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Abstract—This paper introduces a new method to estimate the
power transmitted by multiple signal sources, when the number
of sensing devices and the available samples are sufficiently
large compared to the number of sources. This work makes use
of recent advances in the field of random matrix theory that
prove more efficient than previous “moment-based” approaches
to the problem of multi-source power detection. Simulations are
performed which corroborate the theoretical claims.

I. INTRODUCTION

At a time when radio resources become scarce, the alterna-
tive offered by flexible radios [1] is gaining more and more
interest. A flexible wireless network is a set of opportunistic
entities, referred to as the secondary network, that benefit from
unused spectrum resource to establish communication, with
little interference to the established primary network. This is
performed by letting the secondary devices sense the environ-
ment for the presence of active transmissions and exchange
the collected information among the secondary network. If the
secondary devices can detect the number of primary sources
and evaluate the power used by every individual source, their
own maximum transmission power (i.e. the maximum transmit
power that brings little interference to the primary network)
can then be reliably estimated. The detection of the number of
neighbors and the estimation of the individual transmit powers
is the subject of this work.

The difficulty of estimating transmit powers lies in the little
information known a priori by the secondary network: the
transmitted data and the transmission channels are usually
inaccessible. This has motivated much work in the direction of
blind detection methods [2], [3]. To solve the harder problem
of power inference, it is necessary to assume that the sensed
samples are of large dimension compared to the number of
active sources.1 The latter condition allows one to model the
channel from the sources to the secondary users, as well as the
transmit data and noise, as large random matrices; call them H,
X and W, respectively. Denoting P a diagonal matrix of the
source powers, the detection problem boils down to estimating
the entries of P from the sole knowledge of Y = HP

1
2X+W.

Up to this day though, no computationally-cheap consistent
estimator2 for the entries of P has been proposed. Among the

1e.g. individual secondary users are equipped with many antennas, or a
large number of secondary users, each equipped with few antennas, collect
their received data in a central entity.

2an estimator P̂i of the ith entry Pi of P is said to be consistent if P̂i −
Pi → 0 almost surely when the relevant system dimensions grow large.

existing techniques are convex optimization strategies [4] or
moment-based approaches [5], [6]. The latter provide consis-
tent estimators of the moments of the eigenvalue distribution of
P as a function of the moments of the eigenvalue distribution
of YYH; from those estimates, the entries of P themselves
can be inferred. The moment-based techniques are however
expected to perform worse than methods that would fully
exploit the eigenvalue distribution of YYH, and not only the
first moments. This problem is addressed in [7] for the sample
covariance matrix model Y′ = P

1
2X, i.e. the entries of P are

inferred from the full eigenvalue distribution of XHPX.
This work generalizes this result to infer the entries of P

from the observed matrix Y = HP
1
2X + W. The novel

estimator proposed here will be shown to have a very compact
form, to be computationally inexpensive and to perform better
than moment-based approaches. The remainder of this paper is
structured as follows: Section II introduces the system model.
In Section III, the novel power estimator is derived, part of
the technical proofs being left to [8]. Section IV provides
simulation results. Section V concludes this work.

Notations: In the following, boldface lower case symbols
represent vectors, capital boldface characters denote matrices
(IN is the size-N identity matrix). The transpose and Hermi-
tian transpose operators are denoted (·)T and (·)H, respectively.
We denote by C+ the set {z ∈ C,=[z] > 0}. The symbol
‘ a.s.−→’ denotes almost sure convergence.

