A Note on the Largest Eigenvalue of a Large Dimensional Sample Covariance Matrix

Z. D. BAI

University of Pittsburgh

JACK W. SILVERSTEIN*

North Carolina State University

AND

Y. Q. YIN

University of Arizona

Communicated by the Editors

Let $\{v_{ij}; i, j = 1, 2, ...\}$ be a family of i.i.d. random variables with $E(v_{11}^4) = \infty$. For positive integers p, n with p = p(n) and $p/n \to y > 0$ as $n \to \infty$, let $M_n = (1/n) V_n V_n^T$, where $V_n = (v_{ij})_{1 \le i \le p, 1 \le j \le n}$, and let $\lambda_{\max}(n)$ denote the largest eigenvalue of M_n . It is shown that $\lim_{n \to \infty} \lambda_{\max}(n) = \infty$ a.s. This result verifies the boundedness of $E(v_{11}^4)$ to be the weakest condition known to assure the almost sure convergence of $\lambda_{\max}(n)$ for a class of sample covariance matrices. © 1988 Academic Press, Inc.

For each n = 1, 2, 3, ... let $V_n = (v_{ij}(n))$ be a $p \times n$ matrix, where the $v_{ij}(n)$'s for *i*, *j* are independent and are identically distributed for all *i*, *j*, *n* with $E(v_{11}) = 0$, $E(v_{11}^2) = 1$, and p = p(n), with $p/n \to y > 0$ and $n \to \infty$. Let $M_n = (1/n) V_n V_n^T$. The matrix M_n is then the sample covariance matrix of *n* samples of a *p*-dimensional random vector.

Several papers have studied the asymptotic behavior of $\lambda_{\max}(n)$, the largest eigenvalue of M_n [1-3]. In [2] it is shown that $\lambda_{\max}(n)$ converges a.s. (i.p.) to $(1 + \sqrt{y})^2$ if $E(|v_{11}|^{6+\delta}) < \infty$ ($E(|v_{11}|^{4+\delta} < \infty)$) for any positive δ . In [3] it is shown that if V_n is the first p rows and n columns of a doubly infinite array of v_{ii} 's, then $E(v_{11}^4) < \infty$ implies $\lambda_{\max}(n) \rightarrow^{a.s.}$

166

Received June 5, 1986; revised February 1, 1988.

AMS 1980 subject classifications: Primary 60F15; Secondary 62H99. Key words and phrases: sample covariance matrix, largest eigenvalue.

* G and the National Galaxy Frank to Cant DMS 8(0)00(

* Supported by National Science Foundation Grant DMS-8603966.

0047-259X/88 \$3.00

Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved. $(1 + \sqrt{y})^2$ as $n \to \infty$. In this paper we will show the boundedness of $E(v_{11}^4)$ to be the weakest condition on the limiting behavior of $\lambda_{\max}(n)$ for doubly infinite arrays. In fact, we will show:

If $\{v_{ij}; i, j = 1, 2, ...\}$ is a family of i.i.d. random variables with $E(v_{11}^4) = \infty$ and M_n , $\lambda_{\max}(n)$ are defined as above with $V_n = (v_{ij})_{1 \le i \le p, 1 \le j \le n}$, p = p(n), $p/n \to y > 0$ as $n \to \infty$, then

$$\overline{\lim_{n}} \lambda_{\max}(n) = \infty \qquad \text{a.s.}$$

The result will be established by showing for any M > 0

$$P(\lambda_{\max}(n) \ge M^2 \text{ i.o.}) = 1.$$
(1)

Using the fact that the largest eigenvalue of any symmetric matrix is bounded below by the largest diagonal element of the matrix, we have

$$\lambda_{\max}(n) \ge \frac{1}{n} v_{ij}^2$$
, for any $i \in \{1, 2, ..., p(n)\}, j \in \{1, 2, ..., n\}$.

Defining $A_k = \{v_{ij}; 2^{k-1} < j \le 2^k, 1 \le i \le p(2^k)\}$ for k = 1, 2, ..., we therefore have $P(\lambda_{\max}(n) \ge M^2 \text{ i.o.}) \ge P(\exists v_{ij} \in A_k \text{ s.t. } |v_{ij}| \ge M2^{k/2} \text{ for infinitely many } k$'s).

By the Borel-Cantelli theorem, (1) will follow if we can show

$$\sum_{k} P\left(\exists v_{ij} \in A_k \text{ s.t. } |v_{ij}| \ge M2^{k/2}\right) = \infty.$$
(2)

The left side of (2) is

$$\sum_{k} 1 - P(|v_{11}| < M2^{k/2})^{p(2^k)2^{k-1}}.$$

Since $p(n)/n \rightarrow y > 0$ as $n \rightarrow \infty$ we have for any positive y < y,

 $p(2^k) 2^{k-1} > \frac{1}{2} y 4^k$ for all k sufficiently large.

Therefore, (1) follows if

$$\sum_{k} 1 - P(|v_{11}| < M2^{k/2})^{1/2} y^{4k} = \infty \qquad (0 < y < y).$$
(3)

Using the relation $E(v_{11}^4) \leq \sum_k E(v_{11}^4 I_{(M2^{k/2} \leq |v_{11}| < M2^{(k+1)/2})}) + M^4$, I_A being the indicator function on the set A, we have

$$\sum_{k} \frac{1}{2} \underline{y} 4^{k} P(|v_{11}| \ge M2^{k/2}) = \infty,$$
(4)

since $E(v_{11}^4) = \infty$.

Using the relation $(1-a)^b \leq e^{-ab}$, valid for $a \in [0, 1]$, $b \geq 0$ and properties of finite products, it is straightforward to show

$$\sum_{k} 1 - (1 - a_k)^{b_k} < \infty \Rightarrow \sum_{k} a_k b_k < \infty \qquad (a_k \in [0, 1], b_k \ge 0).$$

Therefore, (4) implies (3) and we are done.

References

- [1] GEMAN, S. (1980). A limit theorem for the norm of random matrices. Ann. Probab. 8 252-261.
- [2] SILVERSTEIN, J. W. (1984). On the largest eigenvalue of a large dimensional sample covariance matrix. Technical Report.
- [3] YIN, Y. Q., BAI, Z. D., AND KRISHNAIAH, P. R. (1984). On the Limit of the Largest Eigenvalue of the Large Dimensional Sample Covariance Matrix. Technical Report 84-44, Center for Multivariate Analysis, University of Pittsburgh.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium