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Abstract

Let Xn be n×N containing i.i.d. complex entries and unit variance (sum of variances of real and imaginary

parts equals 1), σ > 0 constant, and Rn an n×N random matrix independent of Xn. Assume, almost surely,

as n →∞, the empirical distribution function (e.d.f.) of the eigenvalues of 1
N

RnR∗n converges in distribution

to a nonrandom probability distribution function (p.d.f.), and the ratio n
N

tends to a positive number. Then

it is shown that, almost surely, the e.d.f. of the eigenvalues of 1
N

(Rn + σXn)(Rn + σXn)∗ converges in

distribution. The limit is nonrandom and is characterized in terms of its Stieltjes transform, which satisfies

a certain equation.

1. Introduction

For any square matrix A with only real eigenvalues, let FA denote the empirical distribution
function (e.d.f.) of the eigenvalues of A (that is, FA(x) is the proportion of eigenvalues of
A ≤ x). The focus of this paper is on the limiting e.d.f. of the eigenvalues of matrices of the
form Cn = 1

N
(Rn + σXn)(Rn + σXn)∗ where Xn is n×N containing i.i.d. complex entries and

unit variance (sum of variances of real and imaginary parts equals 1), σ > 0 is constant, Rn is
an n ×N random matrix independent of Xn, and n and N both converge to infinity but their
ratio n

N
converges to a positive quantity c, and F

1
N

RnR∗n converges, almost surely, in distribution
to a nonrandom probability distribution function (p.d.f.) H. The aim of this paper is to show
that, almost surely, FCn converges in distribution to a nonrandom p.d.f. F .

The matrix Cn can be viewed as the sample correlation matrix of the columns of Rn + σXn,
which models situations where relevant information is contained in the R·i’s and can be extracted
from 1

N
RnR∗n. However, the creation of this matrix is hindered due to the fact that each R·i is

corrupted by additive noise σX·i. If the number of samples N is sufficiently large and if the noise
is centered (EX11 = 0), then Cn would be a reasonable estimate of 1

N
RnR

∗
n + σ2I (I denoting

the n× n identity matrix), which could also yield significant (if not all) information. Under the
assumption n

N
→ c > 0, Cn models situations where, due to the size of n, the number of samples

needed to adequately approximate 1
N

RnR
∗
n + σ2I is unattainable, but is on the same order of

magnitude as n.
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One example of this is in the area of array signal processing with regard to the so-called
detection problem. The model is described by a matrix Yn = Rn +σXn where the N columns of
Yn represent N ”snapshots” (samples) of the data received at n sensors from signals transmitted
by an unknown number q < n of sources with unknown locations. The matrix Rn contains the
signal information as transmitted, and the matrix σXn is additive noise (variance σ2 unknown)
that contaminates the signal during transmission and processing. The contents of Rn include
information on the unknown direction of arrival of the signals, values detailing sensor orientation,
and the signal values at the sources. The entries of Xn are i.i.d. and standardized. The goal is
to identify the number of sources and their direction of arrival (DOA), which could be achieved
if the population matrix 1

N
RnR∗n + σ2I were known (see Schmidt [2]). This matrix is estimated

by the sample covariance matrix Cn = 1
N

YnY
∗
n . However, as stated above, for large n, it may

not be possible to collect a sufficient number of samples for estimation. Limiting results on
the eigenvalues of these matrices will aid in the detection problem: determining the number of
sources. Details of the importance of such limiting results are given in Silverstein and Combettes
[5], where a less general case is presented, namely, independence across samples is assumed. In
the present work, we only require that the e.d.f. of the eigenvalues of 1

N
RnR

∗
n converges in

distribution to a nonrandom p.d.f. H, thus relieving the matrix Rn of such independence
assumptions and allowing for a more general approach to signal detection.

The methods used in this paper are similar to those used in Silverstein and Bai [4] with the
main tool being the Stieltjes transform. For any p.d.f. G, the Stieltjes transform of G is defined
as the analytic function

mG(z) =

∫
1

λ− z
dG(λ), z ∈ C

+ ≡ {z ∈ C : Im z > 0},

and G can be retrieved by the inversion formula

G{[a, b]} =
1

π
lim

η→0+

∫ b

a

Im mG(ξ + iη)dξ,

where a, b are continuity points of G. Due to the inversion formula, convergence of a tight se-
quence of p.d.f.’s is guaranteed by showing convergence of the corresponding Stieltjes transforms
on a countable subset of C

+ possessing at least one accumulation point in C
+.

A property of Stieltjes transforms that will be needed later is that if G is any p.d.f. with
nonnegative support, then

Im zmG(z) =

∫
λz2

|λ− z|2dG(λ) ≥ 0, (S.1)

for any z = z1 + iz2 ∈ C
+.

For p× p matrix A with real eigenvalues λ1, λ2, ..., λp the Stieltjes transform of FA,

mF A(z) =
1

p

p∑
i=1

1

λi − z
=

1

p
tr(A− zI)−1,

involves the resolvent of A and is well-suited for our analysis (tr denoting trace).
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The following theorem will be proven.