II. SYSTEM MODEL

Consider a wireless (primary) network in which K enti-
ties are transmitting data. Transmitter k ∈ {1, . . . ,K} has
transmission power Pk and is equipped with nk antennas. We
denote n =

∑K
k=1 nk the total number of transmit antennas

in the primary network. Consider also a secondary network
composed of a total of N sensing devices, e.g. a single user
embedded with N antennas or N single antenna users; we
shall refer to the N sensors collectively as the receiver. Denote
Hk ∈ CN×nk the multiple antenna channel matrix between
transmitter k and the receiver. We assume that the entries of
Hk are independent and identically distributed (i.i.d.) with
zero mean and variance 1/N . At time instant m, transmitter
k emits signal x(m)

k ∈ Cnk , with entries assumed to be i.i.d.
of zero mean and variance 1. Assume further that at time
instant m the receiver is corrupted by additive white noise of
variance σ2 on every sensor; we denote σw(m) ∈ CN the



receive noise vector where w
(m)
k has i.i.d. entries with zero

mean and variance 1. At time m, the receiver therefore senses
the signal y(m) defined as

y(m) =

K∑
k=1

√
PkHkx

(m)
k + σw(m) (1)

Assuming the channel fading is constant over M consecutive
sampling periods, by concatenating M successive signal real-
izations into Y = [y(1), . . . ,y(M)] ∈ CN×M , we have

Y =

K∑
k=1

√
PkHkXk + σW (2)

where Xk = [x
(1)
k , . . . ,x

(M)
k ] ∈ Cnk×M , for every k and

W = [w(1), . . . ,w
(M)
M ] ∈ CN×M . This can be further

rewritten
Y = HP

1
2X + σW (3)

where P ∈ Rn×n is diagonal with first n1 entries P1,
subsequent n2 entries P2, . . . and last nK entries Pk, H =
[H1, . . . ,HK ] ∈ CN×n and X = [XT

1 , . . . ,X
T
k ]T ∈ Cn×M .

Our objective is to provide an (n,N,M)-consistent estimate
P̂1, . . . , P̂K of P1, . . . , PK , from a single realization of the
random matrix Y. That is, for all i, P̂i − Pi

a.s.−→ 0, as n, N
and M all grow large. This is the subject of the next section.

III. MULTI-SOURCE POWER ESTIMATION

We start by analyzing the eigenvalue distribution of 1
MYYH

when n, N and M grow large at a similar rate. This is a
fundamental prior step to the proper estimation of P1, . . . , PK .

A. Spectral analysis

Definition 1: Let F be a distribution function. For z ∈ C+,
the Stieltjes transform m(z) of F is defined as

m(z) =

∫
1

t− z
dF (t) (4)

For all a < b ∈ R, we have the inverse Stieltjes transform
formula

F ([a, b]) =
1

π
lim
y→0+

∫ b

a

=[m(x+ iy)] (5)

A consequence of Definition 1 is that studying the distribution
function F is equivalent to studying its Stieltjes transform
m(z).

In this section, we prove the following theorem
Theorem 1: Let BN = 1

MYYH with eigenvalues
λ1, . . . , λN . Denote m̂(z)

∆
= 1

N

∑N
k=1

1
λk−z the Stieltjes

transform of the eigenvalue distribution FBN of BN . Then,
for M , N , n growing large with limit ratios M/N → c,
N/n→ c1, 0 < c, c1 <∞, for any z ∈ C+, we have

m̂(z)
a.s.−→ m(z) (6)

where m(z) is defined as

m(z) =
M

N
m(z) +

M −N
N

1

z
(7)

and m(z) is the unique solution with positive imaginary part
of the implicit equation

1

m(z)
= −σ2 +

1

f(z)
− 1

N

K∑
k=1

nkPk
1 + Pkf(z)

(8)

in which we denoted f(z) the function

f(z) =
M −N
N

m(z)− M

N
zm(z)2 (9)

This implies that FBN tends weakly and almost surely to a
limit F , called the limit spectral density (l.s.d.) of BN , with
Stieltjes transform m(z) [9].

