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Abstract

This article provides capacity expressions for multi-ugied multi-cell wireless communication schemes when
the transmitters and receivers are equipped with multiptermas and when the transmission channel has a certain
correlation profile. In mathematical terms, this contribntprovides novel deterministic equivalents for the $gsl
and Shannon transforms of a class of large dimensional mndatrices. These results are of practical relevance to
evaluate the rate performance of communication channefs miltiple users, multiple cells and with transmit and
receive correlation at all communication pairs. In patdcuwe analyse the per-antenna achievable rates for these
communication systems which, for practical purposes, Eevant measure of the trade-off between rate performance
and operating cost of every antenna. We study specificallyptir-antenna rate regions of (i) multi-antenna multiple
access channels and broadcast channels, as well as thetycaga@i) multi-antenna multi-cell communications
with inter-cell interference. Theoretical expressionstivé per-antenna mutual information are obtained for these
models, which extend previous results on multi-user martienna performance without channel correlation to the
more realistic Kronecker channel model. From an infornmatizeoretic viewpoint, this article provides, for scenario
(i), a deterministic approximation of the per-antenna eatBieved in every point of the MAC and BC rate regions, a
deterministic approximation of the ergodic per-antenrgacdy with optimal precoding matrices in the uplink MAC
and an iterative water-filling algorithm to compute the ol precoders, while, for scenario (ii), this contribution
provides deterministic approximations for the mutual infation of single-user decoders and the capacity of minimum
mean square error (MMSE) decoders. An original feature isfwlork is that the deterministic equivalents are proven
asymptotically exact, as the system dimensions increass for strong correlation at both communication sides.
The above results are validated by Monte Carlo simulations.

I. INTRODUCTION

When mobile networks were expected to run out of power angufracy resources while being simultaneously
subject to a demand for higher transmission rates, Fos¢hjnintroduced the idea of multiple input multiple

output (MIMO) systems and Telatar [2] predicted a growth leé tapacity performance by a factein(V, n),
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compared to single-antenna schemes, for communicatiotwgebe ann-antenna transmitter and aN-antenna
receiver. This capacity gain stands when the propagati@mradi matrix model is formed of independent and
identically distributed (i.i.d.) Gaussian entries. In gifeal systems though, this linear multiplexing gain catyon
be achieved for large signal-to-interference plus noig®saSINR) and for uncorrelated transmit and receive
antenna arrays at both communication sides. Today, in gpithis remark, the scarcity of available frequency
resources has led to a widespread incentive for MIMO comuoatioins. Mobile terminal designers now embed
more and more antennas in small devices. Due to space liomisaimainly, this inevitably spawns non-negligible
channel correlation and, thus, non-negligible effects lom dchievable transmission rates. Since MIMO systems
come along with a tremendous increase in signal processigrements and, therefore, an even larger increase in
power consumption, both infrastructure and mobile terinim@nufacturers need to accurately assess the exact cost
of increasing the achievable bit rates by adding more aateon volume limited devices. The analysis of the exact
throughput gain incurred by extra antennas is thereforamaunt to evaluate the energy efficiency of multi-antenna
devices. The first purpose of the present article is to etalttee per-antenna achievable rate, which we further
refer to as theantenna efficiengyfor different communication models involving multiplears or multiple cells.
The antenna efficiency criterion comes in line with the cotiecentive for energy-efficient communications, that
are foreseen to predominate future telecommunicatiorareldnterest.

Multi-cell and multi-user systems are among the scenarfi@sain interest to cellular service providers. Although
alternative communication models could be treated, thesgmtearticle investigates the following two wireless

communication systems:

1) multiple access channels (MAC) in whidti mobile terminal users transmit information to a unique nexre
hereafter referred to athe base stationand the dual broadcast channels (BC) in which the basemstati
multi-casts information to thé< terminal users. While the major scientific breakthroughsninlti-antenna
broadcast channels are quite recent, e.g. [19], the pahetiplications are foreseen to arise in a near future,
with e.g. the 3GPP long term evolution standard [3]

2) single-user decoding and minimum mean square error (MMEoding [7] in multi-cell scenarios. In most
current mobile communication systems, the wireless nétsvare composed of multiple overlapping cells,
controlled by non-cooperating base stations. Under thegéitions, the achievable rates for every user in
a cell, assuming no intra-cell interference, are the capasfi the single-user decoding scheme in which
interfering signals are treated as Gaussian noise with avkn@riance. However, single-user decoders are
difficult to implement and are often replaced in practicgblagations by suboptimal linear decoders, such as
linear MMSE decoders. These decoders are attractive asatbedgnown to maximize the signal-to-interference
plus noise ratio (SINR) experienced at the receiver.

The achievable rate region of the multi-antenna MAC and B@&eeen known since the successive contributions

[19]-[20], which established an important duality link tveten the MAC rate regions and the BC rate regions in

both single antenna and MIMO channels, when the instanteneloannel realizations are assumed to be perfectly



known at both communication sides. To achieve perfect oblastate information at both communication ends,
the channel must be somewhat static during a sufficient leeripg@ and is often referred to asldock-fading
channel Overall, communication channels can often be modelledaaticplar realizations of a stochastic process,
in which case it is convenient to identify the parameter i gtochastic model that account for the communication
rate performance. The mathematical field of large dimeradicemdom matrices is particularly suited to this end,
as it can provide approximations of achievable rates as eatibmof the relevant channel parameters only, e.qg.
as a function of the long-term transmit and receive chanoeamance matrices in the present situation, or as a
function of the deterministic line of sight components irciBh models. The earliest notable result in line with
the present study is due to Tulino et al. [4], who provide apression of the asymptotic mutual information of
point-to-point MIMO communications when the random chdmnatrix is composed of i.i.d. Gaussian entries. The
authors also provide an expression of the ergodic capacitjeving power allocation policy at the base station.
In [38], Hochwald et al. derive a central limit result of theyanptotic capacity result obtained in [4], providing
therefore an asymptotic expression of the outage capatigrge MIMO uncorrelated channels. In [5], Peacock
et al. extend the result from [4] in the direction of multieusommunications by considering the sum/fGram
matricesH, HY, k € {1, ..., K}, of channeld, with independent Gaussian entries and separable variaofiep
The asymptotic eigenvalue distribution of this matrix miadederived (which is in fact a consequence of an earlier
result from Girko [39]), but neither any explicit expressiof the sum rate is provided as in [4], nor any ergodic
capacity maximizing policy is derived. In [23], Soysal et derive the sum rate maximizing power allocation
policy for a finite number of antennas at all transmit and ikeceevices in the case df users whose channels
H;, 1 <k < K, are perfectly known at the transmitters and are modelledrasecker channelsWe recall that
Kronecker channels are made of a matrix with i.i.d. Gaussianies multiplied both on the left and on the right
by deterministic Hermitian matrices, hereafter referrecas the (left and rightforrelation matrices Those are
more general than matrices of independent Gaussian emiiiesa separable variance profile, which can be seen
as Gaussian i.i.d. matrices multiplied on the left and onrigkt by diagonal matrices. Contrary to [4], [23] does
not provide a theoretical large dimensional analysis ofrd®ilting capacity, and makes the strong assumption that
all receive correlation matrices are equal. When the recedrrelation matrices do not have the same eigenspace,
determining the channel capacity, both in the finite and gegtit regimes, is more complex and requires different
mathematical tools. Those tools allow us in the present worbtain adeterministic equivalerfor every point in

the per-antenna rate region of the MAC and BC. That is, foryedleterministic precoding policy of the transmitters,
we provide a deterministic approximation of the per-anteachievable rate. This approximated value is more and
more accurate as the system dimensions grow large. This éasequence of our main result, stated in Theorem
2. We mention that the final formula of Theorem 2 is alreadynfband used by Chen et al., Equation (32) in
[10]. However, the latter is provided without proof, nor arigorous hypotheses on the considered matrices, and
stems in effect from a flawed usage of the previous Equatiprin(§10], which is only valid when all receive
correlation matrices have the same eigenspace. Chen aiswgs the iterative water-filling algorithm which we

shall introduce in the course of this article to derive tharmary of the ergodic rate region of MAC (see Table



II). The convergence of this algorithm to the correct catyasvhich we will partly prove in the current article, is
not provided in [10].

Regarding multi-cell networks, to the authors’ knowledigsy contributions treat simultaneously the problem of
multi-cell interference in more structured channel modeds i.i.d. Gaussian matrices. In [12], the authors carty ou
the performance analysis of TDMA-based networks with et interference. In [13], a random matrix approach
is used to study large CDMA-based networks with inter-caétiference, basing their work on the Wyner model
introduced in [12]. In our particular MIMO context, it is imptant to mention the work from Moustakas et al. [9]
who propose an analytic solution to the single-user degpgieblem with channel correlation and a single source
of interference, using the replica method [11]. In the pnéseticle, we will extend the results from [9] to more
interfering sources. Moreover, since the replica methad ithis day not proven to be mathematically correct, we
provide here a proof of the results in [9], under differenpbtheses on the matrix model.

In real channels, each transmitter and each receiver istaffdy different correlation patterns. Assuming those
patterns mutually independent, independent of the prafaganvironment and known to both communication ends,
the Kronecker channel is proven to be the most natural chamogel [37]. The multi-user Kronecker channel model
is more general than all previously described channel nsoddlen all receive correlation matrices are equal, we fall
back on the model in [23], when all correlation matrices aegdnal, we fall back on [5] and, when all correlation
matrices are identity, we fall back on [4]. Nonetheless, Kmenecker model is only valid when no line-of-sight
component is present in the channel, when a sufficientlyelatgmber of scatterers is found in the communication
medium to justify the i.i.d. aspect of the inner Gaussianrivnatnd when the channel is frequency flat on the
transmission bandwidth. In their substantial contribngid25]-[27], Hachem et al. have extensively studied the
point-to-point multi-antenna Rician channel model for e¥hthey provide a deterministic equivalent of the ergodic
capacity [25], the corresponding ergodic capacity-adhiginput covariance matrix [26] and a central limit theorem
for the ergodic capacity [27]. We recall that Ricean chasragk modelled as the sum of a deterministic line-of-
sight matrix and a random matrix of independent entries &ithariance profile. In [40], Moustakas et al. provide
an expression of the mutual information in time varying freqcy selective Rayleigh channels, using the replica
method. This result has been recently proven by Dupuy ehah yet unpublished work. The same authors then
derived the expression of the capacity maximizing preapduatrix for the frequency selective channel [41]. Part of
the present study is inspired by the ideas in [41]. A more giEriezquency selective Rayleigh channel model with
non-separable variance profile is studied in [28] by Rastti@dil. using alternative tools from free probability theory
The requirements from free probability theory on the stddigatrices are more stringent, though, since Gaussian
distribution must be assumed for the entries of the randotnicesa, while deterministic matrices in the model must
have an eigenvalue distribution that converges weakly torapactly supported distribution. Of practical interest is
also the theoretical work of Tse [8] on MIMO point-to-poirggacity in both uncorrelated and correlated channels,
which are validated by ray-tracing simulations.

The main contribution of this paper are two theorems, cbuatimg to the field of random matrix theory and

enabling the evaluation of the per-antenna rate achievedely point in the MAC and BC rate regions, as well



as an iterative water-filling algorithm enabling the dgstioin of the boundaries of thergodicrate region of the
MAC channel, when all channels are modelled according toKitemecker model.

The remainder of this paper is structured as follows: iniSadt, we provide a short summary of our results and
how they apply to multi-user and multi-cellular wirelessyaaunications. In Section 1ll, our main two theorems
are introduced. The complete proofs of both theorems atetdethe appendices. In Section IV, the rate region
of MAC and BC and the capacity of single-user decoding and MMfecoding with inter-cell interference are
studied. In this section, we also introduce our third masule an iterative water-filling algorithm to describe the
boundary of the ergodic rate region of the MAC. In Section \& provide simulation results of the previously
derived theoretical formulas. Finally, in Section VI, wesgiour conclusions.

Notation: In the following, boldface lower-case characters representors, capital boldface characters denote
matrices [ is the N x N identity matrix). X;; denotes th€s, j) entry of X. The Hermitian transpose is denoted
(). The operatorsr X, |X| and||X|| represent the trace, determinant and spectral norm ofxiitriespectively.
The symbolE[-] denotes expectation. The notatiéi¥ stands for the empirical distribution of the eigenvalues of
the Hermitian matrixY. The function(z)™ equalsmax(x,0) for real z. For F', G two distribution functions, we
denoteF = G the vague convergence &f to G. The notationz,, = 2 denotes the almost sure convergence of

the sequence,, to x.

Il. SCOPE ANDSUMMARY OF MAIN RESULTS

In this section, we summarize the main results of this @&tanhd explain how they naturally help to study, in
the present multi-cell multi-user framework, the effectslobannel correlation on thantenna efficiengywhich we

define as the achievable rate per transmit antenna.

