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Brown University

In response to comments by Grossberg, we discuss some topics related to neural
models. We consider some experimental evidence from neurophysiology and
neuroanatomy that bears on the simplifying assumptions that must be made
when nervous system models are developed. A simple numerical example of a
neural model with feedback is presented and discussed.

As we tried to point out in our recent article
(Anderson, Silverstein, Ritz, & Jones, 1977),
the approximations we made there were over-
simplifications of the complex reality of the
nervous system—made so we could discuss
only a few aspects of a very difficult problem.

In Anderson et al. (1977), we considered a
model that is partially linear. Whatever their
theoretical shortcomings, linear systems ap-
proximate some aspects of neuron behavior
surprisingly well. Clearly, many aspects of
nervous system operation cannot be explained
with linear models. We made the suggestion
that a linear model, combined with a simple
nonlinearity, gives rise to an interesting, rela-
tively understandable nonlinear model with
some intriguing applications to psychology.
Grossberg (1978) obviously disagrees with
some of our approximations. Below we make
some comments that may clarify the biological
basis of our model, and we also make a few
remarks about the model itself.

Cell Properties

Many of the criticisms Grossberg (1978)
makes of our approach seem to arise from use
of his Equation 1, the active cable equation, as
the basic descriptor of neuron behavior. This
equation is of great importance to cellular
neurophysiology. When appropriate forms for
the conductances are inserted, it is the well-
known Hodgkin-Huxley equation. Usually
the potentials 7+, F_, and Vp are taken to be
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potentials referring to points of thermodynamic
equilibrium for various ionic species. In the
references given by Grossberg, this is the case
(see Equation 4, p. 87, of Hodgkin, 1964), and
the equilibrium potentials V+, V-, and Vp

correspond to sodium, potassium, and the so
called "leak" conductance, which is "relatively
unimportant" (Hodgkin, 1964, p. 87) and
which gives currents carried by other ions.

We must emphasize that the parameter of
activity we used in our model is related to cell
firing rate and not directly to the potential. The
equilibrium potentials are not closely related to
the "saturation" that we were discussing in
our article. The saturation (perhaps "limiting"
might be a more descriptive term) referred to
the cell's firing rate in response to its inputs.
We made the approximation that a cell's
response to its inputs was linear over a range
of output firing frequencies. Outside the range,
the output firing rate of the cell did not reflect
changes in the amplitudes of its inputs. That
is, limits were placed on the maximum and
minimum firing rates of the cells, and there
was a linear input-output relation in between.
Since action potentials are the specializations
used by nerve cells to transmit information
over all but the shortest distances, firing rate
is usually the most biologically meaningful
parameter of cell output.

When a cell fires at maximum rate or does
not fire at all, its membrane potential can be
far from equilibrium potentials. In fact, if the
V+ in Grossberg's Equation 1 is taken to be
FN», it often cannot even be approached by
excitatory synaptic inputs. The excitatory
acetylcholine synapse at the frog neuro-
muscular junction has a reversal potential
around zero millivolts, since it increases con-
ductance to both sodium and potassium ions,
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Figure 1. Curve of the reciprocal mean spike interval
in response to a maintained depolarizing current of
1-sec duration and of increasing strength for a Class I
crab axon. (This is a portion of Chapman's, 1966,
Figure 3. Adapted with permission from "The Repeti-
tive Responses of Isolated Axons From the Crab,
Carcinus Maenas" by Reginald A. Chapman, Journal
of Experimental Biology, 1966, 45, 475-488. Copyright
1966 by the Company of Biologists.)

while the sodium equilibrium potential is
considerably above zero.

The resting potential of a cell in the absence
of inputs is often near the potassium equilib-
rium but rarely at it — otherwise, one would
not see the negative potentials so character-
istic of inhibitory postsynaptic potentials.
Details of the ionic interactions vary from cell
to cell, but the observation that points of zero
and maximum firing rate rarely correspond to
equilibrium potentials seems generally correct.
Calvin (1972) comments that a change in
membrane potential of 30 millivolts to 40
millivolts suffices to drive the firing frequency
of a spinal motor neuron from one end of its
dynamic range to the other.

The exact behavior of a neuron depends
critically on the conductances and may vary
widely depending on the values of the parame-
ters. As one example, a set of simulations by
Shapiro and Lenherr (1972) studied the
responses of a computer model of the Hodgkin-
Huxley equation. When they used parameters
like those found in the squid axon, the system
did not respond to a constant current stimulus
until a threshold was reached. Then, the cell
firing rate started at a high value and leveled
off in a negatively accelerated curve as input
current increased. When the parameters of the

model were varied, particularly the time con-
stant of the potassium system, the model
neuron showed a much more linear relation
between firing rate and magnitude of constant
current stimulus.