Theorem 1.1. Assume on a common probability space:
(a) For n=1,2,..., Xn = (Xn

ij), n × N , Xn
ij ∈ C

+, i.d. for all n, i, j, independent across i, j
for each n, E|X1

11 − EX1
11|2 = 1

(b) Rn is n×N independent of Xn with F
1
N

RnR∗n D−→ H, a.s., (D denoting weak convergence)
where H is a nonrandom p.d.f.

(c) N = N(n) and cn = n
N
→ c > 0 as n →∞

(d) Cn = 1
N

(Rn + σXn)(Rn + σXn)∗ where σ > 0.

Then FCn
D−→ F , a.s., where F is a nonrandom p.d.f. whose Stieltjes transform m = m(z)

satisfies

m =

∫
dH(t)

t
1+σ2cm

− (1 + σ2cm)z + σ2(1− c)
(1.1)

for any z ∈ C
+.

From (S.1) we see that the imaginary part of the denominator of the integrand in (1.1) is
less than or equal to −z2, so that the integral is well-defined.

Let Cn = 1
N

(Rn + σXn)∗(Rn + σXn). The spectra of Cn and Cn differ by |n − N | zero
eigenvalues and is expressed in

FCn =
(
1− n

N

)
1[0,∞) +

n

N
FCn (1.2)

(1B denoting the indicator function over the set B). Because of this, information on the limit
of FCn can be inferred from knowledge of F .

Notice also that the eigenvalues of Cn are directly related to those of the N × n matrix
1
n
(R∗n +σX∗

n)(R∗n +σX∗
n)∗ = N

n
Cn. With this fact it is straightforward to show that if m satisfies

(1.1) when c ≤ 1, then m will also satisfy (1.1) when c > 1. We therefore assume, without loss
of generality, that 0 < c ≤ 1.

Let mn(z) = mF Cn (z). Defining mn(z) = mFCn (z) we get from (1.2)

mn = −1− cn

z
+ cnmn, (1.3)

which will be used later for notational convenience.
It is noted here that the qualitative behavior of F is currently being investigated by the

authors. Preliminary analysis indicates that much of this information can be retrieved from
(1.1).

This paper is composed of four sections and an Appendix. The first section following the
introduction mirrors Silverstein and Bai [4] in that justification is presented for restricting the
assumptions on the matrices Rn, and Xn. Section three contains the bulk of the proof of
Theorem 1.1, and section four is devoted to showing that solutions, m, to equation (1.1) are
unique if Im m > 0 and Im mz ≥ 0 (specifically, if m is the Stieltjes transform of a p.d.f. with
nonnegative support). The Appendix contains the proof of a lemma from section two.
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2. Truncation and Centralization

The first step in proving Theorem 1.1 is similar to that of Silverstein and Bai [4], in that,
we truncate and centralize twice with regard to Xn, and, as in Silverstein [3], we truncate Rn.
The reason for these truncations and centralizations is to justify our later replacing the matrices
Xn and Rn with ones more suitable for analysis. We compare the e.d.f.’s of these matrices by
the following metric presented in Silverstein and Bai [4]. Let {fi} be an enumeration of all
continuous functions that take a constant 1

m
value (m a positive integer) on [a, b], where a, b

are rational, 0 on (−∞, a − 1
m

]
⋃

[b + 1
m

,∞), and linear of each of [a − 1
m

, a], [b, b + 1
m

]. For
probability measures F,G on R the metric

D(F,G) ≡
∞∑
i=1

∣∣∣∣
∫

fidF −
∫

fidG

∣∣∣∣ 2−i

induces the topology of weak convergence, and, as noted in Silverstein and Bai [4], for sequences
{Fn}, {Gn} of probability measures on R, we have

lim
n→∞

‖Fn −Gn‖ = 0 ⇒ lim
n→∞

D(Fn, Gn) = 0 (2.1)

where ‖ · ‖ denotes the sup-norm on bounded functions from R to R.
Note that for x, y ∈ R, |fi(x)− fi(y)| ≤ |x− y|. Then, restating from Silverstein and Bai [4],

we have for e.d.f.’s F,G on the (respective) sets {x1, ..., xn}, {y1, ..., yn},

D2(F,G) ≤
(

1

n

n∑
j=1

|xj − yj|
)2

≤ 1

n

n∑
j=1

(xj − yj)
2. (2.2)

Before continuing, some needed results are presented.
For q ∈ C

n and n×N matrix A, ‖q‖ will denote the Euclidean norm, and ‖A‖ the induced
spectral norm on matrices, that is, the largest singular value of A. We also use the notation FA

sing

to denote the e.d.f. of the square root of the eigenvalues of AA∗, which are the n largest singular
values of A. The constants, denoted by K, appearing henceforth in some of the expressions are
nonrandom and may take on different values from one appearance to the next.

