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Let {a,}, i,j=1,2 ,..., be i.i.d. random variables, and for each n let 
M, = (l/s) V, Vz, where V, = (vi,). i = 1,2, . . . . n, j = 1,2, . . . . s = s(n), and n/s -+ y  > 0 
as n + co. Necessary and sufficient conditions are given to establish the convergence 
in distribution of certain random variables defined by M,. When E(uf,) < co these 
variables play an important role toward understanding the behavior of the eigen- 
vectors of this class of sample covariance matrices for n large. 0 1989 Academic Press, 

Inc. 

1. INTR~DUCTLON 

Let {uii}, i,j= 1,2, . . . . be i.i.d. random variables, and for each n let 
wl=(l/w”c, where V, = (vu), i= 1, 2, . . . . n, j= 1, 2, . . . . s = s(n), and 
n/s + y > 0 as n --t co. In [9-l l] an investigation into the behavior of the 
eigenvectors of the class, M,, of sample covariance matrices for large n has 
led to results suggesting that for standardized u,, (E(u,,)=O, E(u:,)= l), 
the behavior is similar to the Wishart case, that is, when u,i = N(0, 1). In 
this case the orthogonal matrix O,, whose columns contain the eigenvec- 
tors of M, ordered from left to right corresponding to the increasing size of 
the eigenvalues, induces the Haar (uniform) measure on u,, the n x n 
orthogonal group. Thus, a conjecture has been raised stating that, for 
general uI1, 0, is close in some sense to being Haar distributed (Note that 
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0, is still not well defined because of ambiquities arising from multiple 
eigenvalues and the choice of direction for each eigenvector. However, it is 
possible to define uniquely a Bore1 probability on O, naturally induced 
from the eigenvectors of M,, [lo]. We will assume that 0, has this measure 
for its distribution.) It is suggested in [lo] that before defining precisely 
what is meant by “close,” mappings from D,, to a space S, common for all 
n, should be considered. These mappings define a sequence of measures on 
S which have a known limit when 0, is Haar distributed. It would then be 
important to determine under what conditions on the distribution of vli 
this limit is achieved. 

Attention has focused on the following maps into S = D[O, 11, the space 
of rcll functions on [0, 11: 

For each n let X,E R", llxnll = 12 be nonrandom. With 
(Ul 9 Y2, . . .Y Y,,)~ E O;fxn define X,, : [0, 1 ] + R as 

XJr)=Jn/2 ‘f’(+l/n) 
( i=l ) 

([a] = greatest integer <a). 
These mappings have been considered mainly because they carry over to 

010, l] much of the uniformity of Haar measure. Indeed, when 0, is Haar 
distributed, 0:x,, is uniformly distributed on the unit sphere in R". As for 
the limiting behavior, it is straightforward to show that when 0, is Haar 
distributed X, converges weakly to Brownian bridge, W”, as n --, co. 

Work on the limiting behavior of X, for general vr, is still in progress. 
The aim of the present paper is to strengthen a limit theorem in [ 1 l] 
which will be a stepping stone to understanding {X”>. It is at this point 
necessary to review two results on the limiting behavior of the eigenvalues 
of M”. 

It is known when Var(v,,) = 1 the empirical distribution function F,, of 
the eigenvalues of M, (F,,(x) = (l/ n x ) ( number of eigenvalues of M, GX)) 
converges almost surely for every x>O to a nonrandom probability 
distribution function F, having a density with support on [( 1 - A)‘, 
(1 + ,/$)‘I, and for y > 1, F, places mass 1 - l/y at 0 [7, 8, 12, 131. 
Moreover, if v,r is standardized, then &,,,(M,), the largest eigenvalue of 
A4,, satisfies 

L3,(~,) + (1+ J5)’ a.s. as n --) cc (1.1) 

if and only if E(v:,) < cc [ 1, 5, 141. 
It is now possible to state the purpose of the paper, namely to prove the 

following 
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THEOREM. Let W;= W’(F,,(x)). 

(a) We have 

i, 

(l+.h)* cc 

-5 X’dWu, as n+aJ (1.2) 
(l-J;)* r=l 

(9 denoting weak convergence on R”) for every sequence {x,,>, x, E R”, 
I\X,,II = 1 if and only if 

E(v,,)=O, Jw,) = 1, E(I&)= 3. (1.3) 

(b) If j; x dx,(Fn(x)) is to converge in distribution to any random 
variable for each of the x, sequences { (40, . . . . O)‘}, 
l/s)‘}, then necessarily E(v;‘,) < co and E(v,,) = 0. 

