more convenient
for analysis in the large N, n regime.
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the large N, n (and M) regime, the eigenvalue distribution of
(almost every) ŜN converges weakly to a limiting distribution
described implicitly by its Stieltjes transform [10]. When
CN is the identity matrix for all N , this distribution takes
an explicit form known as the Marčenko-Pastur law [11].
Under some additional moment conditions on the entries of y,
it has also been shown that the eigenvalues of ŜN cannot
lie infinitely often away from the support of the limiting
distribution [12]. In the past ten years, these two results and
subsequent works have been applied to revisit classical signal
processing techniques such as signal detection schemes [13]
or subspace methods [14], [15]. In these works, traditional
n-consistent detection and estimation methods were improved
into (N, n)-consistent approaches, i.e. they provide estimates
that are consistent in the large N, n regime rather than in the
fixed N and large n regime. These improved estimators are
often referred to as G-estimators.

In this article, we study the asymptotic first order properties
of the robust M-estimate ĈN of CN , given by (1), in the
regime where N , n (and M) grow large simultaneously,
hereafter referred to as the random matrix regime. Although
the study of the SCM ŜN for vectors x with rather general
distributions is accessible to random matrix theory, as in
e.g. the case of elliptical distributions [16], the equivalent
analysis for ĈN is often very challenging. In the present article,
we restrict ourselves to vectors x of the type x = AN y
with y having independent zero-mean entries. One important
technical challenge brought by the matrix ĈN , usually not
met in random matrix theory, lies in the dependence structure
between the vectors {u( 1

N x∗
i Ĉ−1

N xi )
1
2 xi }n

i=1 (as opposed to the
independent vectors {xi }n

i=1 for the matrix ŜN ). We funda-
mentally rely on the set of assumptions on the function u
taken by Maronna in [6] to overcome this difficulty. Our
main contribution consists in showing that, in the large N, n
regime, and under some mild assumptions, ‖ĈN − α ŜN ‖ → 0,
a.s., for some constant α > 0 dependent only on u. This
result is in particular in line with the conjecture made
in [17] according to which ‖ĈN −α ŜN ‖ a.s.−→ 0 for the function
u(s) = 1/s studied extensively by Tyler [18], [19]; how-
ever, the function u(s) = 1/s does not enter our present
scheme as it creates additional difficulties which leave the
conjecture open.

A major practical consequence of our result is that the
matrix ŜN , at the core of many random matrix-based esti-
mators, can be straightforwardly replaced by ĈN without
altering the first order properties of these estimators. We
generically call the induced estimators robust G-estimators.
As an application example, we shall briefly introduce an
application to robust direction-of-arrival estimation accounting
for large N, n based on the earlier estimator [20].

The remainder of the article is structured as follows.
Section II provides our theoretical results along with an
application to direction-of-arrival estimation. Section III then
concludes the article. All technical proofs are detailed in the
appendices.

Notations: The arrow ‘
a.s.−→’ denotes almost sure conver-

gence. For A ∈ CN×N Hermitian, λ1(A) ≤ . . . ≤ λN (A) are
its ordered eigenvalues. The norm ‖ · ‖ is the spectral norm

for matrices and the Euclidean norm for vectors. For A, B
Hermitian, A 	 B means that A − B is nonnegative definite.
The notation A∗ denotes the Hermitian transpose of A. We also
write ı = √−1.

II. MAIN RESULTS

A. Theoretical Results

Let X = [x1, . . . , xn] ∈ CN×n , where xi = AN yi ∈ CN ,
with yi = [yi1, . . . , yi M ]T ∈ CM having independent
entries with zero mean and unit variance, AN ∈ CN×M ,
and CN � AN A∗

N ∈ C
N×N be a positive definite matrix. We

denote cN � N/n, c̄N � M/N , and define the sample
covariance matrix ŜN of the sequence x1, . . . , xn by

ŜN � 1

n
X X∗ = 1

n

n∑

i=1

xi x
∗
i .

Let u : R+ → R+ (R+ = [0,∞)) be a function fulfilling
the following conditions:

(i) u is nonnegative, nonincreasing, and continuous on R
+;

(ii) the function φ : R+ → R+, s �→ su(s) is nondecreasing
and bounded, with supx φ(x) = φ∞ > 1. Moreover, φ is
increasing in the interval where φ(s) < φ∞.

Classical M-estimators ĈN defined by (1) for such func-
tion u include the Huber estimator, with φ(s) = φ∞

φ∞−1 s for
s ∈ [0, φ∞ − 1], φ∞ > 1, and φ(s) = φ∞ for s ≥ φ∞ − 1.
Since u(s) is constant for s ≤ φ∞ − 1 and decreases for
s ≥ φ∞−1, this estimator weights the majority of the samples
x1, . . . , xn by a common factor and reduces the impact of the
outliers. The widely used function u(s) = (1 + t)(t + x)−1 for
some t > 0 shows similar properties, here with φ∞ = 1 + t .2

Other classical u functions, adapted to specific distributions of
the samples, can be found in the survey [8]. In any of these
scenarios, robustness can be controlled by properly setting φ∞.

To pursue, we need the following statistical assumptions on
the large dimensional random matrices under study.

A1. The random variables yi j , i ≤ n, j ≤ M , are
independent either real or circularly symmetric complex (i.e.
E[y2

i j ] = 0) with E[yi j ] = 0 and E[|yi j |2] = 1. Also, there
exists η > 0 and α > 0, such that, for all i, j , E[|yi j |8+η] < α.

A2. c̄N ≥ 1 and, as n → ∞,

0 < lim inf
n

cN ≤ lim sup
n

cN < 1, lim sup
n

c̄n < ∞.

A3. There exists C−,C+ > 0 such that

C− < lim inf
N

{λ1(CN )} ≤ lim sup
N

{λN (CN )} < C+.

Note that the assumptions neither request the entries of y to
be identically distributed nor impose the existence of a con-
tinuous density. This assumption is adequate for a large range
of application scenarios such as factor models in finance or
general signal processing models with independent entry-wise
non-Gaussian noise (e.g. distributed antenna array processing),
although the requirement of independence in the entries of y is

2Note that this function intervenes in the maximum-likelihood estimator of
the scatter matrix of Student-t distributed random vectors [8]. Here we do not
make any such maximum-likelihood consideration for the selection of u.
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somewhat uncommon in the classical applications of robust
estimation theory. The entry-wise independence is however
central in this article for the emergence of a concentration
of the quadratic forms 1

N x∗
i Ĉ−1

N xi , i = 1, . . . , n. Further
generalizations, e.g. to elliptical distributions for x , would
break this effect and would certainly entail a much different
asymptotic behavior of ĈN . These important considerations
are left to future work.