Another example of interest is the repetitive
response of the crab motor axon to maintained
current stimuli. Figure 1, adapted from Chap-
man (1966), shows the reciprocal mean spike
interval (close to, but not identical with,
average frequency) for a current stimulus of
1-sec duration plotted against stimulus current.
Figure 1 shows data from what Chapman called
"Class I" axons, which responded with pro-
longed repetitive activities over a wide range
of currents. "Class II" axons fired high-
frequency bursts of action potentials, but the
reciprocal mean spike interval during the
burst showed a very similar pattern to Figure 1.
("Class III" axons seemed to be in poor
physiological condition.)

The upper and lower limits on firing rate,
seen clearly in Figure 1, coupled with a region
of linear response, are of interest in light of
our assumption of something very much like
this in our model. We might also observe that
the upper limit, where the cell no longer
increased firing rate with increasing stimulating
current, is far from any equilibrium point. The
cell is capable of firing very much faster than
its maximum response rate to maintained
stimuli—'about 150 spikes per second for
Class I axons and about 240 spikes per second
for Class II axons With trains of very brief
current stimuli, it is possible to elicit main-
tained frequencies as high as 550 spikes per
second.

Many sensory receptors show a surprisingly
linear transduction of generator potential into
firing rate. Several examples are discussed in a
review article by Fuortes (1971). The generator
potential is often not linearly related to the
physical stimulus; often there is a logarithmic
or power law relation between generator
potential and physical magnitude. However,
the voltage to frequency conversion of the
spike generating region often is linear.

Membrane parameters and properties are
suited to the system of which they form a part.
The squid giant axon presumably shows its
immediate jump to a high firing rate because
it is a "command" fiber that initiates an
escape reflex, which is an all-or-none response
to dangerous situations (Brown, 1975). In
sensory systems, it seems to be important to
maintain a degree of linearity.

Grossberg is particularly concerned in his
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comments with the automatic gain control
properties of neural networks. We should
emphasize that we, in our article, were inter-
ested in the transient response of a set of very
simple neuronlike elements. The gain control
and the transient response may involve very
different mechanisms. It strikes us as unlikely
that it is desirable—or perhaps even possible—
to account for both with the same model. In
the visual system, adaptation involves changes
at the levels of the photoreceptors, the opera-
tion of a complex set of neural interactions,
and even the operation of a variable aperture
(the pupil; Poppel, Held, & Dowling, 1977).

The visual system is a particularly rich
source of well-studied neural interactions.
Possibly the best-known and most complete
linear analysis of a part of a nervous system is
the Limulus eye. This simple visual system
can be modeled quite well as a linear system
(see Knight, Toyoda, & Dodge, 1970). The
vertebrate retina is more complex but contains
important linear components as well as some
nonlinearities. The extensive discussion in
Graham and Ratliff (1974) provides a good
review of linearity and nonlinearity in parts of
the visual system. Some of the nonlinearities

in vertebrates are "simple," such as the limit-
ing we assumed in our model (Anderson et al.,
1977). These nonlinearities are generally easy
to deal with, but some appear to be more
complicated. However, the X-cell system in
cats, which seems from a number of lines of
evidence to be concerned primarily with form
vision, seems considerably more linear in its
properties than the Y-cell or W-cell system.

The semicircular canal system can display
impressively linear transduction of angular
accelerations. Figure 2, which is taken from
Fernandez and Goldberg (1971), shows the
response of a unit connected to a semicircular
canal in the eighth nerve of a squirrel monkey
as the monkey was rocked back and forth in a
sinusoidal motion. In the summary of their
extensive series of experiments on this system,
Fernandez and Goldberg (1971) wrote the
following: "In many ways the responses re-
sembled those expected of a linear system. The
nonlinear distortion, which mainly reflected
asymmetries between excitatory and inhibitory
responses, was reasonably low, averaging some
13%" (p. 673). Mountcastle (1967) has
proposed the hypothesis that many sensory
systems, after what may be an initial nonlinear
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Figure 2. Response of Unit 51-8 (superior canal) to eight cycles of a sinusoidal stimulus at .0504 Hz
and 80.6 degrees per second squared. (Stimulus ends at 185.72 sec. Each point represents the average
discharge rate for one fortieth of the sine wave cycle [.496 sec]. Vertical marks show instants of peak
excitatory acceleration. Lower and upper horizontal lines, respectively, indicate resting discharge before
and after stimulation. This is Figure 1 from "Physiology of Peripheral Neurons Innervating Semi-
circular Canals of the Squirrel Monkey: II. Response to Sinusoidal Stimulation and Dynamics of
Peripheral Vestibular System" by Cesar Fernandez and Jay M. Goldberg, Journal of Newophysiology,
1971, 34, 661-675. Copyright 1971 by the American Physiological Society. Reprinted by permission.
Axes relettered for legibility.)
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transduction, maintain considerable linearity
of coding of some aspects of the input to the
highest levels of the nervous system.