{(l/h, l/h, . . . . 

(c) Zf E(v;‘,) < co but E[(vll - E(v,,))4]/(Var(v,,))2 # 3, then there 
exist sequences (x,, } for which 

fail’s to converge in distribution. 

We note here that the limiting random variables in (1.2) are well-defined 
stochastic integrals, being jointly normal each with mean 0. 

The importance of the theorem lies in its strong relation to the limiting 
behavior of X, and to the requirements imposed on the moments of vi,. 
If A’,, were to converge weakly to W” for all {xn} and Var(v,,) = 1, 
E(vj, ) < cc, then (1.2) would follow from the above-mentioned behavior of 
the eigenvalues of M, and the theory of weak convergence of measures on 
function space ([lo]). The theorem then tells us that Var(v,,)= 1, 
E(vl,) < co, and weak convergence of X, to Brownian bridge for all 
(x,}implies E(v,,) =0 and E(v;l,) = 3 (we remark that, for vi, standardized 
and possessing moments of all order, the necessary condition on the fourth 
moment of vii was shown in [ 111). 

Of greater significance is the fact that, because of the theorem, what 
essentially remains to be studied is the question of tightness. Indeed, it can 
be shown that if (1.3) holds then A’, -9 W” on D[O, l] is equivalent to 
X”(f-,(X)) -P WY on D[O, cc), 9 denoting weak convergence on their 
respective spaces: We remark here that weak convergence on D[O, cc) is 
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equivalent to weak convergence on D[O, 61 (under the natural projection) 
for every b > 0. We can then use the fact that (1.1) and (1.2) would imply 
the uniqueness of any weak limit X of a subsequence of {X,,(F,(x))) on 
[0, b] for b > (1 + A)‘. It would then be a matter of analyzing X,,(F,,(x)) 
for conditions of tightness such as Theorem 15.6 in [2]. At the very least, it 
is now known that, under the general conditions (1.3), if X,, for some 
{xn}, converges weakly, it must converge to Brownian bridge, and if 
E(v~, ) < cc and X, converges weakly for all {x, }, then 

4u,,)=O, EC(Vll -E(u,,))41/(Var(v,,))2=3, (1.4) 

and the limit must be Brownian bridge. 
Returning to the eigenvectors of M,, if weak convergence of X,, to 

Brownian bridge for all (x,} is considered a criterion for 0, to be 
approximately Haar distributed for n large, then we can say that for 
E(u:,) < cc but (1.4) not holding, the distribution of 0, deviates 
significantly from Haar measure. 

At present nothing is known for the case E(ui,) = co. The arguments 
used in [lo] to show the necessary condition (1.2) depend on the 
boundedness of &,,,(M,,). It is possible that X, could converge weakly to 
Brownian bridge without (1.2) holding. 

The theorem strengthens Theorem 1 of [ 111 which established (1.2) 
assuming (1.3) and the existence of all moments of u,i . The proof of the 
theorem is given in the next two sections. The proofs of (1.3) * (1.2) and 
(c), given in Section 3, are similar to those of Theorem 1 in [Ill which 
uses a multidimensional method of moments. In addition to extending 
those arguments previously used, we will need to perform successive 
truncations of the elements of V, using (1.1). The proofs of (1.2) - (1.3) 
and (b), given in the next section, mainly rely on results in [6] which give 
conditions for sums of independent random variables to converge in 
distribution. 

2. hOOF OF (1.2) =E. (1.3), (b) 

With u,i=N(O, 1) andx,=(l,O, . . . . O)T, (1.2) for r = 1, together with the 
central limit theorem, implies 

I 
(1+&Y 
(I-Jl;)Y 

x d W; = N(0, y). 
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Therefore, with x, = (xl, x2, . . . . x,)= we have 

3 w-4 Y) as n+co. 