A. General Model

Consider a set of{ wireless terminals, equipped witly, . .., nx antennas respectively, which we refer to as
the transmitters, and another wireless device equippéed Wiantennas, which we call the receiver. We presently
consider the communication from the terminals to the baatost although in the remainder of this article we
shall consider both uplink and downlink transmissions. @ed,; ¢ CY*"+ the channel matrix model between

transmitterk and the receiver. Lel; be defined as
1 1
H, =R2X,T? (1)

whereR,% € CV*N and T,% € C™*™r gre the nonnegative Hermitian square roots of the Hermit@megative
matricesR;, andT},, respectively, an&X, € CV*"* is a realization of a random matrix with Gaussian i.i.d. iestr
The matricesT;, and Ry, in this scenario model the correlation present in the chlaantansmitterk and at the
receiver, respectively. It is important to stress that ¢hosrrelation patterns emerge both from the inter-antenna
spacings on the volume limited devices and from the solideangf usefultransmitted and received signal energy;

that is, even though the transmit antennas emit signals isctropic manner, only a limited solid angle of emission



is effectively received, and the same holds for the receit@ch captures signal energy from a limited solid angle.
Without this second factor, it would make sense thaRglImatrices are equal at the receiver. This would mean that
signals are received isotropically at the receiver, whilefien too strong an assumption to characterize practical
communication channels. This being said, one can assumsgally identical and interchangeabd@tennason
each device. We therefore assume that the diagonal enfriRs. @and T, i.e. the variance of the channel fading
on every antenna, are identical and, up to a scaling factpraleto one. As a consequenadeR; = N and
tr T = ng. We will see that under these trace constraints, the hypethmade in Theorem 1, used to characterize
the capacity of MMSE precoders, are always satisfied, tbezahaking Theorem 1 valid for all possible figures
of correlation, including strongly correlated patternfieThypotheses of Theorem 2, used to characterize the rate
region of MAC and BC, require additional mild assumptiongking Theorem 2 valid for all but some unrealistic
correlation matriceR; and T. These statements are of major importance and rather ne®, 9im alternative
contributions, e.g. [25], [26], it is usually assumed thHa torrelation matrices have uniformly bounded spectral
norms (for all N). This physically means that only low correlation patteams allowed; short distances between
antennas ans small solid angles of energy propagation areftine excluded. In the present work, this restriction
is not needed. The counterpart of this interesting properiy reduction of the convergence rates of the derived
deterministic equivalents, compared to those propose@5hdnd [26].

As will be evidenced in Sections IV-A and IV-B, most multilcer multi-user capacity performance rely on the
so-called Stieltjes transform and Shannon transform oficestB y of the type

K
By = Y R/ X, T, X[R; )
k=1

We study these matrices, using tools from the field of largeetlisional random matrix theory [34]. The Stieltjes

transformm (z) of the Hermitian nonnegative definite matiky € CV*¥ is defined, forz € C \ R* as

mN(Z):/AiZdFBN()\) (3)

- %tr (By — 2Iy)"! @)

where F'B~ denotes the distribution function of the eigenvaluesBo§. The Stieltjes transform was originally
used to characterize the asymptotic distribution of themiglues of large dimensional random matrices. From a
wireless communications point of view, it can be directlgdigo characterize the signal-to-interference plus noise
ratio (SINR) of certain communication models. In the préseork, the Stieltjes transform dB matrices defined

in (2) will be used to approximate the SINR of MMSE decoderssiimgle-user communications with inter-cell
interference.

Then, there exists a link from the Stieltjes transform to sbecalled Shannon transforiti (z) of By, defined



for x > 0 as

1 1
Vn(z) = N log det <IN + EBN) (5)

_ /0%o log (1 + %) dFB~ ()) (6)

_ /:m (% _ mN(w)) dw. 7)

The Shannon transform, named after Claude Shannon, is calywrased to provide approximations of capacity

expressions in large dimensional systems. In the presenit, Wee Shannon transform &, matrices will be used

to provide a deterministic approximation of the achievai#e-antenna rate for different communication models.
Before introducing our main results, namely Theorem 1 anelofém 2, which are rather technical and difficult

to fathom without a preliminary explanation, we succinabscribe these results in telecommunication terms and

their consequences to the multi-user multi-cell commuicamodels at hand.

B. Main results

The main results of this work come as follows.

» We first introduce Theorem 1, which provides a deterministicivalentm?,(z) for the Stieltjes transform
my (z) of By, under the assumption that andn;, grow large but at the same rate and the distribution funstion
{FT+},, and {FR+}y form tight sequences [35]. This is, we provide an approxomatn3, (z) of my(z)
which does not depend on the realization of &g matrices and which is almost surely asymptotically exact
when N — oo. The tightness hypothesis is the key assumption that alitegenerate®; and T, matrices
to be valid in our framework, and that therefore allows usttalyg strongly correlated channel models.

« We then provide in Theorem 2 a deterministic equival®fj(x) for the Shannon transfory (z) of By. For
this theorem, the assumptions on RRg and T, matrices are only slightly more constraining and of margina
importance for practical purposes. Our results theorgtiedlow the largest eigenvalues @f, or Ry to grow
linearly with N, as the number of antennas increases, as long as the numtierseflarge eigenvalues is of
ordero(N) (Theorem 1 does not require this condition).

The major practical interest of Theorems 1 and 2 lies in thesidity to analyze mutual information expressions
for multi-user multi-antenna channels, no longer as ststihavariables depending on the matricKs but as
approximated deterministic quantities. The study of thgsantities is in general simpler than the study of the
stochastic expressions, even though the deterministidtsesre not closed-form expressions but solutions of iaipli
equations (see Section Ill). In particular, remember thatstudy here the trade-off ‘throughput gain versus cost’
of adding more antennas to the transmit or receive commtioicands. For this reason, the typical figures of
performance sought for are antenna efficiencies, i.e. thér@esmit antenna normalized capacity, sum rate or rate
region. Those performance figures are related to the 88e#thd Shannon transform Bfy-like matrices. We do
not provide in this study total rate expressions, Netimes the Shannon transform, for which asymptotic accuracy

of the deterministic equivalents cannot be verified. Usiiffigebnt techniques and under more constraining channel



conditions, alternative works have shown though that datéstic equivalents of the Shannon transform converge
asO(1/N?), see e.g. [26] for the case of Rician channels.

In practical applications, such as the determination of rédte region of MAC and BC, Shannon transform
expressions (5) are needed to evaluate the achievableorasdl points in the rate region, i.e. for all deterministic
precoders. When all users have perfect channel state iafamm there exists a duality between MAC and BC rate
regions. To determine the BC rate region, one therefore lgimgeds to treat the dual MAC uplink problem; see
Section IV-A. In order to account for the effect of the tralitsprecoders in the channel model, the correlation
matrices at the MAC transmitters will be replaced by the pai@f the channel correlation matrix and the precoding
matrix. Nonetheless, the determination of an explicit fdomthe optimal precoding matrices which maximize (5)
for block-fading channels is a very difficult problem both fmite N and in the asymptotic regime. To the authors’
current knowledge, this has not been solved. In the ergaises when the transmitters only have statistical state
information about the time varying channel, it is usuallggible to determine the precoders that reach the boundaries
of the ergodicrate region. However, for partial channel state infornmatiothe system, MAC-BC duality no longer
holds, so that the boundary of tleegodicrate region of BC cannot be determined.

In this article, we will provide (i) a deterministic equigt for every point in the MAC and BC rate regions for all
deterministic precoders in block-fading channels andtli§ precoding matrices which maximize the deterministic
equivalentV$; of the ergodic Shannon transforiV y of (5) in fast varying MAC channels when statistical channel
state information is available at the transmitters. Theaaavhy Theorem 1 and Theorem 2 are not able to determine
the precoders that correspond to the MAC rate region boyndane block-fading case is explained hereafter. When
deterministic precoders are used, every point in the ratems can bestimatediy a deterministic equivalent, even
on the boundary, for all finite system dimensions. This deieistic equivalent is (almost surely) asymptotically
accurate if, as the system dimensions grow (in some predefimnner), the sequences of precoding matrices
of growing dimensions satisfy some mild assumptions. Onthe$e assumptions is that the precoding matrices,
for growing dimensions, are chosen independently of Xhematrices. The precoders that reach the rate region
boundary of MAC block-fading channels are however exglidiuilt upon theX; matrices. Such precoders do not
satisfy the assumption of independence and our resulteftrerdo not hold, i.e. the deterministic equivalents exist
but are not asymptotically accurate in this case. In thedicggense though, optimal precoders are independent of
the realizations of the randol,;, matrices and can therefore be considered deterministicré3ults will therefore
hold in this scenario. The precoders that maximize the detéstic equivalent of the ergodic sum rate, and which
we characterize in this article, have the following intéires properties,

« their eigenspaces coincide respectively with the eigerespaf the correlation matrices at the transmitters,

« their eigenvalues are solution of a classical optimizapooblem,

« We provide an iterative water-filling algorithm to determithese eigenvalues, which, upon convergence, is

proved to converge to the correct solution.



Note that those precoders are not claimed to be the true atemwaximizing precoders, but only the matrices
which maximize thedeterministic equivalentf the ergodic sum rate. From this fact, it is easy to show that
difference between the rates achieved by the determiresfitvalent using those precoders and the true ergodic

rates achieved using optimal precoders asymptotically goeero almost surely.

IIl. M ATHEMATICAL PRELIMINARIES

In this section, we first introduce Theorem 1, which providefeterministic equivalent for the Stieltjes transform
of matricesBy defined in (2). The Shannon transformBf; is then provided in Theorem 2, under slightly tighter
assumptions on the matric®;, and T}.

Theorem 1:Let K be some fixed positive integer. For sorVec N*, let

K 1 1
By =Y RZX,T,X{R7 +8 (8)
k=1
be anN x N matrix with the following hypothesis for akt € {1,..., K},

1) X, = ( L ”) e CV*me with X € Ciid. for all N, k, i, j, andE| X}, — EXF[? =

Ve
2) R} € CN*N is the Hermitian nonnegative definite square root of the egative definite Hermitian matrix
Ry,

3) Ty = diag(r,...,m,) With 7, > 0 for all i,

4) the sequence$FT+},, > and {FR+}y~; are tight, i.e. for alle > 0, there existsM > 0 such that
FTe(M)>1—eand FR*(M) > 1 — ¢ for all ng, N,

5) S € CV*N is Hermitian nonnegative definite,

6) there exist > a > 0 for which

a <liminf ¢x < limsupey < b 9)
N N
with Cl = N/nk
Also denote, forz € C\ RT, my(z) = [ Al dFB~ ()), the Stieltjes transform aB . Then, as allh;, and N
grow large, with ratioc,
my(z) —m%(z) =0 (10)
where
-1
deF
2 S Ry — 21 11
mi(e) = < +Z/1+6m6k ; ZN) ()
and the set of functionée;(2)}, i € {1,..., K}, forms the unique solution to th& equations
deF -
(2) = — t R; (S R, — 21 12
Glz) = i <+Z/1+mek kzN> (12

such thatsgn(S[e; (2)]) = sgn(S[z]) when$[z] # 0 and such that;(z) > 0 whenz is real and negative.
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Moreover, for any > 0, the convergence of Equation (10) is uniform over any regio@ bounded by a contour
interior to
C\{z:z|<e}U{z=az+iv:z>0|v <e}). (13)

For all N, the functionmy; is the Stieltjes transform of a distribution functi@rg,. Denoting B~ the empirical

eigenvalue distribution function dB, we finally have
FBY _Fy =0 (14)

weakly and almost surely a¥ — oc.

Proof: The proof of Theorem 1 is deferred to Appendix A. ]
Remark 1:In her PhD dissertation [42], Zhang derives an expressiotheflimiting eigenvalue distribution
for the simpler case wher& = 1 andS = 0 but T; is not constrained to be diagonal. Her work also uses a
method based on the Stieltjes transform. Based on [42],einseto the authors that Theorem 1 could well be

extended to non-diagondl';,. However, proving so requires involved calculus, which we ot perform here.
Similar conclusions can be drawn from the work of Rashidilef28], based on operator-valued free probabilistic
tools, which is a simpler method but which requires that tlieervalue distributions off'y,, Rx and X have
finite support. The latter is too strong an assumption for pmaisent application purposes. Also, in [6], using the
same techniques as in the proof provided in Appendix A, 8hedn et al. do not assume that the matridgsare
nonnegative definite. Our result could be extended to tiEs #ringent requirement on the centil3] matrices,
although in this case Theorem 1 does not holdfoeal negative. For application purposes, it is fundamemad
that the Stieltjes transform a8 exist for z € R—, for which it is sufficient thafl'y > 0 for all k.

We now claim that, under proper initialization, fere C\ R™, a classical fixed-point algorithm converges surely
to the solution of (12). This result is largely inspired b thriginal work of Dupuy et al. [41], used in the context
of frequency selective channel models, and unfolds asvisllo

Proposition 1: For 2 € C \ RT, the fixed-point algorithm described in Table | convergelyuto the unique
solution{e;(2),...,ex(z)} of (12), such thatgn(S[e;(z)]) = sgn(3[z]) whenS[z] # 0 and such that;(z) > 0
whenz < 0, for all 4.

Proof: The proof of Proposition 1 is provided in Appendix E. ]

We shall see in Section IV-A that every point in the rate ragiof MAC and BC can be described in terms of
the solutions of (12), for = —0? < 0, wheres? is the additive Gaussian noise variance in the channel médel
such, Proposition 1 is of interest to the practical evabratf all points in the rate regions. Note that alternative
techniques are often used that produce faster convergkandhe fixed-point algorithm described in Table I, such
as the algorithm known as Newton’s method.