Lemma 2.1 [Corollary 7.3.8 of Horn and Johnson [1]]. For r×s matrices A and B with respective
singular values σ1 ≥ σ2 ≥ ... ≥ σq, τ1 ≥ τ2 ≥ ... ≥ τq, where q = min{r, s}, we have(

q∑
i=1

(σi − τi)
2

) 1
2

≤ ‖A−B‖2,

where ‖ · ‖2 is the Frobenius matrix norm.

Lemma 2.2 [Lemma 2.5 of Silverstein and Bai [4]]. For n×N matrices Q,Q,

‖FQQ∗ − FQ Q
∗‖ ≤ 2

n
rank(Q−Q).

The following are well-known properties of matrices.

4



Matrix Properties.
(MP1) For n× n A,B,

|trAB| ≤ (trAA∗ trBB∗)
1
2 ≤ n‖A‖‖B‖.

(MP2) For rectangular A, rank(A) ≤ the number of nonzero entries of A.

Proof of Theorem 1.1. Following Silverstein and Bai [4] we use the convention of occasionally
suppressing the variables’ dependence on n. All convergence statements are as n → ∞. Let

X̂ij = Xij1(|Xij |<
√

n) and Ĉn =
(

1√
N

R + σX̂
)(

1√
N

R + σX̂
)∗

, where X̂ =
(

1√
N

X̂ij

)
. It is shown

in the Appendix that

‖FCn − F Ĉn‖ a.s.−→ 0. (2.3)

Let C̃n =
(

1√
N

R + σX̃
) (

1√
N

R + σX̃
)∗

, where X̃ =
(

1√
N

X̃ij

)
=

(
1√
N

X̂ij − E 1√
N

X̂ij

)
.

Since rank(EX̂) ≤ 1, we have from Lemma 2.2

‖F Ĉn − F C̃n‖ → 0. (2.4)

Write 1√
N

R in its singular value decomposition 1√
N

R = UΛV . Let Rα = UΛαV where Λα is

the matrix Λ with each singular value s replaced by s1(s≤α), for α > 0.
Let Q be any n × N matrix. If α2 is a continuity point of H, we have by Lemma 2.2 and

assumptions (b), (c)

‖F ( 1√
N

R+Q)( 1√
N

R+Q)∗ − F (Rα+Q)(Rα+Q)∗‖ ≤ 2

n
rank

(
1√
N

R−Rα

)

=
2

n

n∑
i=1

1(si>α) =
2

n

n∑
i=1

1(λi>α2)
a.s.−→ 2H{(α2,∞)},

where the si’s are the n largest singular values of 1√
N

R and the λi’s are the eigenvalues of 1
N

RR∗,
i.e., λi = s2

i . Let α ≡ αn = ln(n). It follows that as n →∞
‖F ( 1√

N
R+Q)( 1√

N
R+Q)∗ − F (Rα+Q)(Rα+Q)∗‖ a.s.−→ 0. (2.5)

Let X ij = X̃ij1(|Xij |<ln(n)) − EX̃ij1(|Xij |<ln(n)), X =
(

1√
N

X ij

)
, X ij = X̃ij − X ij, and X =(

1√
N

X ij

)
. Let s̃1 ≥ s̃2 ≥ ... ≥ s̃n and s1 ≥ s2 ≥ ... ≥ sn be the n largest singular values of

Rα + σX̃ and Rα + σX, respectively. Then using (2.2),(MP1), and Lemma 2.1 we get

D2
(
FRα+σX̃

sing , FRα+σX
sing

)
≤ 1

n

n∑
j=1

(s̃j − sj)
2 ≤ 1

n
‖X‖2

2

=
1

n
trX

∗
X ≤

(
1

n
tr

(
X
∗
X

)2
) 1

2
a.s.−→ 0

by (3.6) of Silverstein and Bai [4]. It follows that

D
(
F (Rα+σX̃)(Rα+σX̃)∗ , F (Rα+σX)(Rα+σX)∗

)
a.s.−→ 0. (2.6)
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Therefore, by (2.1), (2.3), (2.4), (2.5), and (2.6), in order to show that FCn
D−→ F , it is

sufficient to show that for any z ∈ C
+,

mF (Rα+σX)(Rα+σX)∗ (z)
a.s.−→ mF (z).

We may therefore add to the conditions of Theorem 1.1 the following:

(1) |X11| ≤ ln(n) ,
(2) EX11 = 0, E|X11|2 = 1,
(3) ‖ 1

N
RR∗‖ ≤ ln(n).

3. Completing the Proof

Fix z = z1 + iz2 ∈ C
+. The next four results are used to complete the proof of Theorem 1.1.

Lemma 3.1. For n× n A and n× 1 vectors q, v where A and A + vv∗ are invertible, we have

q∗ (A + vv∗)−1 = q∗A−1 − q∗A−1v

1 + v∗A−1v
v∗A−1.

Notice if q = v then

v∗ (A + vv∗)−1 =
1

1 + v∗A−1v
v∗A−1.

Proof. Let q∗ (A + vv∗)−1 ≡ r∗ so that q∗ = r∗A + r∗vv∗. Multiplying by A−1 on the right we
get

q∗A−1 = r∗ + r∗vv∗A−1, (3.1.1)

and then multiplying by v on the right we get

q∗A−1v = r∗v + r∗vv∗A−1v = r∗v
(
1 + v∗A−1v

)
.