We will use this fact on three different types of x, along with the following: 
If S,=X,(s)+Xz(s)+ . . . +X,(s), X,(s) i.i.d., i= 1, . . . . s, converges in 

distribution to N(0, 1) as s-+ co, then .%‘,(s)-~‘~~~O [3, p. 1911. Moreover, 
from [6, Theorem 2, p. 128-J we have for every E > 0 

(1) sP((X,(s)( > E) + 0 and 

(2) s VaVl(~V~lx,~s,l CEj) * 1 

as s + 03 (Z, denoting the indicator function on the set A). 
With x, = (1, 0, . . . . O)= we can write m (x;fM,x, - (l/n) tr(M,)) = 

& ((n- l)/n)(l/,/%)~;=, (us-(l/(n- 1)) Cyzz vi). With X,(s)= 

(l/$)(0: - (l/(n - 1)) 1~~~ vf) (vi i= 1, 2, . . . . n i.i.d. having the same 
distribution as vir) we immediately get (l/((n - 1) A)) Crz2 v: -Jp. 0. We 
also have for any E > 0, 

sP(lv:-(l/(n-1)) i afi>cJ) 
i=2 

2sP 
( 

uf>(l/(n-1)) f u;+E& 
i=2 ) 

>.rP(vf>(l/(n-1)) i vj?+sJ,(l/(n-1)) i V2CEJ) 
i=2 i=2 

gsP(v:~2E~)P((ll(n-l)) i $QEJ). 
i=2 

Therefore, from ( 1) we have sP( v: 2 2~ A) --) 0 as s -+ co, which implies 
m = E(u:,) < co. Therefore, VT - (l/(n-1))C;=2a: J.p.v:-m as s+co. 

Let A, = (1~: - (l/(n - 1)) C;= 2 v:j< E &). From (2) we have 

Var v:-(l/(n-1)) 2 uf as s-co. (2.1) 
i=2 
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Since E((u:- (l/(n- f))C;=, v~)I,~)=E(u~Z,~)- E(u$A,) and P(A,) + I 
as s + co, we can apply the dominated convergence theorem to each term 
to conclude E((o:-(l/(n-l))C:=,viZ)Z,~)-rO as s+co. 

Using (2.1) and Fatou’s lemma we have E((u:- m)2)<2. Thus 
E(o;l,) < co. 

Writing l/fi c;= I (a:, - (l/(n - 1)) Cr= 2 0;) as 

l/Jr;: i (u:,-E(u:,))-(l/(~(n- 1))) i f (u;.-w:,)), (2.2) 
j=l j=1 i=2 

we see that the central limit theorem implies the second sum in (2.2) 
converges in probability to zero, and in turn, the first sum converges in 
distribution to N(0, 1). We have then 

E(u:,) - P(uf,) = 2. (2.3) 

Now let x, = (l/J%, l/,/k, . . . . l/&)T. We have 

&E (xKM,x, - (l/n) tr(M,)) 

=fi(l/n)l/J2s 2 ((f Us)‘- f “;). 
j=l i= 1 i= 1 

With X,(s)=(l/~)(l/~)((~:=, ui)‘-C;=‘=, u:) we see that (l/n3’4)C;z, uj 
-+i.p. 0, which implies E(u,, ) = 0. 

Finally, let x, = (l/d, l/a, 0, . . . . 0)‘. We have 

&E (xPf,x, - (l/n) WC)) 

= J& (l/&J ( i (UP)(U,j + UJ - m:,4 
.j= I 

-wn)~(+W,)). 
i, j 

By the central limit theorem we have (l/(p~ A)) & (us - E(uf,)) -+‘.p. 0, 
and since E(( 1/2)(u,, + u2,)* - E(uf,)) = 0, we have Var(( 1/2)(u,, + u~,)~) 
=2. Therefore, E(u:,) +E*(u&)=4. This, together with (2.3) gives us 
E(l&) = 1, E(uf,) = 3. 

To show (b) we use X,(s) -@ 0 and [6, Theorem 4, p. 1241 which 
implies that if S, converges in distribution then the quantities in (1) and (2) 
are, for E >O sufficiently small, bounded in s. The above arguments will 
yield sP(u: > 2 E &) bounded in s which still gives us I?($,) < a. The 
statements E(v&)< 03 and E(ur,)=O will then follow as above. 
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3. PROOF OF (1.3) 3 (1.2), (c) 

Let u;(n) = hj&,ve, <d/2) and let M:, = (l/s) V, VAT, where 
V:, = (o,(n))(n x s). Then for any measurable function f, on n x n matrices 
and any E>O 

~~lf~~~,~-fn~~:~I~~~~~~*~~l~,,l~~'/*~~~ as n+co, 

since E(u:,) < co. Therefore, 

Ifrwn) -f”wcJI i.p. ’ 0 as n+oO. (3.1) 

From (1.1) and (3.1) we have 

LS~~) i.p. b (1 + J;;)’ as n-+co. 

