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ABSTRACT

Consider a matrix made up of i.i.d. random variables with positive mean
and finite fourth moment. Results are given on its spectral norm and (if
it is square) spectral radius as the dimension increases.

1. INTRODUCTION

In your favorite computer language, create a 100 × 100 matrix U

full of i.i.d. random variables, uniformly distributed on (0, 1). Compute

λ, the Perron eigenvalue, the real eigenvalue of U equal to the spectral

radius (the maximum, in absolute value, of its eigenvalues), guaranteed

to exist for positive matrices. It turns out to be near 50. Why? The

answer depends on the following result.

525



526 SILVERSTEIN

Theorem 1.1 ([1],[4]). For n = 1, 2, . . . , and s = s(n) for which n/s→
y > 0 as n → ∞, let Vn = (vij), i = 1, 2, . . . , n, j = 1, 2, . . . , s, where

vij , i j = 1, 2, . . . ,∞, are i.i.d. random variables with E(v1 1) = 0 and

E(v2
1 1) = σ2 < ∞. Then the spectral norm ‖ 1√

s
Vn‖ (where for any

rectangular matrix A, ‖A‖ equals the square root of the largest eigenvalue

of AAT ) converges a.s. to (1 +
√
y)σ as n → ∞ ⇐⇒ E(v4

1 1) < ∞. If

E(v4
1 1) =∞, then lim supn ‖ 1√

s
Vn‖ =∞ a.s.

The matrix U is of the form Vn+µnene
T
n , where Vn is as above with

s = n, µ > 0, and en = 1√
n

(1, 1, . . . , 1)T . View U as a perturbation of

µnene
T
n , a rank-one matrix with positive eigenvalue µn, and exploit a

perturbation theorem, such as Corollary 6.3.4 in [3]: λ̂ eigenvalue of A+

E, A normal =⇒ the existence of eigenvalue λi of A such that |λ̂−λi| ≤
‖E‖. Thus, when µn is eventually greater than 2‖Vn‖ (which occurs

a.s., since ‖Vn‖ ∼ 2σ
√
n a.s.), a simple continuity argument applied to

the eigenvalues of tVn + µnene
T
n , t ∈ [0, 1], will yield λn, the largest

(in absolute value) eigenvalue of Vn + µnene
T
n , to be real, positive, with

multiplicity 1, and

|λn − µn| ≤ Kn

√
n with Kn

a.s.−→ 2σ as n→∞. (1.1)

(Follow the n continuously changing eigenvalues of tVn + µnene
T
n as t

moves from 0 to 1. For fixed t they all must lie in the union of the two

disjoint discs in the complex plane centered at the origin and µn, both

having radius t‖Vn‖. Necessarily, for all t ∈ [0, 1], one and only one

eigenvalue of tVn+µnene
T
n can lie in the disc centered at µn with radius

‖Vn‖, and it must remain real, positive, and larger than all the other

eigenvalues in absolute value.)

We see now where 50 comes into play, since µ for our U is simply 1/2.

But λ seems to be much closer to 50 than what is quaranteed by (1.1).

Indeed, a simulation of 1000 generations of independent U ’s resulted in

Perron eigenvalues ranging between 49.06 and 51.13. (1.1) would place

λ merely between 50− 10√
3

and 50 + 10√
3

(using the fact that the variance

of a uniformly distributed r.v. on (0, 1) is 1/12).

Compute the spectral norm of U . It cannot be smaller than λ. A

relation corresponding to (1.1) can be derived using similar continuity
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arguments from a perturbation theorem on the singular values of rect-

angular matrices, such as Corollary 7.3.8 in [3]:

Let A and B be n × s rectangular matrices, with respective singular

values σ1 ≥ σ2 ≥ · · · ≥ σq, and τ1 ≥ τ2 ≥ · · · ≥ τq, where q = min(n, s).

Then for all i = 1, 2, . . . , q,

|σi − τi| ≤ ‖B −A‖.

It follows that

|λn − µ
√
ns| ≤ Kn

√
n with Kn

a.s.−→ (1 + 1/
√
y)σ as n→∞, (1.2)

where λn = ‖Vn+µ
√
nsene

T
s ‖, and Vn, n×s, y are defined as in Theorem

1.1. But, again, simulations show ‖U‖ to be much closer than 10/
√

3

away from 50.

The purpose of this paper is to provide more detailed information on

the limiting behavior of the spectral radii and spectral norms of random

matrices as the dimension increases, with entries having positive means.

The following theorems will be proved.

Theorem 1.2. Let λn be the largest (in absolute value) eigenvalue of

Vn +µnene
T
n , where µ > 0, and Vn is defined in Theorem 1.1 with s = n

and E(v4
1 1) < ∞. Then, with probability one, λn is real and positive

(that is, it is the spectral radius of Vn + µnene
T
n ) for all n sufficiently

large. Moreover,

λn = µn+Xn +
1√
n
Zn

where {Zn} is a tight sequence, and Xn =
1

n

∑
1≤i,j≤n

vij . Thus, by the

central limit theorem, λn − µn
D−→ N(0, σ2).