Since q is arbitrary we must have 1 + v∗A−1v 6= 0. Then

r∗v =
q∗A−1v

1 + v∗A−1v
,

and hence by (3.1.1) we have

r∗ = q∗A−1 − q∗A−1v

1 + v∗A−1v
v∗A−1,

and the proof is complete.

Lemma 3.2 [Lemma 3.1 of Silverstein and Bai [4]]. Let C = (cij), cij ∈ C, be an n× n matrix
with ‖C‖ ≤ 1, and Y = (X1, ..., Xn)T , Xi ∈ C, where the Xi’s are i.i.d. satisfying conditions (1)
and (2). Then

E|Y ∗CY − trC|6 ≤ Kn3(ln(n))12,

where the constant K does not depend on n, C, nor on the distribution of X1.
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Lemma 3.3 [Lemma 2.6 of Silverstein and Bai [4]]. Let z = z1 + iz2 ∈ C
+ with A and B n× n,

B Hermitian and r ∈ C
n. Then∣∣tr (
(B − zI)−1 − (B + rr∗ − zI)−1

)
A

∣∣
=

∣∣∣∣r∗(B − zI)−1A(B − zI)−1r

1 + r∗(B − zI)−1r

∣∣∣∣ ≤ ‖A‖
z2

.

Lemma 3.4 [Lemma 2.3 of Silverstein and Bai [4]]. Let x, y be nonnegative numbers. For
rectangular matrices A,B of the same size,

FA+B
sing {(x + y,∞)} ≤ FA

sing{(x,∞)}+ FB
sing{(y,∞)}.

Using Lemma 3.2 we get 1
n
tr 1

N
XX∗ a.s.−→ 1 which yields the almost sure tightness of {F 1

N
XX∗}.

This together with Lemma 3.4 and assumption (b) gives us {FCn} being almost surely tight,
and therefore the quantity

δ ≡ inf
n
Im (mF Cn (z)) ≥ inf

n

∫
z2dFCn(λ)

2(λ2 + z2
1) + z2

2

is positive almost surely.
For j = 1, 2, ..., N let xj(= xn

j ) and rj(= rn
j ) denote the j th column of X and R respectively

and define yj = 1√
N

(rj + σxj) so that Cn =
∑N

j=1 yjy
∗
j .

Note that RR∗ =
∑N

j=1 rjr
∗
j , and since for each j = 1, 2, ..., N the matrix RR∗ − rjr

∗
j =∑N

i6=j rir
∗
i is positive semidefinite, then using condition (3) from the previous section we get

‖rj‖2 = ‖rjr
∗
j‖ ≤ ‖RR∗‖ ≤ N ln(n). (3.1)

Define D = Cn − zI, B = An − zI, where

An ≡
(

1

1 + σ2cnmn

)
1

N
RR∗ − σ2zmnI,

and for j = 1, 2, ..., N let C(j) = Cn − yjy
∗
j and Dj = D − yjy

∗
j (= C(j) − zI). Write

D + zI =
N∑

j=1

yjy
∗
j .

Multiplying by D−1 on the right on both sides and using Lemma 3.1 we get

I + zD−1 =
N∑

j=1

1

1 + y∗j D
−1
j yj

yjy
∗
j D

−1
j .

Taking the trace on both sides and dividing by N we have

cn + zcnmn =
1

N

N∑
j=1

y∗j D
−1
j yj

1 + y∗j D
−1
j yj

= 1− 1

N

N∑
j=1

1

1 + y∗j D
−1
j yj

.
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From our definition (1.3) of mn, we see that

mn = − 1

N

N∑
j=1

1

z(1 + y∗j D
−1
j yj)

. (3.2)

Following the steps leading up to (2.3) of Silverstein [3] we get

1∣∣z (
1 + y∗j D

−1
j yj

)∣∣ ≤ 1

z2

. (3.3)

For j = 1, 2, ..., N , we make the following scalar definitions:

ρj =
1

N
r∗jD

−1
j rj, ωj =

1

N
σ2x∗jD

−1
j xj,

βj =
1

N
r∗jD

−1
j σxj, γj =

1

N
σx∗jD

−1
j rj,

ρ̂j =
1

N
r∗jD

−1
j B−1rj, ω̂j =

1

N
σ2x∗jD

−1
j B−1xj,

β̂j =
1

N
r∗jD

−1
j B−1σxj, γ̂j =

1

N
σx∗jD

−1
j B−1rj.