Technically, A1–A3 mainly ensure that the eigenvalues of
ŜN and ĈN lie within a compact set away from zero, a.s.,
for all N, n large, which is a consequence (although non
immediate) of [12] and [15]. Note also that A2 demands
lim inf N cN > 0, so that the following results do not contain
the results from [6] and [19], in which N is fixed and n → ∞,
as special cases. With these assumptions, we are now in
position to provide the main technical result of this article.

Theorem 1: Assume A1–A3 and consider the following
matrix-valued fixed-point equation in Z ∈ CN×N ,

Z = 1

n

n∑

i=1

u

(
1

N
x∗

i Z−1xi

)
xi x

∗
i . (2)

Then, we have the following results.

(I) There exists a unique solution to (2) for all large N a.s.
We denote ĈN this solution, defined as

ĈN = lim
t→∞ Z (t)

where Z (0) = IN and, for t ∈ N,

Z (t+1) = 1

n

n∑

i=1

u

(
1

N
x∗

i (Z
(t))−1xi

)
xi x

∗
i .

(II) Defining ĈN arbitrarily when (2) does not have a unique
solution, we also have

∥∥∥φ−1(1)ĈN − ŜN

∥∥∥ a.s.−→ 0.
Proof: The proof is provided in Appendix A.

An immediate corollary of Theorem 1 is the asymptotic
closeness of the ordered eigenvalues of φ−1(1)ĈN and ŜN .

Corollary 1: Under the assumptions of Theorem 1,

max
i≤N

∣∣∣φ−1(1)λi (ĈN )− λi (ŜN )
∣∣∣ a.s.−→ 0.

Proof: The proof is provided in Appendix A.
Some comments are called for to understand Theorem 1 in

the context of robust M-estimation.
Theorem 1–(I) can be first compared to the result from

Maronna [6, Th. 1] which states that a solution to (2)
exists for each set {x1, . . . , xn} under certain conditions on
the dimension of the space spanned by the n vectors, as
well as on u(s), N , and n (in particular u(s) must satisfy
φ∞ > n/(n − N) in [6]). Our result may be considered
more interesting in practice in the sense that the system sizes
N and n no longer condition φ∞ and therefore do not constrain
the definition of u(s). Theorem 1–(I) can also be compared
to the results on uniqueness [6], [19] which hold for all
N, n under some further conditions on u(s), such as φ(s) is
strictly increasing [6]. The latter assumption is particularly
demanding as it may reject some M-estimators such as the

Huber M-estimator for which φ(s) is constant for large s.
Theorem 1–(I) trades these assumptions against a requirement
for N and n to be “sufficiently large” and for {x1, . . . , xn} to
belong to a probability one sequence. Precisely, we demand
that there exists an integer n0 depending on the random
sequence {(x1, . . . , xn)}∞n=1, such that for all n ≥ n0, existence
and uniqueness are established under no further condition than
the definition (i)–(ii) of u(s) and A1–A3.

Theorem 1–(II), which is our main result, states that, as
N and n grow large with a non trivial limiting ratio, the fixed-
point solution ĈN (either always defined under the assump-
tions of [6] and [19] or defined a.s. for large enough N) is
getting asymptotically close to the sample covariance matrix,
up to a scaling factor. This implies in particular that, while ĈN

is an n-consistent estimator of (a scaled version of) CN for
n → ∞ and N fixed, in the large N, n regime it has many of
the same first order statistics as ŜN . This suggests that many
results holding for ŜN in the large N, n regime should also
hold for ĈN , at least concerning first order convergence. For
instance, as will be seen through Corollary 2, one expects
consistent estimators (in the large N, n regime) based on
functionals of ŜN to remain consistent when using φ−1(1)ĈN

in place of ŜN in the expression of the estimator. However,
it is important to note that, in general, one cannot say much
on second order statistics, i.e. regarding the comparison of the
asymptotic performance of both estimators. The matrices ĈN ,
parametrizable through u, should then be seen as a class of
alternatives for ŜN which may possibly improve estimators
based on ŜN in the large (but finite) N, n regime. Note also
that Theorem 1 is independent of the choice of the distribution
of the entries of y (as long as the moment conditions are
satisfied) or of the choice of the function u, which is in this
sense similar to the equivalent result in the classical fixed-N
large-n regime [8].

In a similar context, it is shown in [12] and [21] that the
eigenvalues of ŜN are asymptotically contained in the support
of their limiting compactly supported distribution if and only
if the entries of y have finite fourth order moment. This first
suggests that the technical assumption A1 which requires y
to have uniformly bounded 8 + η moment may be relaxed to
yi j having only finite fourth order moments for Theorem 1
to hold. This being said, since most of the aforementioned
(N, n)-consistent estimators involving ĈN or ŜN rely on a non-
degenerate behavior of these eigenvalues (see [22, Chs. 16–17]
for details), the finite fourth order moment condition cannot
possibly be further relaxed for these estimators to be usable.
As a consequence, although A1 might seem very restrictive
in a robust estimation framework as it discards the possibility
to consider distributions of x with heavy tail behavior, it is
a close to necessary condition for robust estimation in the
random matrix regime to be meaningful.

In terms of applications to signal processing, recall first that
the n-consistency results on robust estimation [6], [19] imply
that many metrics based on functionals of CN can be consis-
tently estimated by replacing CN by ĈN . The inconsistency
of the sample covariance matrix to the population covariance
in the random matrix regime, along with Theorem 1, suggest
instead that this approach will lead in general to inconsistent
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estimators in the large N, n regime, and therefore to inaccurate
estimates for moderate values of N, n,M . However, any met-
ric based on CN , and for which an (N, n)-consistent estimator
involving ŜN exists, is very likely to be (N, n)-consistently
estimated by replacing ŜN by φ−1(1)ĈN . The interest of this
replacement obviously lies in the possibility to improve the
metric through an appropriate choice of u, in particular when
y exhibits outlier behavior or has heavy tails.

B. Application Example

A specific example can be found in the context of MUSIC-
like estimation methods for array processing. In this example,
K signal sources imping on a collection of N collocated
sensors with angles of arrival θ1, . . . , θK . The data xi ∈ CN

received at time i at the array is modeled as

xi =
K∑

k=1

√
pks(θk)zk,i + σwi

where s(θ) ∈ CN is the deterministic unit norm steering vector
for signals impinging the sensors at angle θ , zk,t ∈ C is the
signal source modeled as a zero mean, unit variance, and
finite 8 + η order moment random variable, i.i.d. across t
and independent across k, pk > 0 is the transmit power of
source k (pk < pmax for some pmax > 0) and σwi ∈ CN is
the received noise at time t , independent across t , with i.i.d.
zero mean, variance σ 2 > 0, and finite 8 + η order moment
entries. Write xi = AN yi , with AN � [S(�)P 1

2 , σ IN ],
S(�) = [s(θ1), . . . , s(θK )], P = diag(p1, . . . , pK ), and
yi = (z1,t , . . . , zK ,t , w

T
i )

T ∈ C
N+K . Then, with N, n large

and K finite, Assumptions A1–A3 are met and Theorem 1 can
be applied. This yields the following corollary of Theorem 1.

Corollary 2 (Robust G-MUSIC): Denote EW ∈ CN×(N−K )

a matrix containing in columns the eigenvectors of CN with
eigenvalue σ 2 and êk the eigenvector of ĈN with eigenvalue
λ̂k � λk(ĈN ) (recall that λ̂1 ≤ . . . ≤ λ̂N ), with ĈN defined
as in Theorem 1. Then, as N, n → ∞ in the regime of
Assumption A2, and K fixed,

γ (θ)− γ̂ (θ)
a.s.−→ 0

where

γ (θ) = s(θ)∗ EW E∗
W s(θ)

γ̂ (θ) =
N∑

i=1

βi s(θ)
∗êi ê

∗
i s(θ)

and

βi =
⎧
⎨

⎩
1 +∑N

k=N−K+1

(
λ̂k

λ̂i−λ̂k
− μ̂k

λ̂i−μ̂k

)
, i ≤ N − K

−∑N−K
k=1

(
λ̂k

λ̂i−λ̂k
− μ̂k

λ̂i−μ̂k

)
, i > N − K

with μ̂1 ≤ . . . ≤ μ̂N the eigenvalues of diag(λ̂) − 1
n

√
λ̂
√

λ̂
T

,
λ̂ = (λ̂1, . . . , λ̂N )

T.
Proof: The Corollary is exactly the algorithm [14] with

ŜN replaced by ĈN . The validity of this operation is proved
in Appendix E.

The function γ (θ) is the defining metric for the MUSIC
algorithm [1], the zeros of which contain the θi , i ∈
{1, . . . , K }. Corollary 2 proves that the N, n-consistent
G-MUSIC estimator of γ (θ) proposed by Mestre in [14]
can be extended into a robust G-MUSIC method. The latter
merely consists in replacing the sample covariance matrix ŜN

as in [14] by the robust estimator ĈN . The angles θi are
then estimated as the deepest minima of γ̂ (θ). This technique
can be seen through simulations to perform better than either
MUSIC or G-MUSIC in the finite (N, n) regime in the case of
impulsive noise in the sense of A1, for an appropriate choice
of the function u. However, proving so requires the study of
the second order statistics of γ (θ), which goes beyond the
reach of the present article and is left to future work.

III. CONCLUSION

We have proved that a large family of robust estimates of
population covariance matrices is consistent with the sample
covariance matrix in the regime of both large population N
and sample n sizes, this being valid irrespective of the sample
distribution. This result opens up a new area of research for
robust estimators in the random matrix regime. The results
can be applied to improve a variety of signal processing tech-
niques relying on random matrix methods but not accounting
for noise impulsiveness yet. The exact performance gain of
such improved methods however often relies on second order
statistics which will be investigated in future work.

APPENDIX A
PROOF OF THEOREM 1 AND COROLLARY 1

Proof of Theorem 1: In order to prove the existence and
uniqueness of a solution to (2) for all large n, we use the
framework of standard interference functions from [23].

Definition 1: A function h = (h1, . . . , hn) : R
n+ → R

n+
is said to be a standard interference function if it fulfills the
following conditions:

1) Positivity: if q1, . . . , qn ≥ 0, then h j (q1, . . . , qn) > 0,
for all j .

2) Monotonicity: if q1 ≥ q ′
1, . . . , qn ≥ q ′

n , then for all j ,
h j (q1, . . . , qn) ≥ h j (q ′

1, . . . , q ′
n).

3) Scalability: for all α > 1 and for all j ,
αh j (q1, . . . , qn) ≥ h j (αq1, . . . , αqn).

Theorem 2: If an n-variate function h(q1, . . . , qn) is a
standard interference function and there exists (q1, . . . , qn)
such that for all j , q j ≥ h j (q1, . . . , qn), then the system of
equations

q j = h j (q1, . . . , qn) (3)

for j = 1, . . . , n, has at least one solution, given by
limt→∞(q(t)1 , . . . , q(t)n ), where

q(t+1)
j = h j (q

(t)
1 , . . . , q(t)n )

for t ≥ 1 and any initial values q(0)1 , . . . , q(0)n ≥ 0.
Proof: The proof is provided in Appendix D.

Remark 1: Note that our definition of a standard inter-
ference function differs from that of [23] in which the
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scalability requirement reads: for all j , αh j (q1, . . . , qn) >
h j (αq1, . . . , αqn). Changing the strict inequality to a loose
one alters the consequences for the theorem above, where
only existence is ensured. However, for our present purposes
with φ(s) possibly possessing a flat region, requesting a strict
inequality would be too demanding.

Since {x1, . . . , xn} spans CN for all large n a.s. (as a
consequence of Proposition 2 in Appendix F), we can define
for these n the functions h j , j = 1, . . . , n,

h j (q1, . . . , qn) � 1

N
x∗

j

(
1

n

n∑

i=1

u(qi )xi x
∗
i

)−1

x j . (4)

We first show that h = (h1, . . . , hn) meets the conditions
of Theorem 2 for all large n a.s. Due to A1, from standard
arguments using the Markov inequality and the Borel Cantelli
lemma, we have that mini≤n ‖xi‖ 
= 0 for all large n a.s.
(this is also a corollary of Lemma 2 below). Therefore, we
clearly have h j > 0 for all j , for all large n a.s. Also, since u
is non-increasing, taking q1, . . . , qn and q ′

1, . . . , q ′
n such that

q ′
i ≥ qi ≥ 0 for all i , u(q ′

i) ≤ u(qi ) and then

1

n

n∑

i=1

u(qi )xi x
∗
i 	 1

n

n∑

i=1

u(q ′
i )xi x

∗
i

From [24, Corollary 7.7.4], this implies
(

1

n

n∑

i=1

u(q ′
i )xi x

∗
i

)−1

	
(

1

n

n∑

i=1

u(qi )xi x
∗
i

)−1

from which h j (q ′
1, . . . , q ′

n) ≥ h j (q1, . . . , qn), proving the
monotonicity of h.

For α > 1, φ(αqi ) ≥ φ(qi ), so that u(αqi ) ≥ u(qi )
α .

Therefore

1

n

n∑

i=1

u(αqi )xi x
∗
i 	 1

α

1

n

n∑

i=1

u(qi )xi x
∗
i

From [24, Corollary 7.7.4] again, we then have

α

(
1

n

n∑

i=1

u(qi)xi x
∗
i

)−1

	
(

1

n

n∑

i=1

u(αqi )xi x
∗
i

)−1

so that αh j (q1, . . . , qn) ≥ h j (αq1, . . . , αqn). Therefore h is a
standard interference function. In order to prove that (4) admits
a solution, from Theorem 2, we now need to prove that there
exists (q1, . . . , qn) such that for all j , q j ≥ h j (q1, . . . , qn).
Note that this may not hold for all fixed N, n as discussed
in [6, p. 54]. We will prove instead that a solution exists for
all large n a.s.

To pursue, we need random matrix results and addi-
tional notations. Take c−, c+ such that 0 < c− <
lim inf N cN and lim supN cN < c+ < 1, and denote X(i) =
[x1, . . . , xi−1, xi+1, . . . , xn] ∈ C

N×(n−1) . We start with the
following fundamental lemmas, which allow for a control of
the joint convergence of the quadratic forms 1

N x∗
i Ŝ−1

N xi − 1.
Lemma 1: Assume A1–A3. There exists ε > 0 such that

min
i≤n

{
λ1

(
1

n
X(i)X

∗
(i)

)}
> ε

for all large n a.s.

Proof: The proof is provided in Appendix B.
Lemma 2: Assume A1–A3. Then, a.s.,

max
i≤n

{∣∣∣∣
1

N
x∗

i Ŝ−1
N xi − 1

∣∣∣∣
}

→ 0.

Proof: The proof is provided in Appendix C.
Let q1 = . . . = qn � q > 0. Then,

hi (q1, . . . , qn) = 1

u(q)

1

N
x∗

i Ŝ−1
N xi = q

φ(q)

1

N
x∗

i Ŝ−1
N xi .

Take ε > 0 such that (1+ε)/(φ∞−ε) < 1. This is always pos-
sible since φ∞ > 1. Choose now q such that φ(q) = φ∞ − ε,
which also exists since φ is increasing on [0, φ−1(φ∞−))
with image [0, φ∞). From Lemma 2, for all large n
a.s.,

sup
i

∣∣∣∣
1

q
hi (q1, . . . , qn)(φ∞ − ε)− 1

∣∣∣∣ < ε.

Therefore,

1

q
hi (q1, . . . , qn) <

1 + ε

φ∞ − ε
< 1

from which hi (q, . . . , q) < q for all i . From Theorem 2,
we therefore prove the existence of a solution to (3) with h j

given in (4). Since these quadratic forms define the solutions
of the fixed-point equation (2), this proves the existence of
a solution ĈN for all large n a.s. Note that Lemma 2 is
crucial here and that, for φ∞ close to one, there is little hope
to prove existence for all fixed N, n, consistently with the
results [6], [19].

We now prove uniqueness. Take a solution ĈN and denote
di = 1

N x∗
i Ĉ−1

N xi , which we order as d1 ≤ . . . ≤ dn with-
out loss of generality. Denote also D = diag({u(di)}n

i=1).
By definition

di = 1

N
x∗

i

(
1

n
X DX∗

)−1

xi .

From the non increasing property of u, we have the inequality

X DX∗ 	 u(dn)X X∗

which implies after inversion

1

u(dn)

(
X X∗)−1 	 (

X DX∗)−1

and therefore, recalling that n−1 X X∗ = ŜN ,

dn ≤ 1

u(dn)

1

N
x∗

n Ŝ−1
N xn

or equivalently, since u(dn) > 0,

φ(dn) ≤ 1

N
x∗

n Ŝ−1
N xn.

Similarly,

d1 ≥ 1

u(d1)

1

N
x∗

1 Ŝ−1
N x1

from which we also have

φ(d1) ≥ 1

N
x∗

1 Ŝ−1
N x1.
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Since φ is non-decreasing, we also have φ(d1) ≤ φ(di ) ≤
φ(dn) for i ≤ n, and we therefore obtain

1

N
x∗

1 Ŝ−1
N x1 ≤ φ(di ) ≤ 1

N
x∗

n Ŝ−1
N xn.

Take 0 < ε < min{1, (φ∞ − 1)}. From Lemma 2, for all
large n a.s.,

0 < 1 − ε < φ(di ) < 1 + ε < φ∞.

Since φ is continuous and increasing on (0, φ−1(φ∞−))
with image contained in (0, φ∞), φ is invertible there and we
obtain that for all large n a.s.,

φ−1 (1 − ε) < di < φ−1 (1 + ε) . (5)

We can now prove the almost sure uniqueness of ĈN for all
large n. Take ε in (5) to satisfy the previous conditions and to
be such that (φ−1(1+ε))2/φ−1(1−ε) < φ−1(φ∞−), which is
always possible as the left-hand side expression is continuous
in ε with limit φ−1(1) < φ−1(φ∞−) as ε → 0.

We now follow the arguments of [23, Th. 1]. Assume
(d(1)1 , . . . , d(1)n ) and (d(2)1 , . . . , d(2)n ) are two distinct solutions
of the fixed-point equation d j = h j (d1, . . . , dn) for j =
1, . . . , n, where h j is defined by (4). Then (up to a change
in the indices 1 and 2), there exists k such that, for some
α > 1, αd(1)k = d(2)k and αd(1)i ≥ d(2)i for i 
= k. From (5),
for sufficiently large n a.s. the ratio α = d(1)k /d(2)k is also
constrained to satisfy α < φ−1(1 + ε)/φ−1(1 − ε). Using this
inequality and the upper bound in (5), we have for all j

0 < αd(1)j <
(φ−1(1 + ε))2

φ−1(1 − ε)
< φ−1(φ∞−).