Theorem 1.3. With Vn n×s, y defined as in Theorem 1.1, E(v4
1 1) <∞

and µ > 0

‖Vn + µ
√
nsene

T
s ‖ = µ

√
ns+

1

2

σ2

µ

(√
n

s
+

√
s

n

)
+Xn +

1√
n
Zn

where {Zn} is tight, and
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Xn =
1√
ns

∑
1≤i≤n
1≤j≤s

vij
D−→ N(0, σ2).

These theorems obviously account for the small variation of the

Perron eigenvalue and spectral norm of U about 50, the latter being

approximately σ2

µ
= 1/6 larger than the former.

Notice results for negative µ can be trivially derived from these

theorems.

The proofs, given in the next section, rely mainly on Theorem 1.1,

(1.1), and (1.2), and require little additional probabilistic arguments.

They can easily be extended to allow for complex entries in Vn (the

proof of Theorem 1.1 can be modified to the complex case).

As will be seen, Zn in either case can be expressed in a form for

which further analysis is possible. A more detailed study of Zn will

undoubtably yield it to be asymptotically normal.

It is remarked here that a similar result is obtained for the largest

eigenvalue of non-central random matrices of Wigner type, that is, sym-

metric matrices with independent entries on and above the diagonal ([2]),

although with a proof more probabilistic in nature. The techniques used

in the next section can easily be applied to the Wigner case.

2. PROOFS OF THEOREMS 1.2,1.3

For the following, Zn will denote a generic random variable, not

necessarily the same quantity from one appearance to the next, for which

{Zn} is tight.

We start with Vn n × n, satisfying the conditions of Theorem 1.2.

Concentrating for the moment on realizations for which ‖Vn‖ ∼ 2σ
√
n,

for any fixed realization we assume n is large enough so that λn, defined

in Theorem 1.2, satisfies ‖ 1
λn
Vn‖ ≤ 1/2. Notice, then, λnI − Vn is

invertible, and ‖(I − 1
λn
Vn)−1‖ ≤ 2 (use the fact that, for square A,

(I − A)−1 =
∑∞

j=0A
j whenever ‖A‖ < 1). Let f be an eigenvector of

Vn + µnene
T
n corresponding to λn. Then Vnf + eTnfµnen = λnf , which

implies µneTnf(λnI − Vn)−1en = f . Multiplying on both sides by eTn , we

find (noting that eTnf cannot be 0) λn = µneTn (I − 1
λn
Vn)−1en.

Write
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λn = µn(1 + 1
λn
eTnVnen + 1

λ2
n
eTnV

2
n en + eTn ( 1

λn
Vn)3(I − 1

λn
Vn)−1en).

We have |µneTn ( 1
λn
Vn)3(I− 1

λn
Vn)−1en| ≤ 2µn‖( 1

λn
Vn)3‖ = Kn · 1√

n
,

where Kn → 16(σµ)3.

For all n ≥ 1 and all realizations, let

Yn =

{
µn3/2eTn ( 1

λn
Vn)3(I − 1

λn
Vn)−1en if ‖ 1

λn
Vn‖ ≤ 1/2

√
n(λn − µn(1 + 1

λn
eTnVnen + 1

λ2
n
eTnV

2
n en)) o.w.

Then, since |Yn| ≤ sup
k≥n
|Yk| → lim sup

n
|Yn| ≤ 16(

σ

µ
)3 a.s., we have the

tightness of {Yn}.
We have

E((
1√
n
eTnV

2
n en)2) =

1

n3
E((
∑
i j k

vijvjk)2) =

1

n3
(nE(v4

1 1) + (3n(n− 1) + 2n2(n− 1))σ4).

Therefore, { 1√
n
eTnV

2
n en} is tight, which implies {µn

3/2

λ2
n
eTnV

2
n en + Yn} is

tight.

At this stage we have λn = µn + µn
λn
Xn + 1√

n
Zn (Xn defined in

Theorem 1.2). Therefore, µn
λn
− 1 = 1

nZn, and the proof of Theorem 1.2

is now complete.

We proceed to the proof of Theorem 1.3, where Vn is n × s. To

facilitate the exposition, we will write V = Vn. Let λ = ‖V +µ
√
nsene

T
s ‖.

Write V + µ
√
nsene

T
s in its singular value decomposition UΛV ([3], p.

415), where U is n×n, V is s×s, both orthogonal, and Λ is non-negative

diagonal, its diagonal elements arranged in non-increasing order. Then

λ = Λ1 1. Let u, v be the first columns of U ,V T , respectively. Then

V v + eTs vµ
√
nsen = λu and V Tu+ eTnuµ

√
nses = λv.