We begin the next stage of the proof by factoring the difference of inverses and expanding
the middle factor to get

B−1 −D−1 = B−1(D −B)D−1 = B−1(Cn − An)D−1

= B−1
( σ2cnmn

1 + σ2cnmn

1

N
RR∗ +

1

N
σXR∗ +

1

N
RσX∗ +

1

N
σ2XX∗ + σ2zmnI

)
D−1

=
N∑

j=1

B−1
[ σ2cnmn

1 + σ2cnmn

1

N
rjr

∗
j +

1

N
σxjr

∗
j +

1

N
rjσx∗j +

1

N
σ2xjx

∗
j +

1

N
σ2zmnI

]
D−1

=
N∑

j=1

[ σ2cnmn

1 + σ2cnmn

B−1 1

N
rjr

∗
jD

−1 + B−1 1

N
σxjr

∗
jD

−1 + B−1 1

N
rjσx∗jD

−1

+B−1 1

N
σ2xjx

∗
jD

−1 +
1

N
σ2zmnB−1D−1

]
.

While using (3.2), we take the trace of both sides and divide by n to get

1

n
tr(An − zI)−1 −mn =

1

n

N∑
j=1

[ σ2cnmn

1 + σ2cnmn

1

N
r∗jD

−1B−1rj +
1

N
r∗jD

−1B−1σxj

+
1

N
σx∗jD

−1B−1rj +
1

N
σ2x∗jD

−1B−1xj

− 1

1 + 1
N

(rj + σxj)∗D−1
j (rj + σxj)

1

N
σ2trD−1B−1

]
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≡ 1

n

N∑
j=1

[
W n,j

1 + W n,j
2 + W n,j

3 + W n,j
4 −W n,j

5

]
. (3.4)

Let αn,j = 1 + 1
N

(rj + σxj)
∗D−1

j (rj + σxj) = 1 + ρj + βj + γj + ωj.
Since D−1 = (Dj + 1√

N
(rj + σxj)

1√
N

(rj + σxj)
∗)−1 we can use Lemma 3.1 to get

W n,j
1 =

1

αn,j

( σ2cnmn

1 + σ2cnmn

)[
αn,j 1

N
r∗jD

−1
j B−1rj

− 1

N
(r∗jD

−1
j (rj + σxj))

1

N
(rj + σxj)

∗D−1
j B−1rj

]
=

1

αn,j

( σ2cnmn

1 + σ2cnmn

)[
(1 + γj + ωj)ρ̂j − (ρj + βj)γ̂j

]
,

W n,j
2 =

1

αn,j

[
αn,j 1

N
r∗jD

−1
j B−1σxj

− 1

N
(r∗jD

−1
j (rj + σxj))

1

N
(rj + σxj)

∗D−1
j B−1σxj

]
=

1

αn,j

[
(1 + γj + ωj)β̂j − (ρj + βj)ω̂j

]
,

W n,j
3 =

1

αn,j

[
αn,j 1

N
σx∗jD

−1
j B−1rj

− 1

N
(σx∗jD

−1
j (rj + σxj))

1

N
(rj + σxj)

∗D−1
j B−1rj

]
=

1

αn,j

[
(1 + ρj + βj)γ̂j − (γj + ωj)ρ̂j

]
,

W n,j
4 =

1

αn,j

[
αn,j 1

N
σx∗jD

−1
j B−1σxj

− 1

N
(σx∗jD

−1
j (rj + σxj))

1

N
(rj + σxj)

∗D−1
j B−1σxj

]
=

1

αn,j

[
(1 + ρj + βj)ω̂j − (γj + ωj)β̂j

]
, and

W n,j
5 =

1

αn,j

1

N
σ2trD−1B−1.

Therefore, after simplification, we get

(3.4) =
1

n

N∑
j=1

1

αn,j

[ 1

1 + σ2cnmn

(σ2cnmn − ωj − γj)ρ̂j + β̂j

+
1

1 + σ2cnmn

(ρj + βj + 1 + σ2cnmn)γ̂j + ω̂j − 1

N
σ2trD−1B−1

]

≡ 1

n

N∑
j=1

1

αn,j
dn,j.
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For j = 1, 2, ..., N we make the following definitions

m(j) ≡ m
F

C(j) (z), m(j) ≡ −1− cn

z
+ cnm(j),

Bj ≡
(

1

1 + σ2cnm(j)

)
1

N
RR∗ − σ2zm(j).

As noted below (2.5) of Silverstein [3], m(j) is the Stieltjes transform of a p.d.f. (on [0,∞)).
The following expressions hold for any j = 1, 2, ..., N and any n.
From (3.3) we get

1

|αn,j| ≤
|z|
z2

, (3.5)

and since for any Hermitian matrix A, ‖(A− zI)−1‖ ≤ 1
z2

, we have

‖D−1
j ‖ ≤ 1

z2

. (3.6)

By (S.1) we get
1

|1 + σ2cnmn| ≤
|z|

z2 + σ2cnIm zmn

≤ |z|
z2

(3.7)

and similarly
1

|1 + σ2cnm(j)| ≤
|z|
z2

. (3.8)

From Lemma 3.3 we have

max
j≤N

|mn −m(j)| ≤ 1

nz2

. (3.9)

Suppose λ is an eigenvalue of 1
N

RR∗ and λB = 1
1+σ2cnmn

λ− σ2zmn − z is the corresponding
eigenvalue of B. Then (S.1) gives

|λB| ≥ |Im λB| =
∣∣∣∣ σ2cnIm mn

|1 + σ2cnmn|2λ + σ2Im zmn + z2

∣∣∣∣ ≥ z2.

Therefore

‖B−1‖ =
1

|λB
min|

≤ 1

z2

, (3.10)

and similarly

‖B−1
j ‖ ≤ 1

z2

. (3.11)

Using (3.7), (3.8), (3.9), (3.10), (3.11), and condition (3) we get

‖B−1
j −B−1‖ = ‖B−1

j (B −Bj)B
−1‖ ≤ 1

z2
2

‖B −Bj‖

=
σ2cn|m(j) −mn|

z2
2

∥∥∥∥ 1

(1 + σ2cnmn)(1 + σ2cnm(j))

1

N
RR∗ + zI

∥∥∥∥
≤ σ2cn

nz3
2

(
1

|1 + σ2cnmn||1 + σ2cnm(j)|
∥∥∥ 1

N
RR∗

∥∥∥ + |z|
)

10



≤ σ2cn

nz3
2

( |z|2
z2
2

ln(n) + |z|
)
≤ K

ln(n)

n
. (3.12)

A simple application of Lemma 3.2 gives

E‖xj‖12 ≤ Kn6(ln(n))12. (3.13)

The combination of (3.1), (3.6), (3.10), and the Cauchy-Schwarz inequality yields

|ρ̂j| ≤ K ln(n) and |ρj| ≤ K ln(n).

The Cauchy-Schwarz inequality along with Lemma 3.2, Lemma 3.3, (3.6), (3.10), (3.11),
(3.12), (3.13), and (MP1) gives

E|ω̂j − 1

N
σ2trD−1B−1|6 =

σ12

N6
E|x∗jD−1

j B−1xj − trD−1B−1|6

≤ K

N6
E|x∗jD−1

j (B−1 −B−1
j )xj|6 +

K

N6
E|x∗jD−1

j B−1
j xj − trD−1

j B−1
j |6

+
K

N6
E|trD−1

j (B−1
j −B−1)|6 +

K

N6
E|tr(D−1

j −D−1)B−1|6

≤ K
(ln(n))6

N12
E‖xj‖12 + K

(ln(n))12

N3
+ K

(ln(n))6

N6
+

K

N6

≤ K
(ln(n))18

N3
.

Using (3.6), Lemma 3.2, and Lemma 3.3 we get

E|ωj − σ2cnmn|6 =
σ12

N6
E|xjD

−1
j xj − trD−1|6

≤ K

N6

(
E|x∗jD−1

j xj − trD−1
j |6 + E|tr(D−1

j −D−1)|6)
≤ K

N3
(ln(n))12 +

K

N6

≤ K
(ln(n))12

N3
.

From (3.1), (3.6), (3.11), (3.12), (3.13) Lemma 3.2, and the Cauchy-Schwarz inequality we
have

E|γ̂j|12 ≤ K

N12
E|x∗jD−1

j (B−1 −B−1
j )rj|12 +

K

N12
E

∣∣|x∗jD−1
j B−1

j rj|2
∣∣6

≤ K

N12
E‖xj‖12‖rj‖12‖D−1

j ‖12‖B−1 −B−1
j ‖12

+
K

N12
E|x∗jD−1

j B−1
j rjr

∗
jB

−1∗
j D−1∗

j xj|6

≤ K
(ln(n))18

N18
E‖xj‖12 +

K

N12
E|x∗jD−1

j B−1
j rjr

∗
jB

−1∗
j D−1∗

j xj

11



−trD−1
j B−1

j rjr
∗
jB

−1∗
j D−1∗

j |6

+
K

N12
E|r∗jB−1∗

j D−1∗
j D−1

j B−1
j rj|6

≤ K
(ln(n))30

N12
+

K

N9
(ln(n))12E‖D−1

j B−1
j rjr

∗
jB

−1∗
j D−1∗

j ‖6

+
K

N12
E‖B−1∗

j D−1∗
j D−1

j B−1
j ‖6‖rj‖12

≤ K
(ln(n))30

N12
+ K

(ln(n))18

N3
+ K

(ln(n))6

N6

≤ K
(ln(n))30

N3
,

and similarly

E|β̂j|12 ≤ K
(ln(n))30

N3
.

Using (3.1), (3.6), Lemma 3.2, and the Cauchy-Schwarz inequality we have

E|γj|12 =
σ12

N12
E

∣∣|x∗jD−1
j rj|2

∣∣6 =
σ12

N12
E|x∗jD−1

j rjr
∗
jD

−1∗
j xj|6

≤ K

N12
E|x∗jD−1

j rjr
∗
jD

−1∗
j xj − trD−1

j rjr
∗
jD

−1∗
j |6

+
K

N12
E|r∗jD−1∗

j D−1
j rj|6

≤ K

N9
(ln(n))12E‖D−1

j rjr
∗
jD

−1∗
j ‖6 +

K

N12
E‖D−1

j ‖12‖rj‖12

≤ K
(ln(n))18

N3
+ K

(ln(n))6

N6

≤ K
(ln(n))18

N3
,

and similarly

E|βj|12 ≤ K
(ln(n))18

N3
.