Since φ is increasing on (0, φ−1(φ∞−)), we have in partic-
ular φ(αd(1)j ) > φ(d(1)j ) from which αu(αd(1)j ) > u(d(1)j ),
for all j and then, with similar arguments as previously,
αh j (d

(1)
1 , . . . , d(1)n ) > h j (αd(1)1 , . . . , αd(1)n ) for all j . Using

the monotonicity of h, we conclude in particular

d(2)k = hk(d
(2)
1 , . . . , d(2)n ) ≤ hk(αd(1)1 , . . . , αd(1)n )

< αhk(d
(1)
1 , . . . , d(1)n ) = αd(1)k

which contradicts αd(1)k = d(2)k and proves the uniqueness of
ĈN and Part (I) of Theorem 1.

We now prove Part (II) of the theorem. In order to proceed,
we start again from (5). Since ε is arbitrary, we conclude that

max
i≤n

∣∣∣di − φ−1(1)
∣∣∣ a.s.−→ 0.

Applying the continuous mapping theorem, we then have

max
i≤n

∣∣∣u(di)− u(φ−1(1))
∣∣∣ a.s.−→ 0.

Noticing that φ−1(1)u(φ−1(1)) = φ(φ−1(1)) = 1, and
therefore that u(φ−1(1)) = 1/φ−1(1), this can be rewritten

max
i≤n

∣∣∣∣u(di)− 1

φ−1(1)

∣∣∣∣
a.s.−→ 0. (6)

Now, we also have the matrix inequalities

min
i≤n

{
u(di )− 1

φ−1(1)

}
1

n
X X∗

� 1

n

n∑

i=1

(
u(di )− 1

φ−1(1)

)
xi x

∗
i

� max
i≤n

{
u(di )− 1

φ−1(1)

}
1

n
X X∗.

From Proposition 2 in Appendix F, ‖ 1
n X X∗‖ < K for some

K > 0 and for all n a.s. From (6), we then conclude that
∥∥∥∥∥

1

n

n∑

i=1

(
u(di )− 1

φ−1(1)

)
xi x

∗
i

∥∥∥∥∥ =
∥∥∥∥∥ĈN − ŜN

φ−1(1)

∥∥∥∥∥
a.s.−→ 0

which completes the proof of Theorem 1.
Proof of Corollary 1: The identity follows from

[24, Th. 4.3.7], according to which, for 1 ≤ i ≤ N ,

λi

(
ŜN

)
≤ λi

(
φ−1(1)ĈN

)
+ λN

(
ŜN − φ−1(1)ĈN

)

λi

(
ŜN

)
≥ λi

(
φ−1(1)ĈN

)
− λN

(
ŜN − φ−1(1)ĈN

)
.

The result follows by noticing that the second term in both
right-hand sides tends to zero a.s. according to Theorem 1.

APPENDIX B
PROOF OF LEMMA 1

If the set of the eigenvalues of 1
n X(i)X∗

(i) is contained
within the set of the eigenvalues of 1

n X X∗, then the result is
immediate from Proposition 2 in Appendix F. We can therefore
assume the existence of eigenvalues of 1

n X(i)X∗
(i) which are

not eigenvalues of 1
n X X∗. By definition, the eigenvalues of

1
n X(i)X∗

(i) solve the equation in λ

det

(
1

n
X(i)X

∗
(i) − λIN

)
= 0.

Take λ not to be also an eigenvalue of 1
n X X∗. Then,

developing the above expression, we get

det

(
1

n
X(i)X

∗
(i) − λIN

)

= det

(
1

n
X X∗ − 1

n
xi x

∗
i − λIN

)

= det Q(λ) det

(
IN − Q(λ)−

1
2

1

n
xi x

∗
i Q(λ)−

1
2

)

= det Q(λ)

(
1 − 1

n
x∗

i Q(λ)−1xi

)

with the notation Q(λ) � 1
n X X∗ − λIN , where we used

det(IN + AB) = det(Ip + B A) in the last line, for A ∈ CN×p

and B ∈ Cp×N , with p = 1 here.
Therefore, since λ cannot cancel the first determinant,

1

n
x∗

i Q(λ)−1xi = 1

n
x∗

i

(
1

n
X X∗ − λIN

)−1

xi = 1.

Let us study the function

x �→ fn,i (x) � 1

n
x∗

i

(
1

n
X X∗ − x IN

)−1

xi .
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First note, from a basic study of the asymptotes and limits
of fn,i (x), that the eigenvalues of 1

n X(i)X∗
(i) are interleaved

with those of 1
n X X∗ (a property known as Weyl’s interlacing

lemma) and in particular that

λ1

(
1

n
X(i)X

∗
(i)

)
≤ λ1

(
1

n
X X∗

)
≤ λ2

(
1

n
X(i)X

∗
(i)

)
. (7)

Since λ1(
1
n X X∗) is a.s. away from zero for all large N (Propo-

sition 2), only λ1(
1
n X(i)X∗

(i)) may remain in the neighborhood
of zero for at least one i ≤ n, for all large n.

We will show that this is impossible. Precisely, for all
large n a.s., we will show that fn,i (x) < 1 for any i ≤ n and
for all x in some interval [0, ξ), ξ > 0, confirming that no
eigenvalue of 1

n X(i)X∗
(i) can be found there. For this, we first

use the fact that the fn,i (x) can be uniformly well estimated for
all x < 0 through Proposition 1 in Appendix F by a quantity
strictly less than one. We then show that the growth of the
fn,i (x) for x in a neighborhood of zero can be controlled, so
to ensure that none of them reaches 1 for all x < ξ . This will
conclude the proof.

We start with the study of fn,i (x) on R−. From Lemma 3,

fn,i (x) =
1
n x∗

i

(
1
n X(i)X∗

(i) − x IN

)−1
xi

1 + 1
n x∗

i

(
1
n X(i)X∗

(i) − x IN

)−1
xi

.