Let Mi=(l/s)(V:,-E(u;,(n))l,l~)(V:,-~!?(u;,(n)l~lT)~, where 1, 
denotes the m-dimensional vector consisting of 1’s. Let II 11 denote the 
spectral norm of any matrix, that is, IIA 11 = A,!&(AAT). 

We have 

Ickw~) - z3~~)l d llWJ3 E(h(n)) 1, lfll 
= n”*lE(u;,(n))l + 0 as n-tco, 

using the fact that E(u,, ) = 0, E( UT,) < 00 implies 

(l%;,(n)) = o(np3’*). 

Therefore, A,,,(M,“) -2i.P. (1 + &)‘. 
It is a simple matter to show for any n x n matrices A, B, and integer 

t-2 1 ]I(.4 + B)‘- B’ll <rllAII(IIAIJ + IlBll)‘-‘. Therefore, 

& I%wi3’ X” - ac)‘.%l 

6 & II~~~)‘- MJ’II 

~J;;rlPC-WAl(llWll +41WAl)‘-’ 

= J;; rllhf,” - MLII (Ama, + 2i,,,(A43)r- ‘. 

We have the last factor converging i.p. to (3(1+ &)‘)‘- l. 
We also have for matrices A, B of the same dimension 

IIAAT- BBTII < IJA - Bll( llA[l + IlBll). Therefore, 

& IIW-WJI 

Gfi ll(l/&) E(&(n)) lnlfll(~~~x(W) + &f&W;)) 

=nlE(u~,(n))l(A~~‘,(M~) + A$&(M~)) i.p. b 0 as n+co. 
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Therefore, 

Ji Ix;(M:)’ x, - X,T(M;)r x,( i.p. + 0 as n+c0. (3.2) 

We also have 

& IWO WWi)‘) - (l/n) tr((Wh’)l 

<(l/Jr) i I/Il”-&‘l 
i=l 

(A;‘, A: being the respective eigenvalues of M,“, ML arranged in nondecreas- 
ing order) 

xmax((LAW) 
(1/2)(2r- I), (~,,,(~;))ww 1’). 

By Theorem 2 of [4] we have for each i = 1,2, . . . . n, 

l&‘1’2 - Ai”2l < n”21E(u;r(n))l. 

Therefore, 

J;; I(W) WW’) - (l/n) tr(WCJ’)I 
= o(n C-3/2)+1 ) max((n,,,(M~))c1’2)(2r- ‘), 

(~,,,(~:,)pw- 1)) b , 0 as n+cO. (3.3) 

Therefore, by (3.1), (3.2), and (3.3) we have for each integer r 2 1, 

l&E C4Kx, - (l/n) WW 

- Jiq (x;f(M,“)’ x, - (l/n) tr((Mz)‘))I i.p. b 0 as n+oo. 

We see then that it is sufficient to prove (1.2) for Ml. 
To simplify notation we will identify uii with u;(n)--E(v;(n)), suppres- 

sing the dependence on n. Using the fact that for any random variable X 
and positive k and a, 

E(lXl”) < co =aE(IXJ’I,,,, Grim)) = o(na(r-k)) (3.4) 

for any r > k, we have uii i.i.d., E(u,,) = 0, E(u:,) + 1, E(ut,) + 3, as n + co, 
and E(u;,) = o(n(“2)-2) for r > 4. 

The remainder of the proof of (1.3) =+. (1.2) will appear similar to the one 
given for Theorem ‘1 of [ 111. However, some of the arguments will be 
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expressed differently to accommodate the truncation of the elements of M, 
and to render the proof easier to understand. It will be practically self- 
contained, making only two references to [ 111. 

We start with 

LEMMA 1. For any integer r > 1, (l/&)(tr( (Mi)‘) - E(tr((ME)‘))) 
dp. 0 as n -b co. 