Looser hypotheses will be used in the applications of Thaoteprovided in Section 1V. We will specifically

need the corollary hereafter,
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Definee > 0, the convergence threshold amd> 0, the iteration step. For all
ke{l,...,K}, Seteg =1/z a.l’\de;1 = 0.
while max; {|e} — 6?71‘} > e do
for ke {1,...,K} do
Compute

-1
T;dFT J(T)
e J J I 15
~u k( +Z/1+%€J ZN) (15)
end for

assignn «— n + 1

end while

TABLE |

FIXED-POINT ALGORITHM CONVERGING TO THE SOLUTION OR12)

Corollary 1: Let K be some positive integer. For somée N*, let
K 1 1
By =Y RZX,TiX} R} (16)
k=1
be anN x N matrix with the following hypothesis for akt € {1,..., K},
1) X, = (ﬁX{;) € CN*mx where theij are i.i.d. Gaussian with zero mean and unit variance, foh ¢ac
j, N, k.
2) RE € CV*N s the Hermitian nonnegative definite square root of the egative definite Hermitian matrix
Ry,
3) T € C™*™ is a nonnegative definite Hermitian matrix,
4) {FTx},, >1 and{FR+} 5>, form tight sequences,
5) there exisb > a > 0 for which

a <liminf ¢, < limsupey < b a7
N N

with Cl = N/nk

Also denote, forz > 0, my(—z) = + tr(By + zIy)~'. Then, as allN andn; grow large (whileK is fixed)

with ratio ¢,

my(—z) —m3(—z) =0 (18)

where
-1

- deF
my(—z) = = tr <Z/ 1+ epmrer(— )Rk N xIN) (19)

and the set of functionée;(—x)}, i € {1,..., K}, form the unique solution to th& equations

—1
deF
ei(—x) = _trR <Z/ 1 +Ck7'kek )Rk erIN) -
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such thate;(—z) > 0 for all 4.
Proof: Since theX; are Gaussian, the joint distribution of the entriesXgfU coincides with that ofXy, for

U anyny x ny, unitary matrix. ThereforeX, T, X! in Theorem 1 can be substituted By, (UT, U")X! without
compromising the final result. As a consequence,Ehecan be taken non diagonal nonnegative definite Hermitian
and the result of Theorem 1 holds. ]

The deterministic equivalent of the Stieltjes transforry, of By is then extended to a deterministic equivalent
of the Shannon transform @, in the following result,

Theorem 2:Let z > 0 and By be a random Hermitian matrix as defined in Corollary 1 with tbkowing

additional assumptions

1) there existsy > 0 and a sequencey, such that, for allv,

 Jax max()\mﬂ, )\EVH) o (21)

where X > ... > A% denote the ordered eigenvalues of thiex N matrix X.
2) denotingby an upper-bound on the spectral norm of thg and Ry, k € {1,..., K}, and3 some real
constant such that > K (b/a)(1 + /a)?, an = b%3 satisfies

rylog(l +an/z) = o(N). (22)
Then, for largeN, ny, the Shannon transforMy (z) = [log(1 + 2\)dFB~ ()) of By, satisfies
Vn(z) =V (z) 220 (23)
where
1 K T
R 1 I S —
~(@) 0 det ( Nt Z Rk/ 1+ crexn(—2)k a (Tk)>
LS
_ T
JrZCk /log (1 + crex(—x)7) dF "+ (73)
k=1
+x-my(—z)—1. (24)
Proof: The proof of Theorem 2 is provided in Appendix B. ]

Note that this last result is consistent both with [4] whea tltansmission channels are i.i.d. Gaussian and with
[9] when K = 2. This result is also similar in nature to the expressionsiokd in [25] for the multi-antenna Rician
channel model and with [40] in the case of frequency seleahannels. We point out that the expressions obtained
in [40], [41] and [26], when the entries of th€, matrices are Gaussian distributed, suggest a faster qemves
rate of the deterministic equivalent of the Stielties an@r8ton transforms than the one obtained here. Indeed,
while we show here a convergence of ordér) (which is in fact refined tm(log’€ N) for any k in Appendix A),
in these works, the convergence is proven to be of ofdgr/N?).

Contrary to these contributions though, we allow Rg¢ and T, matrices to be more general than uniformly

bounded in spectral norm. First, Theorem 1 and Corollaryduire { F®+} and { FT+} to form tight sequences.
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Remark now that, because of the trace constr%imt" Ry = 1, all sequence$FR+} are necessarily tight. Indeed,
givene > 0, take M = 2/e; N[1 — FRx(M)] is the number of eigenvalues R, larger than2/e, which

is necessarily less than or equal A=/2 from the trace constraint, leading to— F®*(M) < ¢/2 and then
FR:(M) > 1—¢/2 > 1—e. The same naturally holds for tHE;, matrices. Observe now that Condition 2 in
Theorem 2 requires a stronger assumption on the correlatairices. Under the trace constraint, this requires that
there existsx > 0, such that the number of eigenvaluedp greater thanx is of ordero(N/ log N). This may not
always be the case, as we presently show with a counter-é&a@gmsider the sequences of matrifgsc CV*V,

N a power of2, whose eigenvalue distribution is a masslif densityl — 1/log, N and a mass iog, N of
densityl/log, N. Clearly this distribution satisfies the trace constraimd & unbounded, so that for all > 0, one
can takeN, a power of2 such thaflog, Ny > «; for N > Ny, rv = N/log, N and thenry log(1 +an/x)/N is
away from0 for all N large. This proves that the trace constraint is not enouglatisfies Condition 2 of Theorem
2. However, physically meaningful correlation matricesrdi present this type of exceptional behaviour. Instead,
low correlation tends to balance all eigenvalues around which case correlation matrices are uniformly bounded,
while high correlation tends to bring a very few eigenvalgesich less thanV/log, N) to be large, the others
being very small, in which case Condition 2 is satisfied. Friow on, we claim that the conditions of Theorem 1

and Theorem 2 are satisfied for alhysically meaningfutorrelation matrices.

IV. APPLICATIONS

In this section, we provide two applications of Theorems d ario the field of wireless communications. First,
in Section IV-A, we derive an approximation of every pointthre rate region of block-fading correlated multi-
antenna MAC and BC, which is (almost surely) asymptoticatigurate for all sequences of deterministic precoders,
and an approximation of the boundary of the ergodic rateoregif multiple access channels, which is (surely)
asymptotically accurate. We then introduce an iterativegyoallocation algorithm to maximize the deterministic
equivalent of the ergodic MAC rate region. Then, in Sectiv¥Bl we provide an approximation of the capacity
of the single user decoding and MMSE decoding in wireless MIMetworks with inter-cell interference. The
latter are almost surely asymptotically accurate in thekbliading sense and surely asymptotically accurate in the
ergodic sense.

Since in this section we study both uplink transmissionsnfirmobile terminals to base stations and downlink
transmissions from base stations to terminals, for natatioonsistencyI', matrices will be used to model channel
correlations at the base stations (be they transmittersamivers) and®; matrices will be used to model channel

correlations at the mobile terminals (be they transmittereeceivers).

A. Rate Region of Multiple Access and Broadcast Channels

1) System ModelConsider a wireless multi-user channel with > 1 users indexed fromi to K, controlled
by a single base station. Uskris equipped withn; antennas while the base station is equipped Witlantennas.

We additionally denote, = N/ny. This situation is depicted in Figure 1.
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f i
A WL i

Fig. 1. Downlink scenario in multi-user broadcast channel

Denotes € CV, E[ss"] = P, the signal transmitted by the base station, with power tcaim$ - tr P < P,
P >0, yx € C" the signal received by usérandn; ~ €N(0, 021, ) the noise vector received by uset The
fading MIMO narrowband channel between the base stationusedk is denotedH; € C**Y. Moreover, we

assume thaH,, follows the Kronecker model,
H, = R’ X, T} (25)

with Ry € C™**"* the (Hermitian) correlation matrix at terminalwith respect to the chann#l,, T, € CV*V
the correlation matrix at the base station with respedoand X, € C™*~ a random matrix with Gaussian
independent entries of variantgn. In this model, T, andR, satisfytr T, = N andtr Ry = n,. We additionally
constrain the eigenvalues of the matrids and Ty, k € {1,..., K}, to satisfy the mild Condition 2 of Theorem
2. From our previous remark, we mostly allow all but phydicateaningless models of covariance matrices.

Under the above assumptions, the downlink communicatiodaineads
yi = His + ny. (26)

Denoting equivalently; the signal transmitted in the dual uplink (MAC) by usersuch thatE[s;s!] = Py,
ﬁ tr P < Py, y andn the signal and the noise received by the base station, riasggdgcwe have the dual uplink

model
K

y = ZH,’:sk + n. (27)
k=1

In the following, we will successively study the MAC and BQeaegions for block-fading channels by means

of the MAC-BC duality [19]. We shall then consider the ergndite region for time varying MAC.

1Up to a scaling of the power constraints of the individualresassuming identical noise varianeé on each receive antenna for every
user does not restrict the generality and simplifies theréimal expressions.
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2) MAC and BC Rate Regions in Block Fading Chann®l& start by assuming that the chanridls ..., Hy are
constant over the observation period. The per-receivenaateate regiot®yiac (P, . . ., Px; H?), under respective

transmit power constraintg,, . .., Px for usersl to K and channeH" = [HY ... H'], reads [21]

Cyac(Pr, ..., Px;HY)

- U {{Ri,1§z‘gK}:ZRz-§%log

I+—ZHHP H,

V8 C{1,. }}, (28)

%ni tr(P;)<P; €8 i€8
P,>0
i=1,....K
whereP; > 0 stands for P; is nonnegative definite”.
Since the entries K, have variancé /ny, the power constraints dR;, ..., Pk necessarily scale with;. We

might have alternatively assumed, as is often the casettlib&; have entries of unit variance and therefore that
the power constraints are independent of the channel dioreBefore applying Corollary 1 and Theorem 2, we
need to verify that FR=P+} for growing ny, is necessarily tight and that Condition 2 of Theorem 2 issfiati.
From the argument given in Section IIl, bof®*} and{ FF+} are tight sequences. For> 0 such thati,e € N,
we can therefore choos® such thatl — F®+(v/M) < ¢/2 and1 — FP*(v/M) < £/2 for all ny; from Lemma
15, since the smallest;e/2 + 1 eigenvalues of botlR, and Py, are less than/M, at least the smallest,e + 1
eigenvalues oR P, are less tha/, hencel — FR«Px (M) < ¢ and { FR+P+} is tight. Once again, Condition 2
of Theorem 2 can be satisfied for all but meaningBs®, matrices, and we claim the latter of no relevance to
the current investigation.

We can now apply Theorem 2, which presently states that,fgrsets C {1,..., K}, we have forN, n;, large,

almost surely

1 1 H

1
= —logdet | I T S S— § ) 2 g
7 log de <N+ Z k/lJrckek( =y (m))

N ;
€8 kes
+ Z /10g 1+ cper(—0?)ry,) dFREPE (y)
kes ©
+o0?-m§(—0®) —1+o(1), (29)
where _
dFRPr (
m3(—o?) = —tr Z/”—W)THUQIN (30)
1+ cprper(—o?)
kes
ande;(—o?),...,ex(—oc?) are the unique positive solutions to
—1
deFR"Pk Tk) 9
t T; — T I . 31
eil—o g <Z/1+ckmek (—0?) ko (31)

From these equations, every point of the MAC rate region (28) be deterministically approximated. Note that
the convergence rates of (10) and (23) are dictated to soteatesxy theF R+ and F'T+, so that the terma(1) in
(29) cannot necessarily be bounded for fix@d

Now, we can similarly provide a deterministic equivalenteicery point in the rate region of the block-fading

broadcast channel. This rate region, nam€t:(P; H), has been recently shown [22] to be achieved by dirty
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paper coding (DPC). For a transmit power constrdibver the compound channél, it is shown by MAC-BC
duality that [19]
Ceo(PiH) = ) Cuac(Pr,..., Pg;H") (32)
Py,...,Px
K P<P
which is easily obtained from Equation (28).

To achieve the boundaries of the MAC and BC rate regions @tbck-fading channel, the precoding matrices
P;,...,Px need be tailored to the channdls, ..., Hx. To this day, no closed-form expression of these optimal
precoders is available, although an iterative water-§lisigorithm has been derived by Yu et al. in [43] to determine
these precoding matrices. Theorem 2 cannot be used eiithes, the optimal precoders will be strongly dependent
on the specific realization of tHd, and therefore dependent on tKe. If the X, are not known to the transmitters
though, the optimal precoding matrices obviously no londepend on theXy, but certainly on the correlation
matricesR;, andT,.

When the channel is varying too fast to allow reliable ch&esgmation, transmitters in a multiple access channel
typically do not know the exad; matrices. On the contrary, the transmit and receive cdioelanatrices are in
this case long-term channel variations that the transmittan usually reliably estimate. We study this scenario in
the next section.

3) MAC Rate Region in Fast Fading ChannelSuppose that th&l, channels are varying fast and that the
transmitters in the MAC only have statistical channel siafermation, i.e. they only know their respecti@
andR; matrices. In this case, the MAC rate region will be referre@ds$ theergodicrate region. The ergodic rate

region C"£2%) is in this case given by

Crrne (Prs..., Py HY)

. 1 1

,VSC{l,...,K}}, (33)

L tr(P;)<P; €8 i€8
" P,>0
i=1,...,K
where the expectation is taken over the joint random vagiéKl, ..., Xk).

Now, Theorem 2 states thdity (z) — V3, (z) — 0, asN grows large, on a subset of measuref the probability
spacef? that engenderXy, ..., X k). Integrating this expression overtherefore leads t&V v (x) — V3, (z) — 0.
We can therefore apply Theorem 2 to determine the ergodicreafionC\"22") of the fast fading MAC. For fixed

Py,...,Pgk, we therefore have here
N o2 = U A N o2 = 1 +Ckek(_02)rk

1
+ Z a /log (]. —+ Ckek(*0'2)rk) dFRkPk (Tk)
kes

+0?-mg(—o?) — 14 0(1), (34)

with mg(—c?) given by (30), and where the convergence with growids sure.
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Definen > 0 the convergence threshold ahd 0 the iteration step. At step= 0,
for all k € §, setp) = Py.
while maxy, {|p} —pgc_l\} > 7 do
Fork € 8§, defineeﬁjr1 as the solution of (12) foe = —o2, obtained from the
fixed-point algorithm of Table I.

for k € 8 do
for i=1...,n; do .
I+1 _ 1 . 1 _
Setpk’i = pup — m) , with i such thatn—k tr P = Pg.
end for
end for

assignl — I +1
end while

TABLE Il
ITERATIVE WATER-FILLING ALGORITHM

The transmission policy that achieves the boundary of tgedic rate region requires here to determine the rate
optimal precoding matriceP,,...,Pg, for all § C {1,..., K}, which are dependent only on tfE; and Ry,
correlation matrices. To this end, we first need the follgwiasult,

Proposition 2: If at least one of the correlation matricBs,, k£ € S is invertible, then the right-hand side of (29)

is a strictly concave function dPy, ..., Pg).
Proof: The proof of Proposition 2 is provided in Appendix C. ]
From Proposition 2, we immediately prove that §§éary set of matricegPs, ..., PT8|>' which maximize the

deterministic equivalent of the ergodic sum rate over thie&Ssés unique, provided that one of ti; is invertible.
In a very similar way as in [26], we then show that the matriPgsk < {1, ..., 8|}, have the following properties:
(i) their eigenspace oPj is the same as that Ay, (i) the eigenvalues oP} are the solutions of a classical
water-filling problem.