Define

f̄n(x) � cN eN (x)

1 + cN eN (x)

with eN (x) the unique positive solution of (see Proposition 1)

eN (z) =
∫

t

(1 + cN eN (z))−1t − z
d FCN (t). (8)

Then, with Q(x) � 1
n X X∗ − x IN , Qi (x) � 1

n X(i)X∗
(i) − x IN ,

∣∣ fn,i (x)− f̄n(x)
∣∣ =

∣∣∣∣∣

1
n x∗

i Qi (x)−1xi

1 + 1
n x∗

i Qi (x)−1xi
− cN eN (x)

1 + cN eN (x)

∣∣∣∣∣

≤
∣∣∣∣
1

n
x∗

i Qi (x)
−1xi − cN eN (x)

∣∣∣∣

≤
∣∣∣∣
1

n
x∗

i Qi (x)
−1xi − 1

n
tr CN Qi (x)

−1
∣∣∣∣

+
∣∣∣∣
1

n
tr CN Qi (x)

−1 − 1

n
tr CN Q(x)−1

∣∣∣∣

+
∣∣∣∣
1

n
tr CN Q(x)−1 − cN eN (x)

∣∣∣∣ (9)

Using (a + b + c)p ≤ 3p(a p + b p + c p) for a, b, c > 0,
and p ≥ 1 (Hölder’s inequality), and applying Lemma 5,
Lemma 4, and Proposition 1 to the right-hand side terms
of (9), respectively, with p = 4 + η/2, we obtain

E
[∣∣ fn,i (x)− f̄n(x)

∣∣4+ η
2
]

≤ K

n2+ η
4

for some constant K independent of i , where we implicitly
used A1. Therefore, using Boole’s inequality on the above

event for i ≤ n, and the Markov inequality, for all ζ > 0,

P

(
max
i≤n

∣∣ fn,i (x)− f̄n(x)
∣∣ > ζ

)

≤
n∑

i=1

P
(∣∣ fn,i (x)− f̄n(x)

∣∣ > ζ
)
<

K

ζ 4+ η
2 n1+ η

4
.

The Borel Cantelli lemma therefore ensures, for all x < 0,

max
i≤n

∣∣ fn,i (x)− f̄n(x)
∣∣ a.s.−→ 0. (10)

We now extend the study of fn,i (x) to x in a neighborhood
of zero. From Proposition 2, λ1(

1
n X X∗) > C−(1 − √

c+)2
for all large n a.s. (recall that lim supN cN < c+ < 1) so
that fn,i (x) is well-defined and continuously differentiable on
U = (−ε, ε) for 0 < ε < C−(1 − √

c+)2, for all large n a.s.
Take x ∈ U . Since the smallest eigenvalue of 1

n X X∗ − x IN

is lower bounded by C−(1 − √
c+)2 − ε for all large n,

and that

max
i≤n

∣∣∣∣
1

n
‖xi‖2 − 1

n
tr CN

∣∣∣∣
a.s.−→ 0

(using similar arguments based on the Boole and Markov
inequality reasoning as above), we also have that for all large n
a.s.

0 < f ′
n,i (x) <

c+C+
(C−(1 − √

c+)2 − ε)2
� K ′

where we used lim supN
1
n tr CN < c+C+.

From this result, along with the continuity of fn,i , for x ∈ U
and for all large n a.s.,

fn,i (x) < fn,i (−x)+ 2x K ′.

In particular, for ξ = min{ε/2, (1 − c+)/(2K ′)},
fn,i (ξ) < fn,i (−ξ)+ (1 − c+). (11)

Since eN (0) = 1 + cN eN (0) by definition (15),

f̄n(0) = cN < c+

and f̄n(x) is continuous and increasing on U , so that

f̄n(−ξ) < c+.

Recalling (10), we then conclude that, for all large n a.s.

max
i≤n

fn,i (−ξ) < c+

which, along with (11), gives, for all large n a.s.

max
i≤n

fn,i (ξ) < 1.

Since fn,i (x) is continuous and increasing on [0, ξ), the
equation fn,i (x) = 1 has no solution on this interval for any
i ≤ n, for all large n a.s., which concludes the proof.
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APPENDIX C
PROOF OF LEMMA 2

Define ŜN,(i) = ŜN − 1
n xi x∗

i and denote Ŝ−1
N,(i) its inverse

when it exists or the identity matrix otherwise. Take 2 ≤ p ≤
4 + η/2 (see A1) and ε > 0 as in Lemma 1. Denoting Exi the
expectation with respect to xi and φi = 1{λ1(ŜN,(i))>ε},

Exi

[
φi

∣∣∣∣∣

1
n x∗

i Ŝ−1
N,(i)xi

1 + 1
n x∗

i Ŝ−1
N,(i)xi

−
1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

∣∣∣∣∣

p]

= Exi

⎡

⎣φi

∣∣∣∣∣∣

1
n x∗

i Ŝ−1
N,(i)xi − 1

n tr CN Ŝ−1
N,(i)(

1 + 1
n x∗

i Ŝ−1
N,(i)xi

) (
1 + 1

n tr CN Ŝ−1
N,(i)

)

∣∣∣∣∣∣

p⎤

⎦

≤ Exi

[
φi

∣∣∣∣
1

n
x∗

i Ŝ−1
N,(i)xi − 1

n
tr CN Ŝ−1

N,(i)

∣∣∣∣
p]
.

Recalling that xi = AN yi with yi having independent zero
mean and unit variance entries, from Lemma 5, we have

Exi

[
φi

∣∣∣∣∣

1
n x∗

i Ŝ−1
N,(i)xi

1 + 1
n x∗

i Ŝ−1
N,(i)xi

−
1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

∣∣∣∣∣

p]

≤ φi K p

n
p
2

[(ν4

n
tr(CN Ŝ−1

N,(i))
2
) p

2 + ν2p

n
p
2

tr
(
(CN Ŝ−1

N,(i))
2
) p

2
]

for some constant K p depending only on p, with ν� any
value such that E[|yi j |�] ≤ ν� (well defined from A1). Using
1

nk tr Ak ≤ ( 1
n tr A)k for A ∈ CN×N nonnegative definite and

k ≥ 1, with here A = (CN Ŝ−1
N,(i))

2, k = p/2, this gives

Exi

[
φi

∣∣∣∣∣

1
n x∗

i Ŝ−1
N,(i)xi

1 + 1
n x∗

i Ŝ−1
N,(i)xi

−
1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

∣∣∣∣∣

p]

≤ φi K p

n
p
2

(
ν

p
2

4 + ν2p

)(
1

n
tr(CN Ŝ−1

N,(i))
2
) p

2

≤ K p

n
p
2

(
ν

p
2

4 + ν2p

)
(c+C2+ε−2)

p
2 �

K ′
p

n
p
2

(12)

where, in (12), we used tr AB ≤ ‖A‖ tr B for A, B 	 0,
φi ≤ 1, ‖Ŝ−1

N,(i)‖ ≤ ε−1 when φi = 1, and 1
n tr C2

N ≤ c+C2+.
This being valid irrespective of X(i), we can take the

expectation of the above expression over X(i) to obtain

E

[
φi

∣∣∣∣∣

1
n x∗

i Ŝ−1
N,(i)xi

1 + 1
n x∗

i Ŝ−1
N,(i)xi

−
1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

∣∣∣∣∣

p]
≤ K ′

p

n
p
2
.