Proof: We have 

S” Var(tr((Ml)‘)) 

= c E(“ilkl Ui2klUi2k2 ’ ’ ’ ui,k,uilk,“i;&; ui;k; Ui;k; 
il, . . . . i,, kl, . . . . k, 
ii, .__. i;, k;, _.., k; 

“‘Ui;k;Ui;k:)-E(UilklUi2klUi*k2 e*‘ui,k,“ilk,) 

x E(Ui;k; tii;k;tdi;k; ’ ’ ’ &;k;t+;). 

A term in (3.5) is zero if 

(3.5) 

(1) a uik or u~.~, appears alone, or 

(2) no uik equals a uirk’, or 

(3) no i(k) index equals an i’(k’) index. 

Using the fact that for any random variable X and a, b 20, 
E(l~“)E(lxlb)~E(lxl”+b), we have 

(3.6) 

where C’ denotes the summation is being taken over those terms of (3.5) 
for which (1) and (2) (and consequently (3)) are avoided. 

Consider one of the (finite) number of ways the sets of indices 
Ii 1, . . . . i,, ii, . . . . ii}, (k,, . . . . k,, k;, . . . . k;} can each be partitioned. Let d 
denote the total number of classes making up the two partitions. 
Associated with the two partitions are the terms in (3.6) (for n large), 
where indices are equal in value if and only if they belong to the same class. 
We only consider those partitions resulting in terms for which (1) and (2) 
are avoided. The number of terms is bounded by Knd (since n/s + y > 0). 
The terms are identical involving, say, r’ distinct elements of V,, 1 6 r’ < 2r. 

Choose one of these terms. Let t,, a = 2,3, . . . . 4r, denote the number of 
distinct elements of U, s (uii) appearing a times in this term. Then 
C, ra = r’ and C, ar, = 4r. Using (3.4), if there is an r. 2 1 for a > 4, then 
the term is 

O(n((1/2)5-2)r5+ ... +W/2)4r-2h) = O(n2r-2r’+r2+(l,‘2)r3) (3.7) 



10 JACK W. SILVERSTEIN 

We will show 

d< min(r’ + 1,2r). (3.8) 

In order to do so we will need to verify 

d < min(r’ + 1, r + r), (3.9) 

where d and r’ are defined as above for 

E( lUil/cl . . . Ui,k,Ui;k; . . . u+;l) (3.10) 

for arbitrary r, r > 1 and where (1) and (2) are avoided. We have r’ d r + r. 
(3.10) can be written as: 

A:,b,Ai2b2 . . . A&> (3.11) 

where ALjs corresponds to Q, appearing in (3.10), so that if uajb, appears t 
times, then A$, = E( lu&l ). The ordered pairs (aj, bj) will be distinct, but 
because of the weaving pattern of the i, i’, k, k’ indices and the fact that (3) 
does not hold, when r’ > 1, for each (uj, bj) either aj or bj will be repeated 
in at least one other ordered pair. Notice that d is equal to the number of 
distinct aj, bj. We say that aj or bj is free if it does not appear in any other 
ordered pair. If uj or bj is free then A$, must be formed from adjacent pairs 
of uik and (or) z+~.. 

We prove (3.9) using induction on r’. The case r’ = 1 being obvious we 
assume (3.9) is true for all expressions (3.10) with arbitrary r, r, where (1) 
and (3) are avoided and r’ = t - 1. For r’ = t consider (3.11). Let f denote 
the number of free indices. Then d < (2r’ - f )/2 + f = r’ + (f/2), so if f < 1 
then (3.9) certainly holds. If f > 1, then an Ajjbj can be removed from (3.11) 
resulting in an expression arising from (3.10) where the total number of 
i, i’, k, k’ indices is reduced, having d - 1 distinct indices and where ( 1) and 
(3) are avoided. The inductive hypothesis then yields (3.9). 

To complete the proof of Lemma 1 we take a bound on the common 
value (3.11) of the terms associated with the partitions, multiply by 
the bound Knd on the number of these terms, and divide by n x s”. If 
ra = 0 for all a > 4 then (3.11) is bounded and by (3.8) n”/n x s*” = O( l/n). 
Otherwise, we use (3.7) and we have o(n2r-2r’+r2+(1/2)rJ)nd/n x Sag = 
o(n. 2r’+r2+(1/2)r,+d-1) 

). 