Proposition 3: For everyk € 8, denoteR;, = UkaU,':I the spectral decomposition &, with U unitary and
D, = diag(rk1, ..., 7, ) diagonal. Then the covariance matrices, . . .,Pl*s‘ which maximize the right-hand
side of (34) satisfy

1) P; = U,Q;UY, with Q; diagonal, i.e. the eigenspace Bf is the same as the eigenspaceRvf,

2) denotinge; = ex(—0c?) whenP,, = P}, for all k, thei'" diagonal entryp;, of Q; satisfies

+
Pl = (uk - ) (35)

CLELT ki

where theu; are evaluated such thgf% tr P = Pg.
Proof: The proof of Proposition 3 is provided in Appendix D. ]
We then propose an iterative water-filling algorithm to @btde power allocation policy which maximizes the
right-hand side of (29). This is provided in Table II.
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Fig. 2. Downlink multi-cell scenario

In [26], it is proven that the convergence of this algorithmplies its convergence towards the correct limit.
The line of reasoning in [26] can be directly adapted to theresu situation so that, if the iterative water-
filling algorithm of Table Il converges, theR,,..., Pk converge to the capacity-achieving precoding matrices
P71, ..., P}.. However, similar to [26], it is difficult to prove the surersgrgence of the water-filling algorithm.

Nonetheless, extensive simulations suggested that agewee always happens.

B. Multi-User MIMO

1) Signal Model:In this section we study the per-antenna rate performaneérefess networks composed of a
multi-antenna transmitter and a multi-antenna receiv@ariered by several multi-antenna transmitters in adjacen
cells. This scheme is well-suited to multi-cell wirelesswarks with orthogonal intra-cell and interfering inteslc
transmissions, both in the downlink and in the uplink. Intjgatar, this encompasses the following scenarios

« multi-cell uplink: consider a network af{ cells. On a given time or frequency resource, the base stafio
the cell indexed by € {1,..., K} receives data from a unique terminal user of this cell andtsriered by
K — 1 users transmitting on the same physical resource from eeglls indexed by € {1,..., K}, j # i.

» multi-cell downlink: the user being allocated a given plegsiresource in a cell indexed bye {1,..., K}
receives data from its dedicated base station and is inéelfey X' — 1 base stations in neighboring cells
indexed byj € {1,..., K}, j # 4. This situation is depicted in Figure 2.

In the following, the downlink scheme is considered. Coesid wireless mobile network witlk > 1 cells

indexed froml to K, controlled by non-cooperative base stations. We assuatedh a particular time or frequency

resource, each base station serves only one user. Thetteddoase station and the user of gellill also be indexed
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by j. Without loss of generality, we focus our attention on useequipped withV antennas and hereafter referred
to asthe useror the receiver Every base statiop € {1, ..., K} is equipped withn; antennas. Similar to previous
sections, we denotg = N/n;, although now this corresponds to the ratio of the numbentdranas at the terminal
user by the number of antennas at the base stations.

Denotes; € C™ the signal transmitted by base statigny € CY andn ~ EN(0,0%Iy) the signal and
noise vectors received by the user. We assume uniform polieration across the base station antennas, so
thatE[sjs'j*] = I,,. The fading MIMO channel between base statjpand the user is denoted; < CNxnj
Moreover, we assume th&f; is a Kronecker channell; = R;X,T;, with R; € CV*N andT; € C"%*". The
communication model reads X«

y:Hlsl—l—ZHjsj—i—n (36)

j=2
wheres; is the useful signal (from base statidhands;, j > 2, constitute interfering signals.
2) Single User DecodingWWe assume block-fading channels and uniform power allooattross the base station
antennas. If the receiver considers the signals fromAhe 1 interfering transmitters as Gaussian noise with a
known variance pattern, then base staticzan transmit with arbitrarily low decoding error at a pecaiwe antenna

rate Csy(o?) given by

K K
1 1
Csu(o?) = — log Iy+— Z ~ v log [y + — > H;HY|. (37)
= =
AssumeN and then;, i € {1,..., K}, are large. From Corollary 1, we define the functions®(—o?) as the
approximated Stieltjes transforms Ef:i H,;H"Y, i € {1,2}, at point—o?,
-1
; deFT" ) 2
bo(— =—t 2 VMR 1 38
m"°(—o r<z/1+ckme 02) r+ o ly (38)
where the set o’ (—0?), i € {1,2}, j € {1,..., K}, forms the unique solution with positive entries of
-1
’I'kdl*—"]:‘A ) 9
t R; —R 1 . 39
ei(~0%) = v tr <Z/1+ck7kek LRt 0Ty (39)

From Theorem 2, we then have
1 1 & T
C 2y =—1logdet [ I — R R gFTk
su(o?) v ogde < N+ > ; k/ T Ckellc(—UQ)Tk (T%)
1 1 & T
— —logdet [ I — E R Rk gFTk
N o8 < Nt ~ k/ 1+ cpei(—o?)m (Tk)>
/log (14 cregp(—0?)m) dFT* (73)
i/

log 1+ ckek —0 )Tk) dFTx (1)
Ck

+0% - [m"°(=0%) — m**(—0)] + o(1) (40)
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almost surely.

Similar to the previous section, the result naturally ha@t® in the ergodic sense, with almost sure convergence
replaced here by sure convergence.

3) MMSE Decoding:Achieving rates close t&sy in practice requires to perform multi-stream decoding at
once at the receiver. A suboptimal linear technique, the NMMi®coder, is often used instead as it allows to treat
transmit data streams independently, while maximizing3i¢R for each data stream at the receiver. In this section,

we study the performances of the MMSE decoder for correlaanismission channels. We assume block-fading

channelsH,, ..., Hg, which are supposed to be perfectly known at the receiver.
The communication model in this case reads
K /K
y=H!|Y H;H + oIy > Hjs;+n (41)
j=1 j=1

1
whereHY! (Zle H,;H + aQIN) is the MMSE linear filter at the receiver.
This technique makes it possible to transmit data reliablgng rate inferior to the per-antenna MMSE capacity

CumMse, defined as

R
2 — .
Cnvmse(0”) = N .E_l log(1 4 ;) (42)
where, denotingh; € C™ the 5" column of H, X; the j** column ofX; andt,, ..., t,, the eigenvalues dI';,

1 . . , .
we have,/t;R7x; = h; and the signal-to-interference plus noise ratjeexpresses as

—1
b (zjil H,H" + JQIN) h;

Vi = 1 (43)

1—h (zle H,HY + a2IN) h;

K —1
=b{' | Y HH - hh! +o°Iy | b (44)

j=1
—1
1 K 1
=tx; R | Y HHY —hh!'+0°Iy | Rix;, (45)
j=1

where Equation (44) is a direct application of Lemma 4. Thetaes x; have i.i.d. complex Gaussian entries
with variancel/n; and the inner matrix of the right-hand side of (45) is indej®rt ofx; (since the entries of

H;HY — h;h!! are independent of the entriés). Applying Lemma 7, forN large, we have
—1
L K
7 H H 2
vi = n—ltrRl ZlHjHj —h;ht' + %Iy | +o(1). (46)
]:
almost surely.
From Lemma 5, the rank 1 perturbati¢nh;h!') does not affect asymptotically the trace in (46). Therefore

the largeN limit, we have .

K
li
v = TL_1 tr Ry X:HJH;-I + 0'21N + 0(1) (47)

j=1
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Correlation matrix Eigenvalues

R1 0.00 000 0.00 0.00 000 0.01 060 7.39

Ro 0.00 000 0.00 0.00 0.09 097 303 3091

T, 080 082 092 104 107 109 111 114

Ty 048 052 056 063 079 118 147 237
TABLE Il

EIGENVALUES OF CORRELATION MATRICES FORN = nj =ng = 8§, d® = 0.5X AND dT = 10).

almost surely.
In the appendix, Equation (91), we prove that the trace if) ¢dnhverges almost surely td(z), defined in (39).

We therefore finally have the compact expressiondoh sk,

ni

Cyvmse(0?) = % Z log (1 + ticle%(—UQ)) +0o(1) (48)

=1
with ¢; = N/n; and where the convergence is with probability one.
Taking the expectation over ak; matrices on the left-hand side of (48), we have that the sasdtrholds for

the ergodic MMSE decoding capacity.

V. SIMULATIONS AND RESULTS

In the following, we apply the results obtained in SectionsAl and IV-B to determine the rate region of
block-fading and time varying multiple acess channels, e as the capacity of multi-user MIMO with inter-cell
interference. This section is moreover dedicated to thdysisaof the antenna-efficiency of the aforementioned

communication schemes.

A. Block Fading MAC and BC Rate Regions

First, we provide simulation results in the context of a ts®r multi-access channel, wiftki antennas at the
base station ana; = n, antennas at the user terminals. The antennas are placedear larrays. We further
assume that both user terminals are physically identicam@del the transmit and receive correlation matrices, we
consider both the effects of the distante (resp.d’) between adjacent antennas at the user terminals (redpe at t
base station) and of the solid angles of effective energystrassion and reception. We assume a channel model
where signals are transmitted and received isotropicalthé vertical direction, but transmitted and received unde
a small angler/6 in the horizontal direction. This simulates the situatiohene a strong propagation path exists
in a given direction, while the other paths are stronglyratsged. We then model the entries of the correlation
matrices from a natural extension of Jakes model with @il direction of signal departure and arrival. Denoting

A the transmit signal wavelength, the entfry b) of, say matrixT, is
9(T1)

max, . dT
T, = /(,(Tl) exp <2m|a — b|7 cos(9)> de (49)

min
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Fig. 4. Normalized mean square error of the corner pointhéntivo-user MAC, equal power allocation, fof = n; = ng varying from2

to 16, ULA model, antenna spaciné? varying from0.01 to 10.

with [0 (T1) 9,(3;1,2] the effective horizontal directions of signal propagatibnour case, we considéﬁ;) = 2m/3,

i) = 51/6, 0052 = 7 (%) = 7r/6, 6% = 0, o5 = 7/6, 082 = 7/3 and6'r2) = 2/3, wherep'Y)

min IIllIl min

and 6% are the minimum and maximum angles of transmit or receiveggnier the correlation matrixy.

We first assume the multi-access block-fading channel wighttvo users described above. We consitier=
n1 = ng, SNR = 20 dB, d* = 10X and uniform power allocation. In Figure 3, we compare siroitaresults
obtained from1, 000 Monte Carlo simulations to the deterministic equivalentagted in (29), whenV = 8 (top)
and N = 16 (bottom), and ford® = 0.5) or d® = 0.1\. We first observe that the empirical rate regions show a
large variance fotNV = 8 compared taV = 16. Nonetheless, the deterministic equivalent, evenNot= 8, is an
accurate estimate of any of the empirical pentagons. Ind@fantenna efficiency, observe in this specific scenario
that doubling the number of antennas at both communicaté@s seduces the achievable transmission rate of user
2 by 25% whend® = 0.5\ (leading therefore to a450% total throughput gain), and b§3% whend® = 0.1\
(inducing a133% total throughput gain). For high correlation, doubling thember of antennas therefore results
in small rate increase. As for the accuracy of the determinequivalent, observe that even for strong transmit
correlation, the deterministic equivalent is very precae claimed in Theorems 1 and 2.

To confirm the accuracy of the deterministic equivalentsnefor strong correlation patterns, we depict in Figure
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Fig. 5. Per-antenna achievable sum rate$dR varying from —5 dB to 30 dB, for different values of‘%.

4 the normalized mean square error of the rate region comiats That is, forl0, 000 Monte Carlo simulations,
we take the average estimation error of the rates at the cquiats provided by the deterministic equivalent,
normalized by the empirical rates. Observe that, even fordB /) ratios (corresponding to high correlations), the
estimation error goes very fast to zero,/dsincreases. The fact that the normalized estimation errevés lower

for higher correlation is only due to the intrinsic large ia¢éipns of the empirical rate region observed in Figure 3
whend® /) is large. In Table IlI, the eigenvalues of the correlatiortmoas for N = 8, d® = 0.5\ andd™ = 10\

are provided (they all sum up &). Those values confirm that it is possible to have some eaaas almost zero,
while only a few eigenvalues are large, and still have ceesisestimation of the per-antenna rate performance;
this is in phase with the conditions of Theorem 1 and Theoreidd?e, as a matter of fact, the importance of the
angular direction of signal arrival or departure, whichr, fdentical antenna spacings, can lead to very different
correlation patterns.