From the Cauchy-Schwarz inequality and the above bounds we get

E|βj γ̂j|6 ≤ K
(ln(n))24

N3
.

Therefore, using (3.7) with the above, we have as n →∞

max
j≤N

max
{ ∣∣∣∣(σ2cnmn − ωj)ρ̂j

1 + σ2cnmn

∣∣∣∣ ,

∣∣∣∣ γj ρ̂j

1 + σ2cnmn

∣∣∣∣ , |β̂j|, |γ̂j|,
∣∣∣∣ ρj γ̂j

1 + σ2cnmn

∣∣∣∣ ,

∣∣∣∣ βj γ̂j

1 + σ2cnmn

∣∣∣∣ , |ω̂j − σ2

N
trD−1B−1|

}
a.s.−→ 0. (3.14)
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We now concentrate on a realization for which (3.14) holds, {FCn} is tight, and F
1
N

RR∗

converges in distribution to H. From (3.14) we get that maxj≤N |dn,j| → 0 as n →∞. Therefore,
using (3.5),

1

n
tr(An − zI)−1 −mn → 0 as n →∞.

Consider a subsequence {ni} on which mni
( bounded in absolute value by 1

z2
) converges to a

number m. We have Im m ≥ δ > 0. Let b = 1+σ2cm and bn = 1+σ2cnmn. Since Im zmni
≥ 0

then Im zm ≥ 0. From this we find for all t ≥ 0

Im

(
t

b
− bz + σ2(1− c)

)
≤ −z2 < 0,

and similarly

Im

(
t

bni

− bni
z + σ2(1− cni

)

)
≤ −z2 < 0.

Then ∣∣∣∣∣ 1
t

bni
− bni

z + σ2(1− cni
)
− 1

t
b
− bz + σ2(1− c)

∣∣∣∣∣

=

∣∣∣∣∣∣
t

bbni
(bni

− b) + z(bni
− b) + σ2(cni

− c)(
t

bni
− bni

z + σ2(1− cni
)
) (

t
b
− bz + σ2(1− c)

)
∣∣∣∣∣∣

≤ |z||bni
− b|+ σ2|cni

− c|
z2
2

+
|bni

− b|
z2|bni

|
∣∣∣∣ t

b
t
b
− bz + σ2(1− c)

∣∣∣∣
=
|z||bni

− b|+ σ2|cni
− c|

z2
2

+
|bni

− b|
z2|bni

|
∣∣∣∣1− −bz + σ2(1− c)

t
b
− bz + σ2(1− c)

∣∣∣∣
≤ |z||bni

− b|+ σ2|cni
− c|

z2
2

+
|bni

− b|
z2|bni

|
(

1 +
|bz|+ σ2|1− c|

| t
b
− bz + σ2(1− c)|

)

≤ |z||bni
− b|+ σ2|cni

− c|
z2
2

+
|bni

− b|
z2σ2cni

δ


1 +

|z|
(
1 + σ2c

z2

)
+ σ2|1− c|

z2


 ,

which converges to zero uniformly in t. Therefore as ni →∞

1

ni

tr(Ani
− zI)−1 =

∫
1

t
bni
− bni

z + σ2(1− cni
)
dF

1
Ni

RR∗
(t)

−→
∫

1
t
b
− bz + σ2(1− c)

dH(t).
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Thus m satisfies (1.1).
Now, using the result from the next section we have that m is unique. Therefore, with

probability one, FCn converges in distribution to the p.d.f. F having Stieltjes transform defined
by (1.1), and the proof of Theorem 1.1 is complete.

4. Unique Solution to (1.1)

In this section it is shown that certain solutions to equation (1.1) are unique.

Theorem 4.1. Let z = z1 + iz2 ∈ C
+, m = m1 + im2 ∈ C

+, and m = m1 + im2 ∈ C
+ with

Im mz ≥ 0, and Immz ≥ 0. If both m and m satisfy (1.1), then m = m.

Proof. Define b ≡ 1 + σ2cm = b1 + ib2 and b ≡ 1 + σ2cm = b1 + ib2 and suppose that both m
and m satisfy (1.1). We have that m−m = (m−m)α, where

α = σ2c

∫ t
bb

+ z

( t
b
− bz + σ2(1− c))( t

b
− bz + σ2(1− c))

dH(t).

