July 17, 2003

MA 241 - Exam 2 (Total = 100 points) Show all work!!

1. (5 pts.)
$$\sin(\tan^{-1} x) = (\text{pick one}):$$

a) $\frac{\sin^2 x}{\cos x}$ b) $\sin x$ c) $\frac{1}{\sqrt{1+x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ e) $\sin^{-1} x$.
2. (5 pts.) $\tan(x+y) = (\text{pick one}):$

2. (5 pts.)
$$\tan(x+y) = (\operatorname{pick} \operatorname{one}):$$

a) $\tan x + \tan y$
b) $\frac{\sin x + \sin y}{\cos x + \cos y}$
c) $\frac{\tan x + \tan y}{1 - \tan x \tan y}$
d) $\frac{\tan x - \tan y}{1 + \tan x \tan y}$
e) $\frac{\sin x \cos y + \sin y \cos x}{\cos x \cos y}.$

- 2. (10 pts.) The left, right, Trapezoidal, and Midpoint Rule approximations were used to estimate $\int_0^3 f(x) dx$ where, on the interval [0,3], f is increasing and concave down. The estimates were 3.1546, 3.1348, 3.1743, and 3.1592, and the same number of subdivisions were used in each case. Which rule produced which estimate?
 - 4. Use the Table of Integrals to evaluate each integral (15 pts. each):

a)
$$\int \sqrt{5 - 4x - x^2} \, dx$$
 b) $\int \frac{\ln(\sin^{-1}(x))}{\sqrt{1 - x^2}} \, dx$.

5. Determine whether each of the following improper integrals is convergent or divergent. Evaluate those that are convergent (15 pts. each):

a)
$$\int_{1}^{2} (x-1)^{-3/2} dx$$
 b) $\int_{2}^{\infty} \frac{1}{x(\ln x)^2} dx$.

6. (20 pts.) Find the volumes of the solids obtained by rotating the region bounded by $y = x - x^2$ and the x-axis: a) about the x-axis, and b) about the y-axis.