MA 405 Exam 2 10/25/19 (Total = 100 points) Show all work!!
NO CALCULATORS!!!

1. Answer each of the following True or False (5 pts . each):
a) If $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ are vectors in a vector space V and

$$
\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right)=\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k-1}\right)
$$

then $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ are linearly independent.
b) The vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ form a basis for R^{2}.
c) The vectors $(422)^{T},\left(\begin{array}{ll}3 & 1\end{array}\right)^{T},\binom{5}{2}^{T}$ are linearly independent.
d) None of the eight axioms in the definition of a vector space explicitly states the element $\mathbf{0}$ is unique. It is a consequence of the axioms.
e) The dimension of the null space of a square matrix is positive if and only if the matrix is singular.
f) The intersection of two subspaces of a vector space is also a subspace.
g) If A is 5×7 and the dimension of its column space is 3 , then the dimension of the null space of A is 2 .
h) If $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ span \mathbb{R}^{n}, then they are linearly independent.
2. Choose the correct answer to each of the following (5 pts . each):
A) The dimension of the null space of $\left(\begin{array}{lllllll}2 & 1 & 3 & 4 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 2 & 6 & 8 & 0 & 2 & 4\end{array}\right)$ is a) 2 ; b) 3 ; c) 4 ; d) 5 .
B) If the vector \mathbf{b} is in the column space of the matrix A, and if the columns of A are linearly dependent, then $A \mathbf{x}=\mathbf{b}$ a) has a unique solution; b) has more than one solution; c) may be inconsistent; d) satisfies none of the above.
3. (15 pts.) Let A be a 4×5 matrix. If $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{4} are linearly independent and

$$
\mathbf{a}_{3}=\mathbf{a}_{1}, \quad \mathbf{a}_{5}=2 \mathbf{a}_{1}-\mathbf{a}_{2}+3 \mathbf{a}_{4}
$$

determine the reduced row echelon form of A.
4. Determine whether or not each of the following vectors in R^{3} are linearly independent and compute the dimension of the subslpace of R^{3} spanned by the vectors (10 pts . each).
а) $\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 4 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 2\end{array}\right) ;$ b) $\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right),\left(\begin{array}{r}-2 \\ 2 \\ -4\end{array}\right),\left(\begin{array}{r}3 \\ -2 \\ 5\end{array}\right),\left(\begin{array}{r}2 \\ -1 \\ 3\end{array}\right)$.
5. (15 pts.) Let $A=\left(\begin{array}{rrrrr}1 & 2 & 0 & -1 & 2 \\ 0 & 0 & 0 & 4 & -3 \\ -2 & -4 & 0 & -1 & 2 \\ 1 & 2 & 0 & -2 & 1\end{array}\right)$. Find a basis for the row space of A, a basis for the column space of A, and a basis for $N(A)$.