Using (3.8), the exponent of n in the last expression is bounded by 
- r’ + r2 + $r3 < 0. Summing on all appropriate partitions we get 
(3.5)/n x s*? + 0 as n + cc and we are done. 

LEMMA 2. For any integer r 2 1, & (E(x;f(Mi)‘x,, - E((l/n) 
tr((Mi)‘))) -+ 0 as n -+ co. 
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Proof: Using the fact that the diagonal elements of (Mi)’ are identically 
distributed, we have 

W(x,(W)‘x,) - E((lln) tr(OC)‘))) 

= iTj xixj 1 E(Uikl Ui2kl ’ ’ ’ #jk,)* 
iz....,i, 

h s.... k, 

A term in the above summation is zero if 

(1) a uik appears alone. 

Notice also that the off-diagonal terms of (ME)’ are identically distributed 
and that ICi+ j xixjl <n - 1. Therefore, 

Is’(E(xT(Mi)‘x,) - Wlln) tWC)‘)))I 

<nC’E(IUlklUiZkl”.UZk,l), (3.12) 

where C’ denotes the summation avoids (1). 
As in Lemma 1 let (3.11) be one of the terms of (3.12) associated with a 

pair of partitions on {i2, . . . . i,}, {k,, . . . . k,}, where (1) is avoided, with d, r’, 
and r. defined as before. We have 2 < a < 2r (since (3.11) must involve at 
least two distinct elements of V,), C ar, = 2r, C rol = r’, and r’ < r. The last 
statement follows from the fact that an odd number of the 2r uik’s making 
up (3.11) are taken from the first row of U,. Since 1 and 2 must be among 
th ai indices, the number of terms associated with the two partitions is 
bounded by Knd - 2. 

As in Lemma 1 it is straightforward to show by induction that d,< r’ + 1. 
Since r’ < r we must have d < r. 

Proceeding as in Lemma 1, if ra = 0 for all a > 4, then (3.11) is bounded 
and we have 

,,W,,d - 2jsr = o(,., -19. 

Otherwise, we use (3.4) to find that (3.11) is 

4n 
r-2r’+rz+(l/2)rj 

1 (3.13) 

and we have (3.13) ~n~-(‘/~)lS’= o(n -2r’+r~+(1’2)r~+d-(1’2)). The exponent 
of n is bounded by -r’ + r2 + +r3 + f < 0 as in Lemma 1, using the 
additional fact that there is an ra 2 1 with a > 4. 

We conclude that &x (3.12)/ sr + 0 as n + co which proves Lemma 2. 

At this point it is necessary to introduce another truncation of the 
elements of V,. Let r7,=~V(n)=u..Z ,, (lurll O) - ~(~J~l,,l 4n~/4J and let 
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- - 
A?, = (l/S) V, V,‘, where P,= (VU). We have E(fi,,) =O, E(Vf,) + 1, and 
E(t?t,) -+ 3 as n + co. It will be shown that for every integer r > 1, 

J;; b;fW’,‘)’ x, - E(x;(My x,) 

- (x;fR;x, - E(xpf;x,))) i.p. * 0 as n+ co. (3.14) 

However, before proving (3.14) we will use it and Lemmas 1 and 2 to 
complete the proof of the theorem. (1.2) will follow if we can show for any 
integer m > 2 and positive integers r , , r2, . . . . rm the asymptotic behavior of 

n”‘*E[(XgA?;X, - E(xp7~x,))(x~n;i~~xn - E(XgR;~x”)) 

. . . (x;R;mx, - E(Xp2~~X,))] (3.15) 

depends only on E($,) and ,!?(I?:,) (see [ll, p. 3021). 
We have 

6 

rl + “’ +‘“/n”‘2) x (3.15) 

= c XilXjl . . . ximxjm E[(U,q . . . Ujlkl 
., ., .I 
I .I .12 ,..., if,,kt ,..., kf, 

‘I 

im, jm.  iy . . . . irm, ky _._, kym 

- ,!?(&,k; . ..U.~kf,))...(V~“k~...Vimkm -E(Vjmk,“‘.‘Ui’“k~))]. (3.16) 
‘In 

As before we see that a zero term occurs when 

(1) a I?, appears alone, or 

(2) for a given t  no UPlq, equals a Vp,,qt,, t’ # t .  