We have suggested abrupt limiting in our
model. Figure 1 shows one example of this.
Other physiological examples are available in
several sensory systems. Sometimes limiting
is quite abrupt, and sometimes there is a more
graded transition region (see, e.g., Maffei &
Fiorentini, 1973, Figure 8, republished as
Figure 63 in Poppel et al., 1977 ; or Creutzfeldt,
1972, Figure 2). To a first approximation, we
feel that the exact details of the transition
region are not critical. If neurons act like
integrators of their inputs, as we suggest, then
abrupt limiting or a more gradual transition
to limiting will not produce greatly different
effects.

As a parenthetical comment, several groups
have studied integrator models for various
kinds of neuron behavior (Fohlmeister,
Poppele, & Purple, 1977; Knight, 1972). Inte-
grator models often, depending on details,
show quite good approximations to a linear
response to steady inputs over portions of
their response range; although detailed be-
havior is, of course, more complicated than we
used for the model presented in our article.

We have made this extended digression into
physiology to make the following points: First,
limits to nerve cell firing frequency are not
those suggested by equilibrium potentials in
the simple active cable equation. Second, many
cells have a region where they can respond in
a simple linear way to their inputs. Third, one
sometimes finds rather abrupt limits to the
firing rate. We think the neurophysiology gives
us some reason for believing that our simplify-
ing approximations of neuron properties are
not imposed "by fiat" but do in fact have some
justification from the experimental data.

Operation of the Model

Let us briefly discuss some of the aspects of
the operation of the model we proposed. Let
us stress that we are concerned with the
pattern of individual activities shown by all
the neurons in a set of neurons, which is what
leads to study of the state vectors, that is, the
set of neuron activities, as primitive entities.

Grossberg (in his section entitled "Positive
Eigenvalues Cause Catastrophes in Linear
Systems") gives an example of a positive feed-
back system. However, in this example, there
are no cross-terms, that is, where neuron i is
connected to neuron j. With only positive

values of activity allowed and with no cross-
connections, the system in the example must
of necessity end with all ones as a final state.
As we shall show in a simple example, our
model can show richer behavior than this.

Let us first, however, emphasize the need to
consider both positive and negative values of
cell activity. There are many ways this can be
accomplished. Perhaps the simplest is to let
the cell be inhibited from a nonzero spon-
taneous activity level, and let the set of
activities correspond to deviations from this
spontaneous level. Many physiological ex-
amples that look like this can be found. The
example (the present Figure 2) given earlier
from Fernandez and Goldberg (1971) certainly
seems to show this behavior. Here, there is
clear transduction around a high spontaneous
activity level. High spontaneous rates are
found in many eighth nerve units connected
to the semicircular canals (Goldberg &
Fernandez, 1971). Another means of allowing
both positive and negative transduction would
be by use of simple circuits of excitatory and
inhibitory units as discussed by Kohonen
(1977).

We feel strongly that both excitation and
inhibition be represented in the activity pat-
terns we are concerned with; by allowing
positive and negative values for activity, we
formally acknowledge this.

An Example

Some difficulties seem to have arisen over
the definition of the word noise. Let us give an
example of the operation of our system to
show both how it can function and what is
usually meant by noise suppression.

Consider the two-dimensional system shown
in Figure 3, which is a system like that con-
sidered in the section of our article discussing
probability (Anderson et al., 1977) learning.
We will assume there are two eigenvectors
pointing toward the two corners (1, 1) and
(1, —1). Let us construct the system with two
different eigenvalues with the ratio 1.33. We
can easily construct such a matrix. The two
unit vectors corresponding to the corners are

and

To make the step size small, we chose the
eigenvalues to be .04 and .03. To construct the
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appropriate A, then, we have

A = (.04) - (•03) ;
1,1)

EIGEN VECTOR,,'(_] ) EIGEN VECTORg« ( j )

= / .035 -.005\
~ \-.005 .035/-

A brief check will verify that the corners are
in the direction of eigenvectors, and the eigen-
values are correct.

Then consider several starting points, as
shown in Figure 3. The trajectories taken by
the state vectors after repeated iterations of
the form

x(t + ! )= ( ! + A)x(*)

are shown. The dots are placed every five
iterations. Components are limited, so if a
component moves out of the boundaries of the
square, its component is replaced by that of
the square boundary. It can be seen that all
starting points within one region end in one
corner.

We now have a categorizer of the kind we
discussed at length in our article. The output
of the system will be one or another corner.
Whether or not this is to be considered as
"noise amplification" depends on interpreta-
tion. If we take as a measure of noise sup-
pression the distance of the desired output
activity pattern for a set of inputs from the
actual output pattern, the system works quite
nicely. The extension of the system to higher
dimensions leads to a system with a rich
repertoire of categorizations and a complex
structure.

A common definition of noise refers to pertur-
bations applied to an input. If the system
"suppresses noise," then the output is rela-
tively unaffected by some kinds of perturba-
tions of its inputs. Our categorizer is of this
type, since as long as an input is not perturbed
sufficiently by noise to cross a region boundary,
the final state of the system is unchanged.
Many strictly linear systems can be shown to
suppress noise as well, and a large body of
literature in both statistics and communication
theory is devoted to this particular problem,
which is of great practical interest. Kohonen
(1977) has devoted a large portion of his book
to discussing the properties of neural models
related to those we discussed in our article in
the presence of noise.

Connectivity

Nerve cells in most areas of the nervous
system have extensive interconnections. De-

1.33

FEEDBACK MATRIX
/ .035 -.005 \
V-.005 .035/

Simple example of a two-dimensional system
of the kind proposed in Anderson et al. (1977). (x- and
y-axes correspond to activities in a two-neuron system.
Feedback is applied through the feedback matrix, which
has eigenvectors pointing toward corners and with
eigenvalues as shown. Curved lines passing through
origin are the boundaries of equivalence regions corre-
sponding to one or another corner. Dots are placed on
trajectories every five iterations, and the total number
of steps required to reach a corner is placed next to
the starting point.)

scribing in the feedback models how inter-
connections between neurons in a group of
neurons might be developed and their possible
uses was the point of the last part of our
article (Anderson et al., 1977).

In our assumptions about the components
of state vectors, we were primarily concerned
with the richness of coding of events occurring
in the inputs to the system (see Cooper, 1974).
We assumed that, with respect to the inputs,
each individual neuron responded to its own
particular set of properties. The initial state
vector could potentially start at any point of
the w-dimensional space within the box. Con-
nections, developed in the past of the system,
then begin to take effect as we have described
in the feedback model.
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Cortical connectivity is complex and not well
understood. The feedback model we presented
requires the potential for positive feedback in
the sense that the feedback matrix must have
positive eigenvalues. This can be accomplished
in many ways, but (most reasonably) both
lateral excitation and lateral inhibition would
be implied. Since an increase in cell firing rate
can be accomplished either by direct excitation
or by disinhibition (i.e., less inhibition) and a
decrease in rate either by direct inhibition or
by less excitation, it is hard to draw unam-
biguous conclusions from neuroanatomy.

There seems to be extensive evidence for
lateral inhibition in the cortex. As an anatom-
ical point, excitatory recurrent collaterals of
pyramidal cells have been demonstrated (a) in
pre-pyriform cortex (Shepherd, 1974, p. 249),
(b) in hippocampus (Shepherd, 1974, pp. 271,
273), and (c) in neocortex, where recent results
"have indicated the likelihood that pyramidal
neurons excite other pyramidal neurons
through a direct connection by their recurrent
collaterals" (Shepherd, 1974, p. 313). Un-
raveling degrees, amounts, and kinds of
synaptic connections in the neocortex is very
difficult; and time, perhaps, will provide the
answers.

It seems to be commonly found, however,
first, that cortical cells are often highly
individualistic in their responses to inputs and,
second, that cortical cells on the average over
long time periods are often not strongly corre-
lated with each other in the awake, alert animal
(see the discussion in Anderson et al., 1977).

Conclusions

We would like to emphasize once more the
limited aims of Anderson et al. (1977). We left
many questions unanswered and made many
simplifying assumptions. As only one example,
we did not suggest any way to get an activity
pattern out of a corner once it was in one and
thus ignored completely the important ques-
tions of long-term stability that are of great
interest to Grossberg (1978). These questions
are important, and we do not wish to suggest
otherwise; however, we felt it might be useful
to consider a limited model that seemed to
give rise to some interesting effects.

We suspect that many nonlinear systems
can be constructed to show the multiple stable
points of the kind shown by our simple non-
linear system. We used this property to
generate the particular simulations we argued
were reminiscent of categorical perception and
which could also be used as a response selector

for probability learning. We suggested the
model in the particular form it took because
we felt that it was a simple representative of a
class of distributed models that arose naturally
from one approach to understanding the
behavior of activity patterns shown by sets
of neurons.

Grossberg's work on nonlinear models, which
he reviews in his note, is widely known and
respected. In the final paragraph, he mentions
that the mechanisms for linear and nonlinear
models may be different. However, the experi-
mental data often show regions where linearity
is a reasonable approximation. And for many
problems, linear models combined with simple
nonlinearities may have value for understand-
ing the behavior of complex systems where a
more complete analysis fails or is excessively
difficult. As long as the limitations and regions
of applicability of the approximations one
makes are kept in mind, it seems perfectly
reasonable to us to investigate simple systems
and add complexity as required. The under-
standing of brain functions poses problems of
sufficient magnitude to allow a variety of
useful approaches.
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