It was observed in Figure 3 that doubling the number of tranamennas seemed to be an interesting choice for
low correlation as the antenna efficiency is not much imphivéhile higher correlation seemed to reduce antenna
efficiency as the number of antennas increases. This treweriféed in Figure 5, where the sum-rate of the MAC
scenario under study is compared whn= 8, N = 16, for varying SNR and varying ratiosi/\. For very

low correlated antennas, i.e. in the case of nearly i.i.dinokel entries, there is no loss in antenna efficiency by
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Fig. 6. Ergodic rate region of two-user MAC, uniform poweloahtion, forN =2, N =4 andN = 8, n; = n2 = N, ULA model, antenna
spacing% = 0.5. Comparison between simulations and deterministic etgnite (det. eq. in the figure).

doubling their number. On the opposite, when the correfaitcreases, doubling the number of antennas at both
sides reduces the antenna efficiency. As we assume herepmyual allocation across transmit antennas, in which
case the precoding matrix is deterministic and indepenofettiie channel realization, these conclusions are in phase
with the conclusions of Goldsmith et al. in [45] and referemtherein. From Theorem 2, the exact description of
this phenomenon can be thoroughly analyzed, as a functitineofarious system parameters involved (as long as

a Kronecker channel model is assumed).

B. Time Varying MAC Ergodic Rate Region

We now move to the analysis of the ergodic rate region of tienying multiple access channels. In Figure 6, we
provide a comparison between the simulated ergodic MACreg®n and the associated deterministic equivalents,
for N = n; = ny varying from2 to 8, d®/\ = 0.5 and all other parameters are as described above. Uniform
power allocation is applied. It turns out that, although tHe= 2 case is slightly mismatched, fav > 4, the
deterministic equivalent of the ergodic rate region is vacgurate. FofV = &8, the deterministic equivalent is the
same as that of Figure 3 (top); Figure 6 therefore indicatas the deterministic equivalent in the block-fading

case is unbiased. In Figure 7, we considér= 8 and provide both deterministic equivalents fdf/\ = 0.5,



26

~ | T ~ s
z
% 2 ) (S e o\\ -
2, "o !
@ ! !
7 I !
D I I
...6 | |
- | ]
9 2 I I
© o ! !
© ' !
R . ! !
= - ©- 4- = 0.5, uniform I |
g 1 R ! !
[ H - — == d° __ H 1 I
S — = 0.5, optimal | |
= R .
S —e— 4— = 0.1, uniform : :
R . | |
—— 4- = 0.1, optimal | |
0 \ \ \ L '
0 0.5 1 1.5 2 2.5

Per-antenna rate of Useér[bits/s/Hz]

Fig. 7. Ergodic rate region of two-user MAC, equal power @lion (uniform) and rate maximizing power allocation (o), for N = 8,
n1 = ng = N, ULA model, antenna spaciné; = 0.5 (dashed) and%R = 0.1 (solid), SNR = 20 dB.

d®/X = 0.1, when optimal power allocation is applied or not. Again,tbgtaphs with uniform power allocation
correspond to the already presented graphs of Figure 3. @@p)did not provide Monte Carlo simulation results
here, which were found to match exactly the theoretical esinAs expected [45], it turns out that the stronger the
correlation patterns the higher the benefits of optimal paaillecation. Under optimal power allocation though, it
is less clear how antenna efficiency evolves as a functiaffigf\. This is characterized in the following.

The antenna efficiency for the ergodic MAC sum rate is prayiteFigure 8. When optimal power allocation is
applied, the per-antenna rate loss incurred by the additi@xtra antennas is similar to that observed with uniform
power allocation policy. Compared to Figure 5 though, weeols that the antenna efficiency does not increase for
low correlated antennas when optimal power allocation ia@, while the rate achieved when strong correlation is
present increases significantly. Under the simulation itimd of Figure 8, we therefore conclude that doubling the
number of antennas on a volume limited device has limitedachpn the antenna efficiency whenevr/\ is of
order1 or more. We also observe the peculiar behaviour, alreadgetbin [45], that high correlated transmissions
may lead to higher rates than low correlated transmissidheérdow SNR regime. The antenna efficiency is indeed
shown here to be larger wheff/\ = 0.1 than whend®/\ = 10 below SNR = 0 dB. Nonetheless, since strong

correlation induces a large decrease in per-antenna efficias the number of antennas increases, the point at low
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Fig. 8. Achievable per-antenna sum rate $¥R varying from—>5 dB to 30 dB, for different values of%, time varying channels, sum rate

maximizing power allocation.

SNR where the performance of strong correlation patterasaker is pushed further down in the SNR range.
We therefore conclude that, for a fixed number of antennase&sing channel correlation helps increasing
communication rates in the low SNR regime, but that artificianhancing correlation by adding more antennas
does not further help. For practical applications in whigyghhcorrelation and low SNR conditions may often arise,
carrying a large number of antennas is therefore a choicentel interest. In this case, a trade-off must be found
between higher rates in occasional low correlated and higR Scenarios and lower operating and manufacturing

cost incurred when embedding a small humber of antennas.

C. Multi-User MIMO

We now apply Equations (40) and (48) to the downlink of a twed-oetwork. The capacity analyzed here is
the per-antenna ergodic achievable rate on the link betwasa statiori and a given user, the latter of which is
interfered by the transmissions from base stafloffhe relative power of the interfering signal from baseigtat
2 is on averagd' times that of base station Base station§ and2 are equipped with linear arrays of andn,
antennas, respectively, and the user with a linear array ahtennas. The transmit and receive correlation matrices

T, andR,;, i € {1, 2}, are also modeled thanks to the generalized Jakes modeh @iv(49); the solid angles of
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Fig. 9. Ergodic mutual information of point-to-point MIMQff the two-cell downlink scenario with single-user decadifV varying from4
to 16, N = n1 = na, interfering cell with powel® = 25%.

effective energy transmission and reception are the sarirethe previous section. Note however, in this downlink
scenario, that now roles are interchanged as base statieritsaasmitters and no longer receivers.

In Figure 9, we consider the ergodic mutual information afgéé user decoding and také = ny = ny, = 4
to N = n; = ny = 16, I' = 0.25. Uniform power allocation is applied. The distances betwgansmit antennas
at the base stations (now transmitters) dfe= 10\, while at the receive terminati® = 0.5). The SNR ranges
from —5 dB to 30 dB. We observe here that Monte-Carlo simulations perfeoiédych the deterministic equivalent
obtained in (40), already fav = n = 4. As it turns out, doubling the number of antennas in this agerdoes not
significantly reduce the antenna efficiency, even with groorrelation at the receiver. When performing single-user
decoding, it is therefore an appropriate choice to incrélasenumber of antennas at both communication ends, as
long as the processing costs incurred are not dramaticadhgased.

In Figure 10, with the same assumptions as previously, wiyamahe ergodic capacity of the MMSE decoding
strategy. Here, the deterministic equivalent is only aatufor N > 8. We observe a significant difference in
performance between the single-user and the suboptinerliMMSE decoders, especially in the high SNR region,
where the MMSE decoder performance no longer grows lineailly the SNR. Also, additional antennas bring
marginal capacity gain, as their efficiency reduces rapidith larger N. The comparison to Figure 9 suggests that

additional antennas can be used much more efficiently bylsimeous stream decoding methods than by reinforcing
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Fig. 10. Ergodic mutual information of point-to-point MIM{B two-cell downlink, MMSE decodingN varying from4 to 16, N = n; = na,
interfering cell with poweT = 25%.

the MMSE decoding method with more antennas. Compromistieidecoding strategy might therefore be thought
of when dealing with inter-cell interference. It is in pattiar known that single-user decoding can be achieved
by performing successive MMSE decoding. If many antennasa&nilable at the receiver side, several MMSE
decoding steps are therefore expected to lead to strongrpefce increase compared to the single-step MMSE
decoder.

Remark 2:1t must be stressed that some scenarios show determintptivadent plots that do not converge
as rapidly to the simulated plots as those presented in #udos. The following misleading effect especially
happens. AV and then; grow at the same rate, the per antenna rate performancdyudaateases (as observed
in all situations here), so that the Monte Carlo simulateplaci#ty values decrease with largé. In parallel, the
deterministic equivalents also decrease. Now, in the cédaigh correlation both at the transmit and receive
sides, it often turns out that the convergence of the detdstii equivalent to the simulated capacity is very
slow. The resulting effect is that, for moderately larye the difference between the simulated performance and
its corresponding deterministic equivalent decreaseslglahile both curves decrease rapidly to zero; therefore,
the approximation errorelative to the exact capacity valuacreases withV, although the absolute error slowly

decreases. For instance, if both simulation plots and hitéstic equivalents decrease @51/N?), while their
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difference decreases 851/N), then for moderatéV the relative difference is of ord&?(V). This effect is very
unfortunate as it leads to plots where the simulated resuissometimes ten times larger than their deterministic
equivalent, although this effect does not invalidated Teerol and Theorem 2.

Note that the aforementioned problem is less accentuatet Wie correlation matrices have uniformly bounded
spectral norms, as noticed in [26] for Rician channels, asctinvergence of the deterministic equivalent is of order
O(1/N?), while here the fastest convergence rate that we proved wkl @hieve is of orden(1/log" N) for

any k (see proof of Theorem 1 in Appendix A).

VI. CONCLUSION

In this contribution, we analyzed the per-antenna rateoperdnce of a family of multi-antenna communication
schemes including multiple cells and multiple users, whaldng into account the correlation effects due to close
antennas and reduced solid angles of energy transmissiersp@cifically studied the rate regions of block-fading
MAC and BC channels, the rate region of the time varying MA@rutel, as well as the uplink and downlink capacity
of multi-cell networks with inter-cell interference. Ourain results stem from novel deterministic equivalents of
the Stieltjes transform and of the Shannon transform of &itetype of large dimensional random matrices. Based
on these new tools, an accurate analysis of the effects ehaatcorrelation can be directly translated into the
antenna efficiency of multi-user multi-cellular systentsedpecially turned out that, for the same communication
scheme, some decoding strategies suffer strongly from@eadse in channel correlation, while others do not. This
suggests that the trade-off between throughput gain oftiaddi antennas and limited incurred processing cost

strongly depends on the decoding strategy.
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APPENDIXA

PROOF OFTHEOREM 1

Proof: For ease of read, the proof will be divided into several sesti
We first consider the casi& = 1, whose generalization t& > 1 is given in Appendix A-E. Therefore, in the

coming sections, we drop the useless indexes.

A. Truncation and centralization

We begin with the truncation and centralization steps whidhreplace X, R andT by matrices with bounded
entries, more suitable for analysis; the difference of theltfes transforms of the original and nd8y, converging to
zero. Since vague convergence of distribution functioresjisvalent to the convergence of their Stieltjes transfrm
it is sufficient to show the original and new empirical distriion functions of the eigenvalues approach each other
almost surely in the space of subprobability measuresRowith respect to the topology which yields vague
convergence.

Let X;j = Xijlyx,,1<vN} —E(X,-jl{lxukm}) andX = (\%XU) Then, from c), Lemma 1 and a), Lemma
3, it follows exactly as in the initial truncation and cetization steps in [6] and [18] (which provide more details

in their appendices), that
|FBN _ FS+R%)~(T)~(HR%| 2) 0 (50)

asN — oo.

Let nowX;j = X5 - 1{x,, <in v} — B(Xij 1 x| <inn}) @NdX = (ﬁYU) This is the final truncation and
centralization step, which will be practically handled theme way as in [6], which some minor modifications,
given presently.

For any Hermitian non-negative definitex » matrix A, let A denote itsi-th smallest eigenvalue ok. With

A = Udiag(M, ..., *)U" its spectral decomposition, let for aay> 0
A% = Udiag(AM 1 pa<ay, - A1y, <a)) U™ (51)

Then for anyN x N matrix Q, we get from 1) and 2), Lemma 3,

1 1 1, o 1, 2 ].
| FSTRIQTQIRE _ pSTREQTIAIRAY < Zrank(R2 ~ R2%) 4 rank(T — T%) (52)
9 N 1 n
=5 2 lorsa t 5 2 Lprsa)y (53)
=1 =1
1
= 2% ((a,00)) + —F"((a,0)) (54)

Therefore, from the assumptions 4) and 6) in Theorem 1, we favany sequencéay } with ay — oo

HFSJrR% QTQHR% . FSJrR%aNQTaNQHR%“N H =0 (55)

asN — oo.
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A metric D on probability measures defined Bawhich induces the topology of vague convergence, is intced
in [6] to handle the last truncation step. The matrices suidih [6] are essentiallBy with R = I. Following

the steps beginning at (3.4) in [6], we see in our case thahwhe is chosen so that a — oo, ay T oo,

Oz{]gV(E|X1211{XU|21nN} +N71) —0 (56)
and
= 0‘}\/6 4
> (E|X11| Lxn <viy + 1) <00 (57)
N=1
We will get
D(FS+R%“N§(T“N}~(”R%°‘N FS+R%“N§T“N§”R%“N) a5 (58)
asN — oo.

SinceE|X;|> — 1 asN — oo we can rescale and replade with X/v/E|X;|?, whose components are
bounded bykIn N for somek > 2. Let log N denote logarithm ofV with basee!/* (so thatkln N = log N).
Therefore, from (55) and (58) we can assume that for sictne X;; are i.i.d.,EX;; = 0, E[X:1? =1, and
| Xij| <log N.

Later on the proof will require a restricted growth rate ontbpR| and ||T||. We see from (55) that we can
also assume

max([[R],|T]]) <log N (59)

B. Deterministic approximation afy(2)

Write X = [x1,...,%,], x; € CN and lety; = (1/,/n)R2x;. Then we can write

By=S+ z:rjyjyjH (60)
j=1
We assume: € C* and letv = 3[z]. Define
ey =en(z) = (1/N)trR(By — 2Iy) " (61)
and
1 & T -7 T
PN nz; 1+ cnTjen /z(lJrcNTeN)d (7) (62)
Write By = OAO", A = diag(\1,..., Ax), its spectral decomposition. L& = {R;;} = O"RO. Then
N opo
ey = (1/N)trR(A — 2Ix)~" = (1/N) ﬁ (63)
i=1

We therefore see thaty is the Stieltjes transform of a measure on the nonnegatale véth total masgl/N) tr R.
It follows that bothey(z) and zen(z) mapC™ into C*. This implies thatpn (2) and zpy(z) mapCt into C*
and, asz — oo, zpn(2) — —(1/n) tr T. Therefore, from Lemma 6, we also hayg the Stieltjes transform of a

measure on the nonnegative reals with total mags) tr T. From (59), it follows that

len| < v tlog N (64)
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and
[ ey 70| = o) < Fle o (65)

More generally, from Lemma 6, any function of the form

—T
z(1+m(2))
wherer > 0 andm(z) is the Stieltjes transform of a finite measure®n, is the Stieltjes transform of a measure

(66)

on the nonnegative reals with total massit follows that

T -1
—  I< 67
Fix now z € C*. Let By =Bny — ijjy?. DefineD = —zIy + S — zpn(2)R. We write
By —zIy-D= ijyjy;' + zpnR (68)
j=1

Taking inverses and using Lemma 4 we have

(BN — ZIN)71 —-D = Z’TjDily]’y;‘ (BN - ZIN)71 —+ ZpNDilR(BN - ZIN)71 (69)
j=1
" D ly;yH(Byy - 2Iy) 7!
_ ZT] YJz’J ( 4) z N)l + ZpNDilR(BN o ZIN)il (70)
o 1Ty (B —2In) Ty
Taking traces and dividing byv, we have
1 1
Nterlme(z): ﬁZTjdj = wy (71)
j=1
where ) )
o _ W/NXIR?(By) — zly) 'D'REx;  (1/N) trR(By — 2Iy)~'D"! (72)
T 1+ij'JT'(B(j) —zIn)ly; 1+enTjen
Multiplying both sides of the above matrix identity i, and then taking traces and dividing By, we find
1 1 &
NtrD_lRfeN(z): EZTjdjzwfv (73)
j=1
where o ) -
de — (1/N)xjR2(B(;) —zIy) ' RD™'R2x;  (1/N)trR(By — zIy) 'RD ! (74)
J 1+ 7558 (B) — 2In)ty; 1+cnTjen

We then show that, for ang > 0, almost surely

lim (log® N)w@ = 0 (75)
N—oc0
and
lim (log® N)w$, =0 (76)

Notice that for eacly, y}* (B(j) — zIy)"'y; can be viewed as the Stieltjes transform of a measur&bn

Therefore from (67) we have
1 ||
H -1 =<

1+ ijj (B(]) — ZIN) Yy

(77)

» .
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For eachy, lete(;) = e¢;)(z) = (1/N) tr R(B(;) — zIy) !, and

. _ -7 T,
PG) p(”(z)/—z(1+cme(j))dF (1) (78)

both being Stieltjes transforms of measuresfon, along with the integrand for each

Using Lemma 4, Equations (59) and (67), we have

7_2

enlz?log® N
1+ cenTten)(1+cenTegj)) ’

T
dF(1)| < No3

(79)

lzpN — z2pj| = len —egylen ‘/ 0

Let D(;y = —2zIn + S — zp(;)(z)R. Notice that(By — zIy)~' and (B(; — zIy)~! are bounded in spectral
norm byv~! and, from Lemma 8, the same holds true for! andD(*J;.
In order to handle both(, d; andwf, d at the same time, we shall denote Byeither T or Iy, andwy,
d; for now will denote either the originaby;, d; or wg;, dj.
i — Jl 2 3 4
Write d; = d; + dj + d; + d, where

(1/N)xHR? (B;) — zIy) 'ED'R?¥x;  (1/N)x}'R#(B; — 2In) 'ED; R?x;

% = - (80)
J L7y} (Be) = #In)71y; 1+ 7,55 (Bg) — 2In) 1y

2 WNXR2 (B — 21y) 'ED;Rax;  (1/N)wrR(B;) — <v)"'ED(; (81)
’ 1+ij;|(B(j) _ZIN)_1Yj 1+ij;|(B(j) —ZIN)_lyj

—-1pp-1 - -

dd _ (1/N) tI‘R(B(j) — ZIN) ED(]) B (1/]\]’) tI‘R(BN _ ZIN) IED 1 (82)
J 1+ ijjH(B(j) —2In)"ly; 1+ ij]H (B(j) —2In) "y,

g /N)trR(By —2Iy) 'ED"'  (1/N)trR(By — 21y) 'ED"" (83)
T 1+ij?(B(j) 7ZIN>71yj 1+CNTj€N

From Lemma 4, Equations (59), (77) and (79), we have

1 enlog” N|z?
Tjld] < N||Xj|‘27N,U7 (84)
2] < 120118 | LHRE (B, 2Ty)'ED-!Rix: — tr R(B; — 2Iy)~'ED-! 85
;) j|_|Z|U X ( () 2In) Xy rR( () 2In) G) (85)
zllog® N [ 1 enlz|?log® N
Tj|d?|§7| |ng\;7 (§+7| |v6 — 0, asn — oo (86)

log N

log N
Izlex log” N (lxj”Ré (B(j) — 2In) 'REx; — rR3 (B — 2In) ' R2| + T) o7

7j|dj] < N

From Lemma 7, there exist& > 0 such that,
Bl <~ 1° < KN~ log? N (88)
E%M;R% (B(j) — 2In) 'EDR?x; — tr R(B;) — 2In) 'ED}|° < KN 2 log™ N (89)
E%MR% (B(j) — 2In) 'REx; — trRZ(B(j — 2Iy) 'RZ[S < KN30 Clog®* N (90)

All three moments when multiplied by times any power oflog N, are summable. Applying standard argu-
ments using the Borel-Cantelli lemma and Boole’s inequdlin 4n events), we conclude that, for arty > 0

log" N max;<, 7;d; > 0 as N — oo. Hence Equations (75) and (76).
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C. Existence and uniquenessmof,(z)

We show now that for anw, n, S, R, N x N nonnegative definite an® = diag(n,...,7n), 7 > 0 for all

1 <k < N, there exists a unique with positive imaginary part for which

1 T T -t
e:Ntr(S—l—[/mdF (T)]R—ZIN) R (91)

For existence we consider the subsequed@és;, {n;} with N; = jN, n; = jn, so thatcy, remainscy, form

the block diagonal matrices
Ry, = diag(R,R,...,R), Sy, =diag(S,8,...,S) (92)

both jN x jN and
Ty, = diag(T,T,...,T) (93)

of size jn x jn.

We see that"™™ = FT and the right side of (91) remains unchanged forMa)l Consider a realization where
wfy, — 0 asj — co. We haveley, (2)| = [(jN) " tr R(B;y — 2In)"'| < v~ 'log N, remaining bounded as
J — oo. Consider then a subsequence for whigf) converges to, say,. From (67), we see that

‘ T < 7'|z|1)_1 (94)

1+ CNTEN;

so that from the dominated convergence theorem we have

/ e e L L / e dFT(r) (95)

along this subsequence. Therefersolves (91).

We now show uniqueness. Letbe a solution to (91) and let, = S[e]. Recalling the definition oD we write

e= %tr (D_IRD_H (S + [/ ﬁdFT(T)} R - Z*I)) (96)

We see that since botR and S are Hermitian nonnegative definite; (D*lRD*HS) is real and nonnegative.

Therefore we can write

_L(proy ([ [ e ypr _
eg—Ntr (D R(D") ([ |1+cNTe|2dF (1)| R+ vIn = esa + v (97)
where we denoted
_1 “1R(DH -1 /L T
o=t <D R(D") [ |1+CNT6|2dF ()| R (98)
B = %tr (D'R(D™M™) (99)

Let ¢ be another solution to (91), with, = 3[e], and analogously we can writg = e,a + vj3. Let D denote
D with e replaced bye. Then we havee — e = y(e — e) where

/ enT? ™ )terlRQ—lR
= e =
K (1+cenTe)(1+cente) N

(100)
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If R is the zero matrix, thery = 0, ande = e would follow. ForR # 0 we use Cauchy-Schwarz to find

2 -1 Hy—1 3 2 -1 Hy-1 3
vl < (/ 7|1:NT |2dFT(T)trD R]E,D ) R) (/ 7|1fNT |2dFT(T)trD R;,D ) R) (101)
CNTE CNTE

Nl
N

—a (102)

[e]

(e N [ ea \?
- (eza + vﬂ) (ggg + vg) (103)

Necessarilys and 3 are positive sincd. # 0. Therefore|y| < 1 so we must have = e.

For z < 0 ande > 0, the same calculus can be performed, withemaining the same. The step (97) is changed
by evaluatinge, instead ofe;, using the same technique. We obtain the samehile 5 is replaced by another

positive scalar. We therefore still have thak 1.

D. Termination of the proof

Let €3, denote the solution to (91). We show now for ahy 0, almost surely
A}im log! N(exy —e%y) =0 (104)

Let e = Se%]. anda® = a;, 8° = (%, be the values as above for whieh = e5a° + v3°. We have, using (59)
and (67),

2
-
°al /By < eSenylogN | ————dF7T 105
o/ < hevlogV [ Ty dF () (105)
T
=—logNS | [ —————dFT 106
&N | [ ()| (106)
<log? N|z|v~! (107)
Therefore
0 esa’
= 108
o (ega°+vﬂ°) (108)
_ ( esa’®/3° ) (109)
v+ e3ac/p°
log> N
< (Ogiﬁ) (110)
v? 4 log” N|z|
Let D°, D denoteD as above withe replaced by, respectivel?, andey. We have
1
eN =% trD 'R — w$ (111)
With e; = Sfen] we write as above
1 _ _ enT?en
= —tr(D'RD" = _dFT I — Qw 112
e Ntr( R ([ |1+CNT€N|2d (T):| R+v N)) Swy] (112)

= esa + v — Swy (113)
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We have as abovey — e = y(eny — e%) + wS where now
ly| < a°Zas (114)

Fix an ¢ > 0 and consider a realization for whidhgzl N w — 0, where!” = max(¢ + 1,4) andn large enough

so that
v’ 115)
wh| < ——m———
il < den|z|? log® N (
Supposesd < W' Then by Equations (59) and (67) we get
a<cenyv?|zflog? NG < 1/4 (116)
which implies|v| < 1/2. Otherwise we get from (108) and (115)
1
1 ea(x 2
<a’? 117
s a (ega + v — %[wfv]) (117)
log N |z| e
< | =/ 118
- (v2 + log N|z| (118)
Therefore for allN large
log’ N)w§
log Nley —ey| < (log’ N)wy - (119)
1— ( log? N|z| )2
v2+log? N|z|
< 2072(v? + log? N|z|)(log’ N)w§ (120)
— 0 (121)
asn — oo. Therefore (104) follows.
Let m%, = N~!trD°. We finally show
my —miy =0 (122)
asn — oo. Sincemy = N~ tr D! — w7, we have
my —my =7(en — €y) —wy (123)
where now
2 trD'RD°*
7= / Tt R (124)
(1+cnTten)(1+cenTel) N

From (59) and (67) we gdty| < cy|z|?v~*log® N. Therefore, from (75) and (104), we get (122).

Returning to the original assumptions dfi;, T, andR, for each of a countably infinite collection of with
positive imaginary part, possessing a cluster point witkithee imaginary part, we have (122). Therefore, by Vigali’
convergence theorem, page 168 of [15], for any 0 we have with probability onewy (2) —m$;(z) — 0 uniformly

in any region ofC bounded by a contour interior to

C\{z:|z|<e}U{z=x+iw:2>0,]v] <e}) (125)
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If S = f(R), meaning the eigenvalues Bf are changed vig in the spectral decomposition &, then we have
1

z) = - dFR(r (126)
) /f(r)‘f'rfmdFT(T)—Z ( )
T
z) = dFR(r (127)
) / f(’l“) + Tf 1+CN‘I7:8?V(Z) dFT(T) -z ( )
E. Extension tak > 1
Suppose now
K 1 1
By =S+ ) RZX,TiX| R} (128)

k=1
where K remains fixed, Xy is N x ny satisfying 1, theX,’s are independenfR; satisfies 2) and 4)T; is

ng X ng satisfying 3) and 4)¢;, = N/n,, satisfies 6), an® satisfies 5). After truncation and centralization we
may assume the same condition on the entries oXh's, and the spectral norms of thy's and theTy's. Write
Yk = (1/‘/nk)R,§xk7j, with x, ; denoting thej-th column ofXy, and letr, ; denote thej-th diagonal element

of Tj. Then we can write

ni

BN*S+ZZTkjyk]yk] (129)
k=1j5=1
Define
€N7k:€N,k(Z) = (1/N)t1“Rk(BN—ZIN)71 (130)
and
ng -
- Z S E— (131)
nkz 1+CkaJ6Nk
_ / 7—” dFT () (132)
1+ cpmren

We seeen , and p;, have the same properties ag andpy. Let B, ;) = By — Tk,jykyjy,ﬁ'd. DefineD =
—zIN+S— Zle Zpk(Z)Rk. We write

K

By —2Iy =D => | Y 7 ,ve;yh, + 2pr(2)Ri (133)
k=1 \j=1

Taking inverses and using Lemma 4, we have

K ng
D' — By —2In) " =) (D7D kv By —2In) T 4 2p DT Ry (B — 2In) ! (134)
k=1 \j=1

K Nk Dilyk,_jy]ti](Bkv(]) — ZIN)fl
Z Tk, 1

+ 7k, ¥h s By — 2IN) 7Yk

+ Zka_le(BN — Z:IN)_1
=1

(135)

Taking traces and dividing by, we have
K ng

1
I/N)trD™! — = 1
(1/N)tr mn(z Z -~ Zﬂwd;w wiy (136)
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where . 1
o W)X R By — 2ly) 'DTRExk;  (1/N) trRy(By — 2Iy)"'D” (137)
kg 1+ Tk,jyllij (Bk,(j) — ZIN)flykyj 1+ CkTk,jEN,k
For a fixedk € {1,..., K}, we multiply the above matrix identity bR, take traces and divide h¥. Thus we

get

K N
(1/N)trD Rk — ek Z " ZTk ]dkkJ = 2 (138)
where
1 1
. (/N)x! R2(By ) —2In) '"ReDT'Rxp;  (1/N)trRy(By — 2Iy) 'RyD ! (139)
kkj — 1+ Tk,jyz,j (Bk,(j) _ ZIN)flyk’j 1+ CkTk,jEN,k

In exactly the same way as in the case with= 1 we find that for any nonnegativé log’ Nwy and the
log’ w;'s converge almost surely to zero. By considering block dred matrices as before with, n;'s, S, R;’s

andT;’s all fixed we find that there existy, . .., e with positive imaginary parts for which for eacgh

S trR <s + Z [ / T —dFTx (r)} Ry — zIN> (140)

Let us verify uniqueness. Let* = (e5,...,e%)", and letD° denote the matrix in (140) whose inverse is taken
(essentiallyD after theey ;'s are replaced by the’s). Let for eachy, €5 , = Je$, andes = (e5 o, - - -, e%VQ)T. Then,
noticing that for each, tr SD°~HR,;D°~! is real and nonnegative (positive wheneSef: 0) andtr D°~"R,D° !

andtr R]-DO‘HRZ-D"‘1 are real and positive for all, j, we have

1 T ] —H -1
° =G |—tr|S - drT R, — 2| D°""R,D° 141
Ci2 =3 Iy Jr; [/1+eré§ (T>] i (40)
K 1 72 v
= °,—trR,D° "R,D°! -/7dFTf —trD°"R,D° ! 142
jz::lejQN r 7 C] |1+Cj7'6;|2 (T>+N r ( )
Let C° = (¢f;), b° = (b3,...,b%)T, where
1 H 1 T;
o =—trR;D° " "R;D°" ——dF'i 143
TN C]/|1—i—c]7'e °J2 (7) (143)
and
1
b=+ trD° HR,D° ! (144)
Therefore we have$ satisfies
= C%j + vb° (145)

We see that eackt ,, c;;, andb; are positive. Therefore, from Lemma 9 we hay€°) < 1.

ij?
Lete® = (e,...,€%)" be another solution to (140), witkh, D°, C° = (c;;), b° defined analogously, so that
(145) holds anth(C°) < 1. We have for each,

K
! -1 T T, -1
°_ 2= —trR;D° ° —e%)e; dF+i(7)R,;D° 146
GG =3yh" Z(ej QJ)CJ/(lJerTe;)(lJrchQ?) (MR;D (146)

=1
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Thus with A = (a;;) where

7_2

(I +cjmes)(1 +cjes)

1 _ _
A5 = N tr RiDo 1RjDO 1Cj/ dFTj (7’) (147)

we have

e’ —e’=A(e° —¢°) (148)

which means, ife® # e°, then A has an eigenvalue equal to 1.

Applying Cauchy-Schwarz we have

1

1 -1 —H/ 7 w0 (1 o—1 o—H/ 7 T, :
i < | =R;D° "R,D° ——dF' —R;D° "'R,;D ——dF"
laij| < <N j |1—|—ch6§|2 (1) N j2 i —|—Cj7‘§;-’|2 (1)

(149)

_ ijl/zg%uz (150)
Therefore from Lemmas 10 and 11 we get

PA) < pleges®) < p(C0)3p(C)F < 1 (151)

a contradiction to the statemeAt has an eigenvalue equal to 1. Consequently we leavee.

The same reasoning can be applied:zter 0, with e > 0. In this case matrixA remains the same. The step
(141) is now replaced by taking’, instead of its imaginary part, using the same line of remgpT his leads to the
same matrixC° with (145) remaining true wittb® replaced by another positive vector. The conclusifA) < 1
therefore remains.

Letey = (en,1,...,en k)" ande = (e 4,.-.,e% k) denote the vector solution to (140) for eash We

will show for any?¢ > 0, almost surely

lim log! N(ey —e%) — 0 (152)
N—oo
We have
1 _ 1 o
e = (N trRyD° 1, ..., + ' RxD hHT (153)
Let we = w% = —(w$,...,w%)T. Then we can write
1 1
en = (NtrRlD_l,...,NtrRKD_l)T—i—we (154)
Therefore
ey —exy =A(N)(ey —ey) +w° (155)

whereA(N) = (a;;(N)) with

7_2

(I+4c¢jren;)(1+ che}’VJ)

1
Qij (N) = N tr RiD_leD()ile / dFT (T) (156)
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We lete}, o, b7;(N), C°(N), by ;, andby;, denote the quantities from above, reflecting now their dépace on

N. Let C(N) = (¢;;(N)) be K x K with
2

1 T
¢ij(N) = —trR-D_HRiD_lc-/idFTJ T 157
]( ) N 7 J |1+Cj7'eN,j|2 ( ) ( )
Leten 2 = Slen] andw$ = I[w®]. Defineby = (by1,...,bn.x)" with
bni = %trD*HRZD*1 (158)

Then, as above we find that
en2 = C(N)eyo +vby + W5 (159)

Using (59) and (67) we see there exists a constéant> 0 for which

¢ (N) < Kylog® Nbjy (160)
and

cij(N) < Kylog® Nby (161)

cij(N) < Kilog* N (162)

for eachi, j. Therefore, from (145) we see there exisfs> 0 for which
en,; < Klog* Nuby ; (163)

Letx be such thak " is a left eigenvector o€° (V) corresponding to eigenvalyéC°(NN)), guaranteed by Lemma
12. Then from (159) we have

x'efy o = p(C°(N))xTe} , +vx by (164)
Using (164) we have
vx b N
1—p(C°(N)) = o~ > (Klog" N)~! (165)
x'ey o

Fix an/ > 0 and consider a realization for whidhg™*™” Nw¢%, — 0, asN — oo, wherep > 12K — 7. We
will show for all N large
p(C(N)) <1+ (Klog* N)~* (166)

For eachN we rearrange the entries efy 2, vb,, + w$, and C(n) depending on whether thé" entry of

vb,, + W§ is greater than, or less than or equal to zero. We can therefssume

C— C1i(N) Cu2(N) (167)
Co1(N) Caa(N)
whereCi1(N) is k1 X k1, Caoa(N) IS ko X k2, C12(N) IS k1 X ko, andCa1 (N) is k2 x k1. From Lemma 9 we have
p(C11(N)) < 1. If vby; + w5, < 0, then necessarilyby ; < |w%| < Ki(logn)~*7), and so from (163) we
have the entries o€2; (N) and Ca2(N) bounded byK; (log N)~?. We may assume for alV large0 < k; < K,

since otherwise we would hayg C(N)) < 1.
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We seek an expression fdet(C(N) — ALy ) in which Lemma 14 can be used. We considétarge enough so

that, for|\| > 1/2, we have(Ca(NN) — M)~ ! existing with entries uniformly bounded. We have

det(C(N) — AI) = det (I _C”(N)(C”(N)_M)_l) (C“(N)_M Crzl) )] (168)

0 I Coi(N)  Cypu(N)—AI

e (CH(N) “ AL~ C1a(N)(Caz(N) — AT) " Cay (N) 0 ) (169)
Car(N) Caoa(N) — AT
— det(C11(N) — A — Cia(N)(Caz(N) — ML)~ Cay (V) det (Caa (V) — AT) (170)
We see then that fok = p(C(NV)) real and greater thah,
det(C11(N) — AT — C12(N)(Caz(N) — AXI) "' Cq1(N)) (1712)

must be zero.

Notice that from (163), the entries @2(N)(Ca2(N) — AXI)~'Cy; (N) can be made smaller than any negative
power oflog N for p sufficiently large. Notice also that the diagonal elemefit€g, (V) are all less than. From
this, Lemma 13 and (163), we see thdC(N)) < K, log* N. The determinant in (171) can be written as

det(C11(N) — AL) +g(A) (172)

Whereg()\) is a sum of products, each containing at least one entry EgpiN)(Caa(N) — AI) 1 Cqy (N). Again,
from (163) we see that for a]\| > 1/2, g(\) can be made smaller than any negative powelo@fV by making
p sufficiently large. Choose so that|g(\)| < (K log N)~* for these). It is clear that any > 8k; + 4 will

suffice. Let)q,..., \;, denote the eigenvalues @f;. Sincep(Ci1) < 1, we see that fofA| > (IA{ log N)~*, we
have
ki
| det(Cia(N) = AT)| = [ T[N = )| (173)
=1
> (Klog N)~* (174)

Thus with f(A) = det(Cy1(N) — AI), a polynomial, ang;(\) being a rational function, we have the conditions of
Lemma 14 being met on any rectangle with vertical lines going through(f( log N)=*,0) and (K (log N)%,0).
Therefore, sincg (\) has no zeros insid€’, neither doeslet(C(N) — AI). Thus we get (166).
As before we see that
Jai; (N)] < e} 2(N)eg;/*(N) (175)

ij ij

Therefore, from (165), (166), and Lemmas 10 and 11, we havalfaV large

1
K2log® N -1\
L) (176)

p(A(N)) < < o N

For theseN we have thed — A(N) invertible, and so

ey —ey=(I—A(N))'w* (177)
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By (59) and (67) we have the entries Af(N) bounded byK; log* N. Notice also, from (176)

K?log® N — 1

1\ —K
|det(I — A(N))| > (1 — p(A(N)K > (1?210g8N<1+ o N ) ) > (2K%1og® N)™ % (178)

When considering the inverse of a square matrix in termssoédjoint divided by its determinant, we see that
the entries of I — A(N))~! are bounded by

(K — 1)K, (log N)*&-1
| det(I— A(N))]

Therefore, since > 12K — 7 (> 8k; +4), (152) follows on this realization, an event which occuithvprobability

< Ky(log N) 12K~ (179)

one.
Letting m3, = & tr D°~', we have

my —my =7 (ex —ey) (180)

wherey = (y1,...,7K)" with

2 trD'R;D° "
v = / Nz —dFTN () (181)
(L+cenTen,;)(1+ caTely ;) N

From (59) and (67) we get eadh;| < cx|z|>v*log® N. Therefore from (152) and the fact that} — 0, we

have
my —my — 0 (182)
almost surely, agv — oc.
This completes the proof. ]
APPENDIXB

PROOF OFTHEOREM 2

We first prove thatV, (x) as defined in Equation (24) verifies

Vi) = [ (- miow) o (183)

w

and then we prove that, under the conditions of TheoreM°2y) defined as such verifies

V(@) =V (z) 250 (184)

A. Proof of (183)
First, observe that we can rewritg(z) under the symmetric form,

K —1
In+ Y 5,&{4 ) (185)

1
ei(z) = N trR; <z
k=1

5i(2) = Ty (=2 [T, + cies(=)T]) ) (186)

n;
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and then form3,(z),

K —1
In+ ) 5,&{4 ) (187)

k=1

o 1
my(z) = Ntr —z

Now, notice that

K —1
z [In + Z 5kRk‘| ) ) (188)

k=1
K
= > dk(—2) - ex(—2) (189)
k=1
Since the Shannon transforit{z) satisfiesV(z) = f:"o[w—l — my(—w)]dw, we need to find an integral form

for S5 | 6r(—2) - ex(—2z). Notice now that
d 1 = -
—-y log det (IN +3 Mz)Rk) =2y ex(~2) 6(~2)
k=1 k=1

a1 logdet (I, + cker(—2)Tx) = —2 - €} (—2) - dp(—2) (190)

dz N
d K K K
o <225k(—z)ek(—z)> = Z Ok(—2)ex(—2) — z 252(—2) cep(—2z) + 0k(—2) - ep(—2) (191)
k=1 k=1 k=1

Combining the last three lines, we have
K

> ok(—2)en(—2) =

k=1

d 1 K K K
7 l—ﬁ log det (IN + Zék(—z) ) Z logdet (I,,, + crex(—2)Tk) + zZék(—z)ek(—z) (192)

k=1 k=1 k=1
which after integration leads to

[ (- mico)n-

K
1
N log det (IN + Zék(—z) ) + Z — logdet (I, + cxer(—2)Tk) — zZék (193)

k=1 k=1
which is exactly the right-hand side of (24).

B. Proof of (184)

Consider now the existence of a nonrandarmand for eachV a non-negative integery for which

max max()\z\iﬁl, )\gjﬂ) <a (194)

(eigenvalues also arranged in non-increasing order). Ttveaachi

1
R2XTXHR2 R2x T2)

)‘27N+1 = (52rN+1 (195)

< ?I XX (196)
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and then we have, from Lemma 15,
Apoin S (XX 4 - 4 X X)) (197)

We can in fact consider that the spectral norms ofXheare bounded in the limit. Either Gaussian assumptions
on the components, or finite fourth moment, but all comingrfrdoubly infinite arrays (remember though that we
need the right-unitary invariance structure Xf). Because of assumption 5 in Corollary 1, we can, by enlgrgin
the sample space, assume e&his embedded in aiV x n; matrix X/, whereN/n, — a as N — oo. Then,

with probability one (see e.g. [34]),
limsup A52, 4y < limsup o (X4 X4 ™) + - + | X5 X5 )
N N
< a?K(b/a)(1+ a)? (198)

Let a° be any real greater thaw? K (b/a)(1 + /a)?.
SinceS = 0 here, it follows as in [6] tha{ FB~} is almost surely tight. Lef'y, denote the distribution function

having Stieltjes transforrm$;, and letf on [0, c0) be a continuous function. Then the function

foo (@) = { f@) s wsa (199)

f@@®) , x>a°

is bounded and continuous. Therefore, with probability

/ Fuo (2)AFBY (z) — / Fuo (2)AFS () — 0 (200)

asN — oo.