The rest of this section is dedicated to a sketch of the proof
of Theorem 1. First remark that (3) can be further simplified
into

Y =
(
HP

1
2 σIN

)(X
W

)
(10)

Appending Y ∈ CN×M into the larger matrix Y ∈
C(N+n)×M ,

Y =

(
HP

1
2 σIN

0 0

)(
X
W

)
(11)

We recognize that Y is a sample covariance matrix, with
random population covariance matrix

(
HP

1
2 σIN

0 0

)
while ( X

W )

has independent entries with zero mean and variance 1.
Extending (1.4) of [10] to non-deterministic population co-
variance matrices, we have that the eigenvalue distribution of
1
MYHY converges almost surely to a limit F whose Stieltjes
transform m(z) satisfies, for z ∈ C+,

z = − 1

m(z)
+
N + n

M

∫
t

1 + tm(z)
dH(t) (12)

= − 1

m(z)
+

N + n

Mm(z)

(
1− 1

m(z)

∫
1

t− (− 1
m(z) )

dH(t)

)
(13)

where H is the (almost sure) l.s.d. of
(

HPHH+σ2IN 0
0 0

)
. The

proof of existence of the previous limit distributions is fully
argumented in [8]. Now, P

1
2HH is itself a sample covariance

matrix for which HH has i.i.d. entries with zero mean and
variance 1/M ; so we have again, for any w ∈ C+, [10]

w = − 1

m1(w)
+

1

N

K∑
k=1

nk
Pk

1 + Pkm1(w)
(14)

where m1(w) is the Stieltjes transform of the l.s.d. of HPHH

evaluated at w. This is also the Stieltjes transform of the l.s.d.
of HPHH + σ2IN evaluated at z = w + σ2, which, up to n
zeros, is distributed as H . More precisely, we have∫

1

t− (w + σ2)
dH(t) =

N

N + n
m1(w)− n

N + n

1

w
(15)

Notice now that the integral in (13) is the left-hand side of
(15) evaluated at w = −1/m(z) − σ2. For z ∈ C+, we then
have, from (13) and (15),

z = −N
M

1

m(z)2
m1(−1/m(z)− σ2) +

N −M
M

1

m(z)
(16)
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Fig. 1. Empirical and asymptotic eigenvalue distribution of 1
M

YYH when
P has three distinct entries P1 = 1, P2 = 3, P3 = 10, n1 = n2 = n3,
N/n = 10, M/N = 10, σ2 = 0.1. Empirical test: n = 60.

where, according to (14), f(z)
∆
= m1(−1/m(z)−σ2) satisfies

1

m(z)
= −σ2 +

1

f(z)
− 1

N

K∑
k=1

nkPk
1 + Pkf(z)

(17)

Together with (16) (which is equivalent to (9)), this is exactly
(8).

Since the eigenvalues of the matrices Y and Y only differ
by n zero eigenvalues, we also have that the Stieltjes transform
m(z) of the l.s.d. of 1

MYYH satisfies

m(z) =
M

N
m(z) +

M −N
N

1

z
(18)

This completes the proof of Theorem 1.
Therefore, the support of the l.s.d. F of 1

MYYH can be
evaluated as follows: for any z ∈ C+, m(z) is given by (7), in
which m(z) is the unique solution of (8); the inverse Stieltjes
transform formula (5) gives then access to F from m(z), for
values of z spanning the set {z = x+ iy, y > 0}, for small y.
This is depicted in Figure 1, when P has three distinct values
P1 = 1, P2 = 3, P3 = 10 and n1 = n2 = n3, N/n = 10,
M/N = 10, σ2 = 0.1.

Two remarks on Figure 1 are of fundamental importance to
the following. First, it appears that the asymptotic spectrum is
divided in disjoint clusters. This will be in fact true whenever
the ratio N/n is sufficiently large; otherwise some of the
successive clusters would overlap. An explicit formulation of
the condition for the separability of the asymptotic spectrum in
clusters is provided in [7] for the simpler matrix model P

1
2X.