For the moment we concentrate on a realization for which

‖V ‖ ∼ (1 +
√
y)σ
√
s, and n sufficiently large so that ‖ 1

λ
V ‖ ≤ 1√

2
. Then

neither eTnu nor eTs v will be 0, λ2I − V V T , λ2I − V TV are invert-
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ible (I denoting the generic square identity matrix), and max(‖(I −
1
λ2 V V

T )−1‖, ‖(I − 1
λ2 V

TV )−1‖) ≤ 2.

We have V TV v + eTs vµ
√
nsV T en = λv − λeTnuµ

√
nses. Therefore

µ
√
ns(eTs vV

T en + λeTnues) = (λ2I − V TV )v,

which implies

µ
√
ns(eTs ve

T
s (λ2I − V TV )−1V T en + λeTnue

T
s (λ2I − V TV )−1es) = eTs v.

Similarly, we find

µ
√
ns(eTnue

T
n (λ2I − V V T )−1V es + λeTs ve

T
n (λ2I − V V T )−1en) = eTnu.

Noting that eTs (λ2I − V TV )−1V T en = eTn (λ2I − V V T )−1V es, we arrive

at the 2× 2 system

µ
√
ns

(
eTn (λ2I − V V T )−1V es λeTn (λ2 − V V T )−1en
λeTs (λ2 − V TV )−1es eTn (λ2I − V V T )−1V es

)(
eTnu
eTs v

)
=

(
eTnu
eTs v

)
.

Since

(
eTnu
eTs v

)
6= 0, it is an eigenvector of the above matrix. Thus

(µ
√
nseTn (λ2I − V V T )−1V es − 1)2

= λ2eTn (λ2I − V V T )−1ene
T
s (λ2I − V TV )−1esµ

2ns,

which implies

λ2 = µ2ns
eTn (I − 1

λ2 V V
T )−1ene

T
s (I − 1

λ2 V
TV )−1es

(µ
√
ns

λ2 eTn (I − 1
λ2 V V T )−1V es − 1)2

.

For the following Kn will denote a generic positive constant con-

verging to a constant not depending on the realization.

Notice |µ
√
ns

λ2 eTn (I − 1
λ2 V V

T )−1V es| ≤ Kn
1√
n

. Write

µ
√
ns

λ2
eTn (I − 1

λ2
V V T )−1V es =

µ
√
ns

λ2
Xn + Yn,

where Xn is defined in Theorem 1.3, and
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Yn =
µ
√
ns

λ2
eTnV V

T (I − 1

λ2
V V T )−1V es.

Notice |Yn| ≤ Kn
1

n3/2 .

Write eTn (I− 1
λ2V V

T )−1en = 1+ 1
λ
X

(1)
n , where X

(1)
n = 1

λ
eTnV V

T en+

Y
(1)
n , Y

(1)
n = 1

λ3 e
T
n (V V T )2(I− 1

λ2 V V
T )−1en, and eTs (I− 1

λ2 V
TV )−1es =

1 + 1
λX

(2)
n , where X

(2)
n = 1

λe
T
s V

TV es + Y
(2)
n , Y

(2)
n = 1

λ3 e
T
s (V TV )2(I −

1
λ2 V

TV )−1es. Notice X
(1)
n ,X

(2)
n ,Y

(1)
n ,Y

(2)
n are non-negative, with

max(X
(1)
n , X

(1)
n ) ≤ Kn, and max(Y

(1)
n , Y

(1)
n ) ≤ Kn

1
n

.

For all n sufficiently large, we have

λ =
µ
√
ns

√
(1 + 1

λ
X

(1)
n )(1 + 1

λ
X

(2)
n )

1 − (µ
√
ns

λ2 Xn + Yn)
.

Using |
√

1 + x − (1 + 1
2x)| ≤ 1

8x
2 for x ≥ 0, | 1

1−x − (1 + x)| ≤ 2x2

for |x| ≤ 1
2 , and arguing in the same manner in the proof of Theorem

1.2, we find for all n ≥ 1 and all realizations

λ = µ
√
ns+

1

2

µ
√
ns

λ2
(eTnV V

T en + esV
TV es) +

(
µ
√
ns

λ

)2

Xn +
1√
n
Zn.

Write

eTnV V
T en + esV

TV es = (
1

n
+

1

s
)
∑
ij

v2
ij +An,

where

An =
1

n

∑
i 6=i
j

vijvij +
1

s

∑
j 6=j
i

vijvij .

From the central limit theorem { 1
ns

∑
ij

(v2
ij − σ2)} is tight, and since

1
n

E(A2
n) = 2( (n−1)s

n2 + (s−1)n
ns

), we find { 1√
n
An} to be tight. Therefore

λ = µ
√
ns+

1

2
σ2µ
√
ns(n+ s)

λ2
+

(
µ
√
ns

λ

)2

Xn +
1√
n
Zn.
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Since λ = µ
√
ns+ Zn, we find(

µ
√
ns

λ

)2

− 1 =
1

n
Zn and

µ
√
ns(n + s)

λ2
− 1

µ

(√
n

s
+

√
s

n

)
=

1

n
Zn.

This completes the proof of Theorem 1.3.
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