Consider one of the ways the sets I- {i’, ji, ii, . . . . i:,, . . . . i”, j”, iy, . . . . i”,}. 
KE {k;, . . . . kf,, . . . . ky, . . . . k;} can each be partitioned so that those terms 
in (3.16) associated with the two partitions avoid (1) and (2). Let 1 be 
the number of classes of Z indices containing only one element from 
Jz {i’, j’, i*,j*, . ..) i”, jm >. Let d denote the number of classes of Z indices 
containing no elements from J, plus the number of classes of K indices. 
Then the contribution to (3.16) of those terms associated with the two 
partitions is bounded in absolute value by 

cn”‘2’ + d.t?( It?&;, . . . . +kf,, . . . . 6;?“+ . . . . 6j”“;l ), (3.17) 

the expected value being one of those associated with the two partitions (it 
should be mentioned that (3.17) uses the fact that I-?YxJ < rzl’*). As in 
Lemma 1 we let (3.11) denote this expected value, assuming r’ distinct 
elements of V, are involved, with rol elements appearing 0: times, 
2<a<2(r,+ ... +r,,,). We have I<r’<r,+ ... +r,,,, Cara=r’, and 
Caar,=2(r,+ ... +r,). 
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Let d, denote the number of free bj indices for which A&, involves z?~~~~‘s 
’ ’ for at least two different t’s (1 < t < m). We have 

a’,-<r,+r,+ ~1. +r2(,,+ +,.,,,). (3.18 

We will show 

d 6 min(r, + ... +r,-(m/2)-(1/2), (r,+ ... +r,-m-Z+r’+d,-)/2). 

(3.19 ) 

Since (1) is avoided, the maximum number of distinct indices from 
L= (i;, ..:, ii,, . . . . i?, . . . . i;) (=Z-J) wh’ h rc contribute to d is bounded by 
ri + . . . + r,,, -m L 1. Suppose there is an L index which, by itself, forms a 
class from the Z partition, or there is a free bj index for which Aij4 involves 
VP+,,‘s for only one value of t. Then we have a free ai or bj (the other index 
appearing in another factor of (3.11)) and A$, can be removed from (3.11), 
resulting in an expression arising from (3.16) avoiding (1) and (2), with 
r,+ ... + r,,, reduced by at least one, but with m and I remaining the same 
values. The new d value is just one less than the original d value. Then, 
without loss of generality we may assume: 

(3) each Z class containing no indices from J has at least two 
elements, and there are only df free bj indices. 

We immediately get d < (rl + . . . + r,,, -m - 1)/2 + (r’ - d,)/2 + d,= 
(r, + .a. + rm -m-1+r’+df)/2. 

For the other expression in (3.19) we see that each distinct bj index is 
associated with at least four elements from Vn so that the number of 
distinct bj indices is bounded by (r, + . . . + r,)/2. Thus (3.19) follows. 

If there is an r, > 1 with a > 4 then by (3.4) we have 

and 

(nm’*/.f’+ .‘. ‘“)x (3.17) 

= o(n- (I12)(r,+ +,m)-r’+(l/2)r2+(1/4)r3+(m/2)+(‘/*)+d) (3.20) 

Using (3.18) and (3.19), the exponent of n in the last expression in (3.20) 
is bounded by 

-fr’+*r,+$r,++(r,+r,+ ... +r2Cr,+ . ..+.)60 

so that (3.20) + 0 as n -+ co. 
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If rar = 0 for all CI > 4, then the expected value in (3.17) is bounded, and 
by (3.19) 

(nm/2/Srl+ “’ +r, )x(3.17)=0(1). (3.21) 

The only way (3.21) will not converge to 0 is when 

d=r,+ ... +r,-(m/2)-(1/2). (3.22) 

We will be done once we show that (3.22) implies the associated terms 
contributing to (3.16) depend only on E($,) and E(fi:,). 

In deriving (3.19) we first removed factors from (3.11) involving free 
indices. Each of these A$, must be E( lUll I’), where c is even. If c is ever 
four or larger then (3.22) will not hold. We can then assume that (3) holds. 
From the above we see that, in order for (3.22) to hold, each distinct bj 
index must be associated with exactly four elements from Vn,, either one 
element appearing four times or two distinct elements each appearing twice 
(since (1) is avoided). It follows that any of the associated terms in (3.16) 
will depend only on E($, ) and E($,). 

It remains to verify (3.14). We will show 

E[(Jj; (x;f(M,“)’ x, - E(x;f(kq’ x,) - (x~W;x, - E(xp7;x”))))2] 

(3.23) 

converges to zero as n -+ co. We have 

(F/n) x (3.23) = c xixjxi,xj,E[(Uik, .. . ujk, 

i,j,iz ,.__, i,,kl,..., k, 
i’,j’,i; ,..., i;,k; ,..., k; 

- E(ui/c, f f ’ ujk,) - t”ikl . . ’ l?jk, - E(Uik, ’ ’ ’ vjk,))) 

x (Ui’k; ’ ” uj’k; - E(+k; . . ’ uj. , /)  - (fii’k; ‘. ’ 6j’k; 

- E(6i,k; ” ’ fij’k;)))]. (3.24) 

We see that (3.24) is similar to (3.16) with m = 2 and I, = r2 = r and that 
much of the previous arguments carries through. A zero term will occur 
when 

(1) %’ VPl - appears alone, or 

(2) no (upqT VP,) equals a (uPP4,, DPSy,). 

We concentrate on one of the ways (i, j, i2, . . . . i,, i’, j’, ii, . . . . i:} and 
{k 1, . . . . k,, k’, , . . . . k: > can each be partitioned so that the associated terms 
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in (3.24) avoid (1) and (2). Define 1 and d as before. The contribution to 
(3.24) is bounded in absolute value by 

cn(“2) +dE(IDiklz((v*,[ dn’/*) ” ’ ujk,z([u,k,[ <n’/z) 

xv., *I I k, (l~,.,~l G n ‘4 . . . Uj’k&*;, eP)l ), (3.25) 

the expected value arising from one of the terms associated with the two 
partitions. Let (3.11) denote this expected value with r’ and rar, 2 < c1<4r, 
defined as before. We have 1< r’ < 2r, C r. = r’, and C ar, = 4r. 

The bound on d found in (3.19) (with m = 2, r1 = rz = r) is still valid. If 
r, = 0 for all a > 4, then the expected value in (3.25) is bounded. Moreover, 
the random variable 

tUikl ’ ’ . ujk, - EfUikl ’ ‘. Ujk,) - t”ikl . . . fijk, - E(i&, . . . IT,,,))) 

x (Ui’k; . * ’ uj.k; - &irk; ’ ’ ’ uj’k;) - (&‘k; ‘. . 8j.k; - E(fii’k; ’ ‘. fijsk;))) 

is bounded in absolute value by an integrable random variable (a constant 
times the absolute value of a product of uik)s each not appearing more than 
four times) and converges almost surely to zero. Therefore, by the 
dominated convergence theorem these terms contributing to (3.23) 
approach zero as n -+ co. 

If there is an ra 2 1 with a > 4, then a different bound on d is needed. As 
in Lemma 1 it is straightforward to show by induction that 

d<r’-Z/2. 

once it is shown to be true for r’ = I = 4. In this case d is just the number of 
distinct bj’s in (3.11). But each Abib, must be of the form E(Ju,~Z~,~,,,~~~,~)J~) 
where c is odd, so that each bi cannot be free. Therefore, d< 2 = r’ - i/2. 

Using (3.4) and our new bound on d we have 

(n/s*‘) x (3.25) = o(n 2r -2’ + r* + (1/2)r3 +r’ +I - 2r 
) 

= o(n - r’+r2+W)r3+1)+0 

as n -+ co, using the fact that ra 2 1 for some a >4. Therefore, (3.23) 
converges to zero as n -+ cc and we are done. 

To verify (c) we see that because of (b) we can assume E(u 1 ,) = 0 and 
without loss of generality we can assume E(ui,) = 1. As in [ 11, p. 3051 it is 
straightforward to expand 

(n/2) E[(x;fa,x, - E(x;T&f,x,))(x;fh?f,x, - E(x$?~,x,))] (3.26) 

and to find that (3.26) depends asymptotically on C x4 if and only if 
E(u:,) # 3. This implies that when E(uf,) # 3 a sequence {x,3 can be formed 

683/30/l-2 
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for which (J;;i? (xziii, x, - E(xJz,x,)), Jn/2 (xpz~x, - E(x,Tll?;x”))) 
will not converge in distribution (because all mixed moments have been 
shown above to be bounded), from which (c) follows. 
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