Secondly, notice that the empirical eigenvalues are here all
inside the asymptotic clusters and, most importantly, that the
number of those eigenvalues is exactly n1, n2 and n3 for the
three clusters corresponding to P1, P2 and P3, respectively.
This fact is referred to as exact separation; the exact separation
for the current model is proven in [8], from an extension of

the proof of exact separation for the sample covariance matrix
model P

1
2X [11].

B. Eigen-inference

In this section, we prove our main result,
Theorem 2: Let BN ∈ CN×N be defined as in Theorem

1, and λ = (λ1, . . . , λN ), λ1 < . . . < λN , be the vector
of the ordered eigenvalues of BN . Further assume that the
limiting ratios c, c1 and P are such that the asymptotic cluster
separability condition is fulfilled. Then, for k ∈ {1, . . . ,K},
as N , n, M grow large, we have

P̂k − Pk
a.s.−→ 0 (19)

where the estimate P̂k is given by

P̂k =
NM

nk(M −N)

∑
i∈Nk

(ηi − µi) (20)

in which Nk = {N −
∑K
i=k ni + 1, . . . , N −

∑K
i=k+1 ni}

is the set of indexes matching the cluster corresponding to
Pk, (η1, . . . , ηN ) are the ordered eigenvalues of the matrix
diag(λ)− 1

N

√
λ
√
λ
T

and (µ1, . . . , µN ) are the ordered eigen-

values of the matrix diag(λ)− 1
M

√
λ
√
λ
T

.
The approach pursued to prove Theorem 2 is based on the

original idea of [7]. From the Cauchy integration formula [12],

Pk =
n

nk

1

2πi

∮
Ck

1

n

K∑
r=1

nr
ω

Pr − ω
dω (21)

for any negatively oriented contour Ck ⊂ C, such that Pk
is contained in the surface described by the contour, while
for every i 6= k, Pi is outside this surface. The strategy is
then the following: we first propose a convenient integration
contour Ck which is intimately linked to m(z), the Stieltjes
transform of the l.s.d. of BN . Instead of evaluating Pk, we
then evaluate the complex integral resulting from replacing the
deterministic m(z) by the empirical m̂(z) = 1

N

∑N
i=1

1
λi−z .

From the convergence m̂(z)
a.s.−→ m(z) proven in Theorem

1, this new integral, denoted P̂k, is shown to be a consistent
estimate of Pk in the limit. It then suffices to evaluate P̂k,
which is performed by residue calculus [12].

From the spectrum separability condition, we can choose
x−k and x+

k two reals outside the spectrum of H to be such
that −1/m1(x−k ) < Pk < −1/m1(x+

k ).3 The proof of the
existence of such x−k and x+

k is somewhat technical and is not
included, due to space limitation (see [8] for details). Define
Γ̄k ⊂ C to be any continuous curve with endpoints x−k and
x+
k and with interior points of strictly positive imaginary part.

We then define Ck to be the union of the curve −1/m1(Γ̄k)
with Γ̄k oriented from x−k to x+

k and the curve −1/m1(Γ̄∗k),4

with Γ̄k oriented from x+
k to x−k . Since −1/m1(z) ∈ C+ for

z ∈ C+ (see e.g. [10]), we verify easily that Pk is included
in Ck, while Pi, i 6= k, is not, as required.

3we implicitly extended here the definition domain ofm1 to all reals outside
the support of H; see [8] for an accurate proof.

4again here, we implicitly extend the definition of m1(z) to z ∈ C−,
which does not represent a major difficulty.