Therefore, from Lemma 3,

E

[
φi

∣∣∣∣∣
1

n
x∗

i Ŝ−1
N xi −

1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

∣∣∣∣∣

p]
≤ K ′

p

n
p
2
.

Using Boole’s inequality on the n events above with
i = 1, . . . , n, and Markov inequality, for ζ > 0,

P

(
max
i≤n

{
φi

∣∣∣∣∣
1

n
x∗

i Ŝ−1
N xi −

1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

∣∣∣∣∣

}
> ζ

)

≤ K ′
pζ

−p

n
p
2 −1

.

Choosing 4 < p ≤ 4 + η/2, the right-hand side is summable.
The Borel-Cantelli lemma then ensures that

max
i≤n

{
φi

∣∣∣∣∣
1

n
x∗

i Ŝ−1
N xi −

1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

∣∣∣∣∣

}
a.s.−→ 0.

But, from Lemma 1, mini {φi } = 1 for all large n a.s.
Therefore, we conclude

max
i≤n

{∣∣∣∣∣
1

n
x∗

i Ŝ−1
N xi −

1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

∣∣∣∣∣

}
a.s.−→ 0. (13)

Since ŜN,(i) − ε IN � 0 for these large n, we also have

max
i≤n

∣∣∣∣∣

1
n tr CN Ŝ−1

N,(i)

1 + 1
n tr CN Ŝ−1

N,(i)

−
1
n tr CN Ŝ−1

N

1 + 1
n tr CN Ŝ−1

N

∣∣∣∣∣

= max
i≤n

∣∣∣∣∣∣

1
n tr CN Ŝ−1

N − 1
n tr CN Ŝ−1

N,(i)(
1 + 1

n tr CN Ŝ−1
N,(i)

) (
1 + 1

n tr CN Ŝ−1
N

)

∣∣∣∣∣∣
≤ 1

n

C+
ε

where, in the last inequality, we used Lemma 4 with B = CN ,
A = ŜN,(i) − ε IN and x = ε, along with the fact that
(1 + x)−1 ≤ 1 for x ≥ 0.

From Proposition 1, since λ1(ŜN ) ≥ λ1(ŜN,(i)) > ε for
these large n (see (7)), we also have

∣∣∣∣
1

n
tr CN Ŝ−1

N − cN

1 − cN

∣∣∣∣
a.s.−→ 0

and thus, from cN (1 − cN )
−1/(1 + cN (1 − cN )

−1) = cN ,∣∣∣∣∣

1
n tr CN Ŝ−1

N

1 + 1
n tr CN Ŝ−1

N

− cN

∣∣∣∣∣
a.s.−→ 0.

Putting things together, this finally gives

max
i≤n

{∣∣∣∣
1

n
x∗

i Ŝ−1
N xi − cN

∣∣∣∣
}

a.s.−→ 0

an expression which, since cN > c− > 0 for all large N , can
be divided by cN , concluding the proof.

APPENDIX D
PROOF OF THEOREM 2

The proof immediately follows from the arguments of [23].
When the scalability assumption is satisfied with strict inequal-
ity, the result is exactly [23, Th. 2]. When the scalability
assumption is reduced to a loose inequality, [23, Th. 1]
does not hold, and therefore uniqueness cannot be satisfied.
Nonetheless, the existence of a solution follows from the proof
of [23, Lemma 1] which does not call for the scalability
assumption. Indeed, since there exists (q1, . . . , qn) such that
qi ≥ h(q1, . . . , qn) for all i , the algorithm

q(t+1)
j = h j (q

(t)
1 , . . . , q(t)n )

with q(0)j = q j , satisfies q(1)j ≤ q(0)j for all j . Assuming
q(t+1)

j ≤ q(t)j for all j , the monotonicity assumption ensures
that q(t+2)

j ≤ q(t+1)
j which, by recursion, means that q(t)j is a

non-increasing sequence. Now, since q(t)j is in the image of h j ,

q(t)j > 0 by positivity, and therefore q(t)j converges to a fixed-
point (not necessarily unique). Such a fixed-point therefore
exists. Note that [23, Lemma 2] provides an algorithm for
reaching this fixed-point, starting with q(0)j = 0 for all j .
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APPENDIX E
PROOF OF COROLLARY 2

If ĈN is replaced by ŜN in the statement of the result,
then Theorem 2 is exactly [20, Th. 2], which is a direct
consequence of [14, Th. 3] with some updated remarks on
the μ̂i found in the discussion around [22, Th. 17.1]. In order
to prove Theorem 2, we need to justify the substitution of
ŜN by ĈN . First observe that the result is independent of
a scaling of ŜN , and therefore we can freely substitute ŜN

by φ−1(1)ĈN instead of ĈN . Using the notations of Mestre
in [14], we first need to extend [14, Proposition 4]. Call ĝC

M(z)
the equivalent of ĝM(z) designed from the eigenvectors of
φ−1(1)ĈN instead of those of ŜN (referred to as R̂M in [14]
with M in place of N , and N in place of n). Then, on the
chosen rectangular contour ∂R−

y (m), both ĝC
M (z) and ĝM(z)

are a.s. bounded holomorphic functions for all large N ; this
is due to the exact separation [15, Th. 3] of the eigenvalues
of ŜN and the fact that Corollary 1 ensures the convergence
between the eigenvalues of φ−1(1)ĈN and of ŜN .

From [14, eq. (29)], ĝM(z) consists of the functions b̂M(z)
and m̂M (z) for which we also call b̂C

M (z) and m̂C
M (z) their

equivalents for φ−1(1)ĈN . We need to show that the respective
differences of these functions go to zero. From the defin-
ition [14, eq. (4)] of b̂M (z), Theorem 1 and the fact that∣∣ 1

N tr(A−1 − B−1)
∣∣ ≤ ‖A−1‖‖B−1‖‖A − B‖ for invertible

A, B ∈ CN×N , we have immediately that

sup
z∈∂R−

y (m)

∣∣∣b̂M(z)− b̂C
M (z)

∣∣∣ a.s.−→ 0.