Using the triangle and Cauchy-Schwarz inequalities we get

|α| ≤ σ2c

∫ t
|b||b|dH(t)∣∣ t

b
− bz + σ2(1− c)

∣∣ ∣∣ t
b
− bz + σ2(1− c)

∣∣
+σ2c|z|

∫
dH(t)∣∣ t

b
− bz + σ2(1− c)

∣∣ ∣∣ t
b
− bz + σ2(1− c)

∣∣

≤
(∫ σ2c t

|b|2 dH(t)∣∣ t
b
− bz + σ2(1− c)

∣∣2
) 1

2
(∫ σ2c t

|b|2 dH(t)∣∣ t
b
− bz + σ2(1− c)

∣∣2
) 1

2

+|z|
(∫

σ2cdH(t)∣∣ t
b
− bz + σ2(1− c)

∣∣2
) 1

2
(∫

σ2cdH(t)∣∣ t
b
− bz + σ2(1− c)

∣∣2
) 1

2

≡ (g(b))
1
2 (g(b))

1
2 + |z|(G(b))

1
2 (G(b))

1
2 . (4.1)

Note that g(b), g(b) ≥ 0 and G(b), G(b) > 0.
The following statements are valid for both b and b.
From (1.1) we get

b1 = 1 + b1g(b) + (σ2(1− c)−Re bz)G(b) (4.2)

b2 = b2g(b) + (Im bz)G(b), (4.3)

and (4.3) implies

b1 = b2
1− g(b)− z1G(b)

z2G(b)
. (4.4)
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Since (4.2) can be written as

b1(1− g(b) + z1G(b)) = (1 + σ2(1− c)G(b)) + b2z2G(b)

we replace b1 using (4.4) and get

b2((1− g(b))2 − |z|2G2(b)) = (1 + σ2(1− c)G(b))z2G(b) > 0

(recall c ≤ 1).
Therefore,

(1− g(b))2 − |z|2G2(b) > 0. (4.5)

Since G(b) > 0 and Im bz = z2 + σ2cIm mz > 0, we have g(b) < 1 and hence (4.5) implies

0 < |z|G(b) < 1− g(b).

We now have
g(b) < 1− |z|G(b) and g(b) < 1− |z|G(b). (4.6)

For real numbers x and y with x, y ∈ [0, 1] it is easy to show that

(1− x)
1
2 (1− y)

1
2 ≤ 1− (xy)

1
2 (4.7)

with equality holding if and only if x = y.
To complete the theorem’s proof we use (4.1), (4.6), and (4.7) to get

|α| ≤ (g(b))
1
2 (g(b))

1
2 + |z|(G(b)G(b))

1
2

< (1− |z|G(b))
1
2 (1− |z|G(b))

1
2 + |z|(G(b)G(b))

1
2

≤ 1− (|z|G(b))
1
2 (|z|G(b))

1
2 + |z|(G(b)G(b))

1
2 = 1.

Therefore |α| < 1, and hence m = m.

Appendix

Here we prove (2.3) which states that

‖FCn − F Ĉn‖ a.s.−→ 0 as n →∞.

First, we define pn ≡ P (|X11| ≥
√

n) and note that since E|X11|2 < ∞ we have pn = o(1)
n

.
Now, to prove (2.3) we will need the following theorem.

Theorem A.1. Let X1, X2, ..., Xn be i.i.d. Bernoulli with p ≡ P (X1 = 1) < 1
2
. Then for any

ε > 0 such that p + ε ≤ 1
2

we have

P
( 1

n

n∑
i=1

Xi − p ≥ ε
)
≤ e

− nε2

2(p+ε) .
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Proof. For t > 0

P
( 1

n

n∑
i=1

Xi − p ≥ ε
)
≤ e−tn(p + ε)E

[
et

∑n
i=1 Xi

]

=
(
pet(1− (p + ε)) + (1− p)e−t(p + ε)

)n

.

Minimizing over t we get

P
( 1

n

n∑
i=1

Xi − p ≥ ε
)
≤

[(
1− p

1− (p + ε)

)1−(p+ε) (
p

p + ε

)p+ε
]n

≡ enψ(p, ε),

where ψ is defined by

ψ(p, ε) = (1− (p + ε)) ln

(
1 +

ε

1− (p + ε)

)
+ (p + ε) ln

(
1− ε

p + ε

)
.

Now, using the Taylor series

ln(1− x) =
∞∑

k=1

xk

k
for |x| < 1,

we get

ψ(p, ε) = −
∞∑

k=2

εk

k

(
1

(p + ε)k−1
+

(−1)k

(1− (p + ε))k−1

)
.

Since p + ε ≤ 1
2
, the terms in the sum are all nonnegative, and therefore, dropping all but the

first term, we get

ψ(p, ε) ≤ − ε2

2

(
1

p + ε
+

1

1− (p + ε)

)
< − ε2

2(p + ε)

and the theorem is proven.

We now prove (2.3) by first noting that for ε > 0 we get from Lemma 2.2 and (MP2)

P
(
‖FCn − F Ĉn‖ ≥ ε

)
≤ P

( 2

n

∑
i,j

1(|Xij |≥
√

n) ≥ ε
)

= P
( 1

Nn

∑
i,j

1(|Xij |≥
√

n) − pn ≥ ε

2n
− pn

)
.

Since pn = o(1)
n

, for any ε ∈ (0, 1
2
) we can apply Theorem A.1 to get for all n large

P
(
‖FCn − F Ĉn‖ ≥ ε

)
≤ e− nε

16

when pn < ε
4n

. Therefore P
(
‖FCn − F Ĉn‖ ≥ ε

)
is summable, and hence ‖FCn − F Ĉn‖ a.s.−→ 0 as

n →∞ which proves (2.3).
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