Making the variable change ω = −1/m1(w) and denoting
Γk the surface enclosed in the union of Γ̄k from x−k to x+

k

and Γ̄∗k from x+
k to x−k , (21) becomes

Pk =
n

nk

1

2πi

∮
∂Γk

(
N

n
wm1(w) +

N − n
n

)
m′1(w)

m1(w)2
dw

(22)
From Theorem 1, we can then rewrite (22) as a function of
m(z). Thanks to the variable change w = −1/m(z)− σ2,

Pk =
n

nk

1

2πi

∮
∂Ωk

[
N

n

(
1 + σ2m(z)

)
+
N − n
n

1

zm(z)

]
×
[
− 1

zm(z)
− m′(z)

m(z)2
− m′(z)

m(z)m(z)

]
dz

(23)

where Ωk is the surface described by −1/m(Γk) − σ2.
Similarly as we show that Γk encloses Pk and none of the
Pi’s, i 6= k, we show in [8] that Ωk contains the asymptotic
spectrum cluster corresponding to Pk but none of the clusters
corresponding to Pi, i 6= k.

Instead of going further with (23), define P̂k, the “empirical
counterpart” of Pk, as

P̂k =
n

nk

1

2πi

∮
∂Ωk

[
N

n

(
1 + σ2m̂(z)

)
+
N − n
n

1

zm̂(z)

]
×
[
− 1

zm̂(z)
− m̂′(z)

m̂(z)2
− m̂′(z)

m̂(z)m̂(z)

]
dz (24)

where we recall m̂(z)
∆
= 1

N

∑N
i=1

1
λi−z is the eigenvalue

distribution of BN = 1
MYYH and m̂(z) = 1

N

∑N
i=1

1
λi−z

is that of 1
MYHY.

The integrand can then be expanded into 9 terms, for which
residue calculus [12] can easily be performed. Denote first
η1, . . . , ηN the N real roots of m̂(z) = 0 and µ1, . . . , µN
the N real roots of m̂(z) = 0. We identify three sets of
possible poles for the 9 aforementioned terms: (i) the set
{λ1, . . . , λN} ∩ Ωk, (ii) the set {η1, . . . , ηN} ∩ Ωk and (iii)
the set {µ1, . . . , µN} ∩ Ωk. The full calculus, detailed in [8],
leads to

P̂k =
NM

nk(M −N)
[
∑

1≤i≤N
ηi∈Ωk

ηi −
∑

1≤i≤N
µi∈Ωk

µi] (25)

From [11], we know that for N sufficiently large, with
probability one, there will be no eigenvalue of BN outside
the support of F and the number of eigenvalues inside the
cluster corresponding to Pk is exactly nk. Supposing N
large, since Ωk encloses the cluster corresponding to Pk only,
{λ1, . . . , λN} ∩ Ωk = {λi, i ∈ Nk}. Also, for any i ∈
{1, . . . , N}, it is easy to see from its definition that m̂(z)→∞
when z → λi from below and m̂(z) → −∞ when z → λi
from above. Therefore m̂(z) = 0 has at least one solution in
each interval (λi, λi+1), hence µ1 < λ1 < µ2 < . . . < µN <
λN . This implies that, if Ωk contains λi0 , . . . , λi0+(nk−1), then
it also contains {µi0+1, . . . , µi0+(nk−1)}. In [8], we show that
in fact, for N large, Ωk contains exactly µi0 , . . . , µi0+(nk−1)

and no other µi. The same result holds for ηi0 , . . . , ηi0+(nk−1).
This therefore leads to the expression of P̂k given in (20).

Now, we know from [9] that m̂(z)
a.s.−→ m(z) and m̂(z)

a.s.−→
m(z) as N → ∞. Observing that the integrand in (24)
is uniformly bounded on the compact ∂Ωk, the dominated
convergence theorem [13] ensures P̂k

a.s.−→ Pk.
It now remains to show that the ηi’s and the µi’s are the

eigenvalues of diag(λ)− 1
N

√
λ
√
λ
T

and diag(λ)− 1
M

√
λ
√
λ
T

respectively. For this, we need the following lemma, proven
in parallel in [8] and [14],

Lemma 1: Let A ∈ RN×N be diagonal with entries
λ1, . . . , λN , and let y ∈ RN . Then the eigenvalues of A−yyH

are the N real solutions of the following equation in x,
N∑
i=1

y2
i

λi − x
= 1 (26)

Applying Lemma 1 to A = diagλ and y =
√

1
Nλ, we find

that the eigenvalues of diag(λ)− 1
N

√
λ
√
λ
T

are the solutions
of

N∑
i=1

1
N λi

λi − x
= 1 (27)

which is equivalent to m̂(x) = 0 and whose solutions are by
definition η1, . . . , ηN . The same argument applies similarly to
µ1, . . . , µN .