Similarly, using [14, eq. (6)], and
∣∣a∗(A−1 − B−1)b

∣∣ ≤
|a∗b|‖A−1‖‖B−1‖‖A − B‖ for a, b ∈ C

N , we find

sup
z∈∂R−

y (m)

∣∣∣m̂M (z)− m̂C
M (z)

∣∣∣ a.s.−→ 0.

By the dominated convergence theorem, this gives
∮

∂R−
y (m)

(
ĝC

M (z)− ĝM (z)
)

dz
a.s.−→ 0

which then immediately extends [14, Proposition 4] to the
present scenario. The second step to be proved is that the
residue calculus performed in [14, eqs. (32) and (33)] carries
over to the present scenario. The poles within the contour
∂R−

y (m) are the λ̂k and the μ̂k found in the contour. The
indices k such that the λ̂k and μ̂k are within ∂R−

y (m) are
the same for ŜN and φ−1(1)ĈN for all large N , due to the
exact separation property and Corollary 1. This completes
the proof.

APPENDIX F
USEFUL LEMMAS AND RESULTS

Lemma 3 (A Matrix-Inversion Lemma): Let x ∈ CN ,
A ∈ CN×N , and t ∈ R. Then, whenever the inverses exist

x∗ (A + tx x∗)−1
x = x∗ A−1x(1 + tx∗ A−1x)−1.

Lemma 4 (Rank-One Perturbation): Let v ∈ CN , A, B ∈
CN×N nonnegative definite, and x > 0. Then

tr B
(

A + vv∗ + x IN
)−1 − tr B (A + x IN )

−1 ≤ x−1‖B‖.

Lemma 5 (Trace Lemma) [25, Lemma B.26]: Let A ∈
C

N×N be non-random and y = [y1, . . . , yN ]T ∈ CN be a
vector of independent entries with E[yi ] = 0, E[|yi |2] = 1,
and E[|yi |�] ≤ ν� for all � ≤ 2 p, with p ≥ 2. Then,

E
[∣∣y∗ Ay − tr A

∣∣p] ≤ Cp

(
(ν4 tr AA∗)

p
2 + ν2p tr(AA∗)

p
2

)

for Cp a constant depending on p only.
Proposition 1 (A Random Matrix Result): Let X =

[x1, . . . , xn] ∈ CN×n with xi = AN yi , AN ∈ CN×M ,
M ≥ N , where yi = [yi1, . . . , yi M ] ∈ C

M has independent
entries satisfying E[yi j ] = 0, E[|yi j |2] = 1, E[|yi j |�] < ν�
for all � ≤ 2 p and CN � AN A∗

N is nonnegative definite
with ‖CN ‖ < C+ < ∞. Assume cN = N/n and c̄N =
M/N ≥ 1 satisfy lim supN cN < ∞ and lim supN c̄N < ∞,
as N, n,M → ∞. Then, for z < 0, and p > 2,

E

[∣∣∣∣∣
1

N
tr CN

(
1

n
X X∗ − z IN

)−1

− eN (z)

∣∣∣∣∣

p]
≤ K p

N
p
2

(14)

for K p a constant depending only on p, ν� for � ≤ 2 p, and z,
while eN (z) is the unique positive solution of

eN (z) =
∫

t

(1 + cN eN (z))−1t − z
d FCN (t) (15)

where FCN is the eigenvalue distribution of CN . The function
R− → R+, z �→ eN (z) is increasing.

Moreover, for any N0, as N, n → ∞ with lim supN cN <∞,
for z ∈ R \SN0 , where SN0 is the union of the supports of the
eigenvalue distributions of 1

n X X∗ for all N ≥ N0,

1

N
tr CN

(
1

n
X X∗ − z IN

)−1

− eN (z)
a.s.−→ 0. (16)

Proof: To prove the first part of Proposition 1, we follow
the steps of the proof of [26]. Note first that we can append AN

into an M×M matrix by adding rows of zeros, without altering
the left-hand side of (14). Using the notations of [26], we
consider the simple case where An = 0 and σ n

i j = Cn
i , where

Cn
i denotes the i -th eigenvalue of CN . Although this updated

proof of [26] would impose CN to be diagonal, it is rather
easy to generalize to non-diagonal CN (see [27], [28]). The
proof then extends to the non i.i.d. case when using Lemma 5
instead of [26, eq. (B.1)]. The second part follows from the
first part immediately for z < 0. In order to extend the result
to z ∈ R \ SN0 , note that both left-hand side terms in (16)
are uniformly bounded in any compact D away from SN0 and
including part of R

−, and are holomorphic on D. From Vitali’s
convergence theorem [29], their difference therefore tends to
zero on D, which is what we need.

Proposition 2 (No Eigenvalue Outside the Support): Let
X = [x1, . . . , xn] ∈ CN×n with xi = AN yi , AN ∈ CN×M ,
where yi = [yi1, . . . , yi M ] ∈ CM has independent entries
satisfying E[yi j ] = 0, E[|yi j |2] = 1 and E[|yi j |4+η] < α

for some η, α > 0, CN � AN A∗
N has bounded spectral

norm, and N, n,M → ∞ with lim supN N/n < 1, and
1 ≤ lim supN M/N < ∞. Let N0 be an integer and
[a, b] ⊂ R ∪ {±∞}, b > a, a segment outside the closure of
the union of the supports F N/n,CN , N ≥ N0, with Ft,A the
limiting support of the eigenvalues of 1

n X X∗ when CN has
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the same spectrum as A for all N and N/n → t . Then, for
all large n a.s., no eigenvalue of 1

n X X∗ is found in [a, b].
Proof: Appending AN into an M × M matrix filled with

zeros, this unfolds from [15, Th. 3] (for which conditions 1)-3)
are met), with the supports F N/n,CN appended with the single-
ton {0}. Now, for AN ∈ CN×M , such that AN A∗

N is positive
definite, zero is not an eigenvalue of 1

n X X∗ for all N , a.s.,
which gives the result. Condition 1) of [15, Th. 3] holds here
by definition. Condition 3) is obtained by taking ψ(x) = x2+η.
Condition 2) is obtained by taking z a random variable with
Pareto distribution P(z ≤ x) = (1 − a p−1x1−p)1x≥a for

p = 5 + η and a = α
1

4+η ; by Markov inequality,

1

n1n2

∑

i≤n1, j≤n2

P(yi j > x) ≤ αx−4−η = P(z > x).

This z has finite 4+η order moment, which therefore enforces
Condition 2).
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