Suppose nowy = o(N). Then, since almost surely there are at mtist-y eigenvalues greater thasi for all
N large, any converging subsequence 6K, } must have some mass lying @ a°]. This implies, with probability
11

1 [e]
¥ X 50 [ f@drz@ -0 (201)

Ni<ao [0,a°]
asN — oo.

Let by be a bound on the spectral norms of tReandR,;. Then
H H
Bl < bR (1X3 X3+ + [ X X5 (202)

Fix a numbers > K (b/a)(1++/a)?, and letaxy = b% 3. Suppose also that is increasing and that(ax)ry =
o(N). Then
1
[ H@dr® @) - 5 X 50 -0 (203)

)\iga"

almost surely, asv — oo. Therefore, with probabilityi,

/ f(z)dFB~ (z) — /[( - f(z)dFY(xz) — 0 (204)

asN — oo.
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For any N we consider, forj = 1,2,..., the jN x jN matrix By ; formed, as before, from block diagonal
matrices andj N x jn; matrices of i.i.d. variables. Then with probability FB~. converges weakly td's, as
j — oo. Properties on the eigenvaluesBly ; will thus yield properties off'y,.

By considering the bound offB,,_ ;|| analogous to (202), we must ha¥&, (ax) = 1 for all N large.

Similar to (198) we see that, with probability

limsup Ay377, 4y < a?((1+ Ve + -+ (14 vex)?) (205)
J

this latter number being less thaf for all N large.
At this point we will use the fact that for probability measay, P on R with Py converging weakly taP,
we have (see e.g. [36])
hH]lvinf Py(G) > P(G) (206)
for any open seti. Thus, withG = (a°, ) we see that, with probability, for all N large
FR((a®,00)) = 1 — Fy(a®) < liminf FBY4((a°, 00)) (207)
J
<2Kry/N (208)
Therefore, for allN large

/( T ) < flaw2Kr/N —0 (209)

asN — oo.

Therefore, we conclude thaf, f(z)dFy (z) is bounded, and with probability
[ 1@ar® (@) - [ f@drz@ -0 (210)
as N — oo. This concludes the proof.

APPENDIXC

PROOF OFPROPOSITION2

The proof stems from the following result,

Proposition 4: f(Py,...,Pxk) is a strictly concave matrix in the Hermitian nonnegativirdee matricesP, ..., Px,
if and only if, for any couplegP;,,Py,),..., (Pk,,Pk,) of Hermitian nonnegative definite matrices, the function
p(A) = f(AP1, + (1 = A)Py,,..., APk, + (1 - A\)Pk,) (211)

is strictly concave.

Let us use a similar notation as in (217) of the capacity,

I =I(APy, + (1 = A\)Py,,..., AP, + (1= )Pjs),) (212)
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and consider a seb, ex, P1,...,Pg)) which satisfies the system of equations (217)-(219). Them fremark
(222) and (223),

ov 06k oV de, OV

— + — 213
Za(sk ox " 9er o T ON (213)

ov
=— 214
N (214)

where
‘71((51,...,(5|S‘761,...,e‘5|,)\)I—)[_()\) (215)
Mere derivations oft lead then to

v 1

v > (e} ) tr (I + cieiRiPy) (Ri(P;, — Py,))? (216)

=
Sincee; > 0 on the strictly negative real axis, if any of ti;’s is positive definite, then, for all nonnegative
definite couplegP;,, P;, ), such thatP;, # P,,, I” < 0. Then, from Proposition 4, the deterministic approximate

on the right-hand side of (29) is strictly concavem, ..., P|g| if any of the R; matrices is invertible.

APPENDIXD

PROOF OFPROPOSITION3

The proof of Proposition 3 recalls the proof from [26], Prejion 2. We essentially need to show that, at point
(0%, .. ,5|*S‘,e’f, . ’el*S\)' the derivative of (29) along an§);, is the same whether th& and thee} are fixed or

vary with Q.. In other words, using the form (193) for the capacity, lede§ine the functions

1
’Vo(Pl, .. ,P|5‘) = Z N log det (Ink + ckekRkPk)

kes
1
+ N log det <IN + Z5ka>
kes
K
— 02 0u(—0%)er(—0?) (217)
k=1
where
—1
e; = ei(P1,...,Pg) = 1trT <02 Iy + > 6Ty ) (218)
kes
0; = 6i(P1,...,Pg|) = %trRiPi (0 Lo, + Ciei(z)RiPi])_l (219)
andV : (Py,...,Pg,01,...,0s),€1,...,¢5) — V°(P1,...,Pjg)). Then we need only prove that, for dllc 8,
av * * *
85 (I’l,...’P‘S|,617...7 \*S|7617"'76\S|) =0 (220)
av * * *
(Pl,...,P‘gl,(sl,..., ‘*Sl,el,...,e‘sl) =0 (221)

ey,
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Remark then that

-1
v 1
G—(Sk(Pl,...,P‘g|,51,...,5‘5|,€1,...,€|5‘):Ntr <I+252T’L> T —O'Q(ik (222)
=

ov 1 _

a—ek(Pl, . ,P‘g|,51, . ,5‘5|,€1, . ,€|5‘) = CkN tr |:(I + ckekRiPi) ! RkPk:| — 0’25k (223)
both being null whenever, for all, ¢, = ex(—0?,Py,...,P|g)) anddy, = 0x(—0?,P1,...,Pg|), which is true in
particular for the unique power optimal soluti@T, . . ., P\*Sl whenevere, = e}, andd, = d5.

When, for allk, e, = e, dp = 05, the maximum ofV over theP,, is then obtained by maximizing the

expressionsdog det (L, + cre;RiPy) over P,. From the inequality, (see e.g. [2])

Ny
det(L,, + crefRiPx) < [ (Mo, + cheiRiP)ii) (224)

=1
where, only here, we denofX),; the entry(s, i) of matrix X. The equality is obtained if and onlyXf,, +cief R Py
is diagonal. The equality case arises Iy and R = UkaU,':I co-diagonalizable. In this case, denotiRg =
U, Q,UY, the entries 0fQx, constrained bynl—A tr(Qx) = Py are solutions of the classical optimization problem
under constraint,
sup logdet (I, + cxer.QrDy) (225)
itr(%i)gm

whose solution is given by the classical water-filling altton. Hence (35).

APPENDIXE

PROOF OFPROPOSITION1

The convergence of the fixed-point algorithm follows the edime of proof as the unigqueness in Section A-E.
Instead of proving the convergence of the algorithmy at —o2, we start by proving the convergence foz Ct.
If one considers the differeneg' ™! — e, wheree™ = (e}, ..., e%), instead ofe® — e°, the same development as
in Section A-E leads to
el —e"=A,(e" —e" ) (226)

for n > 1, whereA,, is defined, similarly as in (147), a&,, = (aj};), with a; defined by

7_2

(1+ che?_l)(l + che;?)

From Cauchy-Schwarz inequality, and the different boundshe D,,, R and T, matrices used so far, we have
< |z%¢; log N4

dF7Ti (7). (227)

1 _ _
al. = NtrRiDn—l leDn 1Cj/

]

ay < S5 (228)
with v = $(z]. Denotingcy = max(c;), we then have that
m n < 20 log N4 n n—
mjax (ejH'l — ej) < K|1|]—40 < —N mjax (ej —e] 1) . (229)
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Let 0 < £ < 1, and take now a countable sgt;, zo, ...}, v = [zk], such that[(%% <1—c¢for
all z, (this is possible by letting,, > 0 be large enough). On this countable set, the sequeféBsare therefore
Cauchy sequences dii”: they all converge. Since the] are holomorphic and bounded on every compact set
included inC \ R*, from Vitali's convergence theorem [15], the functiefi(z) converges on such compact sets.
Now, for z = —¢?, from the fact that we forced the initialization step todje=1/02, ¢} is the Stieltjes transform
of a distribution function at point = —¢2. It now suffices to verify that, ife} is the Stieltjes transform of a
distribution function at point, then so ise}*!. This requires to verify that € C*, e/ € C* impliesej*! € CT,
z € C*, zeP € Ct implies ze[*! € C*, andlim,, ... —yel, (iy) < oo implies thatlim,, .., —yeJ, (iy) < co. This
follows directly from the definition ok’. From the dominated convergence theorem, we then also havehe
limit of €} is a Stieltjes transform that is solution to (12). From théqueness of the Stieltjes transform, solution
to (12) (this follows from the pointwise uniqueness ©m and the fact that the Stieltjes transform is holomorphic
on all compact sets of \ R*), we then have that converges for allj and> € C\ R*, if e(]? is initialized at a
Stieltjes transform. The choice = —o?, ¢} = 1/0” follows this rule and the fixed-point algorithm converges to

the correct solution.

APPENDIXF

USEFUL LEMMAS

In this section, we gather most of the known or new lemmas lwhie needed in various places in Proof A.
The statements in the following Lemma are well-known

Lemma 1: 1) For rectangular matriceA, B of the same size,

rank(A + B) < rank(A) + rank(B) (230)
2) For rectangular matriceA, B for which AB is defined,

rank(AB) < min(rank(A), rank(B)) (231)

3) For rectangula\, rank(A) is less than the number of non-zero entriesAof

Lemma 2:(Lemma 2.4 of [6]) ForN x N Hermitian matricesA and B,
1
|FA - FB| < ~rank(A - B) (232)

From these two lemmas we get the following.
Lemma 3:Let S, A, A, be HermitianN x N, Q, Q both N x n, andB, B both Hermitiann x n. Then
1)
| FS+AQBQ"A _ Fs+A6}36”AH < %rank(Q ~-Q) (233)

2)
_ —_ 2 .
| FSTAQBRIA _ pSTAQBAIA| < Zrank(A - A) (234)

and
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3)
— 1 —
”Fs+AQBQ”A _ FS+AQBQHA|| < —rank(B — B) (235)

Lemma 4:For N x N A, 7 € C andr € C" for which A and A + rrrH are invertible,

1
T 14+ 7rHA- Iy

This result follows fromrHA~1(A + 7rrt) = (1 + 7rH A~ 1r)rH,

(A + rret) ! rfA-! (236)

Moreover, we recall Lemma 2.6 of [6]
Lemma 5:Let z € C* with v = 3[2], A andB N x N with B Hermitian, andr € C. Then

HB - 2In)'AB - 2Iy) 't < [|A]l
1+rH(B —2Iy)"Ir - v

|tr (B —2Iy)"" — (B + rrt —z2In)"H) A = d (237)

If z <0, we also have

|tr (B —2In)"' = (B+rr" —z2Iy) ') Al < % (238)

From Lemma 2.2 of [16], and Theorems A.2, A.4, A5 of [17], wavé the following

Lemma 6:1f f is analytic onC*, both f(z) andzf(z) mapC™ into C*, and there exists 8 € (0,7 /2) for
which zf(z) — ¢, finite, asz — oo restricted to{w € C: § < argw < 7w — 0}, thenc < 0 and f is the Stieltjes
transform of a measure on the nonnegative reals with totakma.

Also, from [6], we need

Lemma 7:Lety = (y1,...,yn)" With they;’s i.i.d. such thatEy; = 0, E|y;|?> = 1 andy; < log N, andA an
N x N matrix independent of, then

Ely"Ay —tr A|® < K||A||°N®1log'* N (239)

where K does not depend ofV, A, nor on the distribution ofy; .

Additionally, we need

Lemma 8:Let D = A +iB + ivl, where A, B are N x N Hermitian, B is also positive semi-definite, and
v>0. Then|D7!|| <v~1,

Proof: We haveDDH = (A +iB)(A —iB) + v2I + 2vB. Therefore the eigenvalues BfD" are greater or
equal tov?, which implies the singular values @ are greater or equal to, so that the singular values & !
are less or equal to—!. We therefore get our result. ]

From Theorem 2.1 of [29],

Lemma 9:Let p(C) denote the spectral radius of thé x N matrix C (the largest of the absolute values of the
eigenvalues of). If x,b € RY with the components o€, x, andb all positive, then the equation = Cx + b
implies p(C) < 1.

From Theorem 8.1.18 of [30],

Lemma 10:SupposeA = (a;;) andB = (b;;) are N x N with b;; nonnegative andk;;| < b;;. Then

p(A) < p((Jai]) < p(B) (240)
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Also, from Lemma 5.7.9 of [31],
Lemma 11:Let A = (a;;) andB = (b;;) be N x N with a,;, b;; nonnegative. Then

p((aZb2)) < (p(A))} (p(B))* (241)

And, Theorems 8.2.2 and 8.3.1 of [30],

Lemma 12:If C is a square matrix with nonnegative entries, th€C) is an eigenvalue ofC having an
eigenvecto with nonnegative entries. Moreover, if the entriesfre all positive, thep(C) > 0 and the entries
of x are all positive.

From [31], we also need Theorem 6.1.1,

Lemma 13: Gersgorin’s TheoreAll the eigenvalues of aiV x N matrix A = (a;;) lie in the union of theNV
disks in the complex plane, th¢" disk having centet;;; and radiuszj# lai;].

Theorem 3.42 of [15],

Lemma 14: Rouche’s Theordlfn f(z) and g(z) are analytic inside and on a closed contéuiof the complex
plane, andg(z)| < |f(z)| on C, then f(z) and f(z) + g(z) have the same number of zeros inside

In order to prove Theorem 2, we also need, from [33]

Lemma 15:Consider a rectangular matrik and lets® denote the'” largest singular value oA, with s& =0

wheneveri > rank'A). Let m, n be arbitrary non-negative integers. Then for B rectangular of the same size

A+B

A B
Sm+n+1 § Serl + Sn+1 (242)

And for A, B rectangular for whichAB is defined

AB A B
S'rn-l—n-i—l S S'rn-l—lsn-i-l (243)
As a corollary, for any integer > 0 and rectangular matrice&, ..., Ak, all of the same size,
Ai+-+A A A
SK;”Jrl K S SrJil +eee At SrJrKl (244)
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