C. Discussion

Theorem 2 states that, under spectrum separability condi-
tion, when n1, . . . , nK are known a priori to the receiver,
then P̂1, . . . , P̂K are consistent estimators for P1, . . . , PK .
Now, in practice, it is rare that n1, . . . , nK and even K are
a priori known to the receiver. However, if separability is
assumed, i.e. the ratio n/N is sufficiently small, then one
can estimate simultaneously K,n1, . . . , nK and P1, . . . , PK .
This is performed by (i) “visually” determining the clusters
of the empirical eigenvalues of BN (every jump of eigenvalue
characterizes a new cluster), which determines K, (ii) counting
the number of eigenvalues in each cluster to determine the
multiplicities n1, . . . , nK and (iii) evaluating P̂1, . . . , P̂K from
Theorem 2.

However, in practical applications, it is obviously impossi-
ble to ensure the cluster separability condition. If the condition
is not met, say the empirical eigenvalues corresponding to p
values Pi, . . . , Pi+(p−1) are merged into a single cluster, then
applying the method described above leads to an estimator of
the mean 1

n

∑p−1
k=0 nkPk (since the contour of integration en-

closes all the values), instead of an estimator of the individual
values. In this case, the receiver can therefore only say that
a given estimate P̂k obtained from Theorem 2 corresponds
either to a single transmit source with dimension nk or to
multiple transmit sources with average transmit power well
approximated by P̂k of cumulated dimension nk; for practical
blind detection purposes, this might be good enough. Further
investigation is being currently carried out to alleviate the
cluster separability constraint.



IV. SIMULATIONS

We provide hereafter simulation results for the model pre-
sented in Figure 1, i.e. K = 3, P1 = 1, P2 = 3, P3 = 10,
n1/n = n2/n = n3/n = 1/10 and n/N = N/M = 1/10.
The SNR is 10 dB. In Figure 2, we present results both for
n = 60 and n = 6. These are compared against a classical
moment-based approach. The latter consists in computing the
first three moments of the empirical eigenvalue distribution of
1
MYYH, i.e. 1

N tr
(

1
MYYH

)k
, for k = 1, 2, 3, from which

the deconvolved asymptotic moments 1
3 (P k1 + P k2 + P k3 ) of

P can be evaluated, see e.g. [15]; these moments can then
be inverted using Newton-Girard polynomial formulas [16]
to obtain estimates of P1, P2, P3. We observe a particularly
accurate fit between the empirical estimates P̂1, P̂2, P̂3 and
the true P1, P2, P3 in the case n = 60, while the case
n = 6 at least demonstrates the robustness (and the apparent
unbiasedness) of this Stieltjes transform based technique. In
comparison, the moment-based approach estimates are slightly
less accurate, and more biased for small n.5 Other approaches
than Newton-Girard inversion, such as minimum mean square
error estimates (assuming asymptotic Gaussian behaviour of
the moments) [5] would give better results but at an extremely
higher computational price.

V. CONCLUSION

In this paper, a blind source power estimator was derived.
Under the assumptions that the ratio between the number
of signal sources and the number of sensors is small and
the source transmit powers are sufficiently distinct from one
another, we derived a method to infer the number of an-
tennas of each source as well as its approximate transmit
power. Simulations show that the performance achieved by this
novel approach is extremely satisfactory compared to classical
moment-based approaches, is computationally inexpensive and
is particularly robust to small system dimensions.
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