MA 405 Exam I 9/27/19 (Total $=100$ points) Show all work!

NO CALCULATORS!!!

1. Answer each of the following True or False (5 pts. each):
a) An $m \times n$ homogeneous system of linear equations always has a nontrivial solution if $n>m$.
b) For any $n \times n$ symmetric matrices A and $B, A B$ is always symmetric.
c) The matrix $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ is an elementary matrix.
d) If $B, n \times n$ is nonsingular then $A B$ is nonsingular for any $n \times n A$.
e) The matrix $\left(\begin{array}{llll}0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ is in reduced row echelon form.
f) If $B, n \times n$, is nonsingular, then $A, n \times n$, is nonsingular if and only if A is row equivalent to B.
2. Choose the correct answer to each of the following (5 pts . each):
A) Let I denote the $n \times n$ identity matrix. For any $n \times n B,\left(\begin{array}{cc}I & 0 \\ B & I\end{array}\right)^{-1}$ $\left.\left.\left.\mathrm{a})=\left(\begin{array}{cc}I & -B \\ 0 & I\end{array}\right) ; \mathrm{b}\right)=\left(\begin{array}{cc}I & 0 \\ B^{-1} & I\end{array}\right) ; \mathrm{c}\right)=\left(\begin{array}{cc}I & 0 \\ -B & I\end{array}\right) ; \mathrm{d}\right)$ does not necessarily exist.
B) If A and B are both $n \times n$ and nonsingular then $\left(\left(A B^{-1}\right)^{T}\right)^{-1}=$ a) $\left(B A^{-1}\right)^{T}$; b) $B^{T}\left(A^{-1}\right)^{T}$; c) $\left(A^{-1} B\right)^{T}$; d) $\left(\left(B^{-1} A\right)^{-1}\right)^{T}$.
3. (10 pts.$)$ For the system

$$
\begin{aligned}
& 2 x_{1}-2 x_{2}+4 x_{3}=8 \\
& 2 x_{1}+3 x_{2}-x_{3}=4 \\
& 7 x_{1}+3 x_{2}+4 x_{3}=7
\end{aligned}
$$

use Gaussian elimination on the corresponding augmented matrix to obtain an augmented in row echelon form. Is the system consistent? (Yes or No)
4. Use Gauss-Jordan reduction to find all solutions to (15 pts.):

$$
\left.\begin{array}{rl}
3 x_{1} & +6 x_{3}
\end{array}=\begin{array}{c}
9 \\
-2 x_{1}+x_{2}
\end{array}\right) .3 x_{3}=-6 .
$$

5. Let $A=\left(\begin{array}{rrr}1 & 3 & 1 \\ -2 & 2 & -1 \\ 2 & 1 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 5\end{array}\right)$, and $C=\left(\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right)$. Compute (5 pts. each):
a) $A B$
b) $C B^{T} A$
c) $A-B B^{T}$
d) $A^{2}-2 A+I$.
6. (15 pts.) Find the inverse of A in problem 5 by first computing $\operatorname{det}(A)$ and $\operatorname{adj} A$.
