MA 405 Exam I 9/27/19 (Total = 100 points) Show all work!

NO CALCULATORS!!!

- 1. Answer each of the following True or False (5 pts. each):
 - a) An $m \times n$ homogeneous system of linear equations always has a nontrivial solution if n > m.
 - b) For any $n \times n$ symmetric matrices A and B, AB is always symmetric.
 - c) The matrix $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ is an elementary matrix.

 - d) If B, $n \times n$ is nonsingular then AB is nonsingular for any $n \times n A$. e) The matrix $\begin{pmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ is in reduced row echelon form.
 - f) If $B, n \times n$, is nonsingular, then $A, n \times n$, is nonsingular if and only if A is row equivalent to B.
- 2. Choose the correct answer to each of the following (5 pts. each):
 - A) Let *I* denote the $n \times n$ identity matrix. For any $n \times n B$, $\begin{pmatrix} I & 0 \\ B & I \end{pmatrix}^{-1}$

a) =
$$\begin{pmatrix} I & -B \\ 0 & I \end{pmatrix}$$
; b) = $\begin{pmatrix} I & 0 \\ B^{-1} & I \end{pmatrix}$; c) = $\begin{pmatrix} I & 0 \\ -B & I \end{pmatrix}$; d) does not necessarily exist.
) If A and B are both $n \times n$ and nonsingular then $((AB^{-1})^T)^{-1} =$

- B) If A and B are both $n \times n$ and nonsingular then $((AB^{-1})^T)$ a) $(BA^{-1})^T$; b) $B^T(A^{-1})^T$; c) $(A^{-1}B)^T$; d) $((B^{-1}A)^{-1})^T$.
- 3. (10 pts.) For the system

use Gaussian elimination on the corresponding augmented matrix to obtain an augmented in row echelon form. Is the system consistent? (Yes or No)

4. Use Gauss-Jordan reduction to find all solutions to (15 pts.):

5. Let $A = \begin{pmatrix} 1 & 3 & 1 \\ -2 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 5 \end{pmatrix}$, and $C = \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$. Compute (5 pts. each): a) ABb) $CB^T A$ c) $A - BB^T$ d) $A^2 - 2A + I$.

6. (15 pts.) Find the inverse of A in problem 5 by first computing det(A) and adj A.