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THE LIMITING EIGENVALUE DISTRIBUTION
OF A MULTIVARIATE F MATRIX*

JACK W. SILVERSTEINT

_ Abstract. Let X, ¥, 4,j=1,2,--- be iid. N(0,1) random variables and for positive integers p, m, n, let
X,=(X,;) i=1,2,---,p; j=1,2,---,m, and Y,=(Y;;) i=1,2,---,p; j=1,2,---,n. Suppose further that
p/m=y>0and p/n—y €(0,3) as p— co. In [5], [6] it is shown that the empirical distribution function of
the eigenvalues of (1/m X, X)(1/n ¥, ¥,7)~! converges i.p. as p — o to a nonrandom d.f.

In the present paper the limiting d.f. is derived.

1. Introduction. Let X i b j#l,2L~ -+ be ii.d. N(0,1) random variables, and for
any positive integers p, m, let w,= XPXPT, X,=(X;;))i=12,---,p;j=1,2,---,m, be the
p X p Wishart matrix W(I,m). It is well known [1], [2], [4] that if p/m —y >0 as p — o0,
then the empirical distribution function F, of the eigenvalues of (1/m)W, (i.e. F,(x)=
(1/p) (# of eigenvalues of (1 /m)W, < x)) converges a.s. for every x>0 to a nonran-

dom d.f. F, where for 0 <y <1, F, has density

(1.1)
)= | T Vs 0B B ) 0] tor (1= 5 <x<(15)°

0 otherwise,

and for 1 <y <o F, has mass 1—1/y at zero and density f, on ((1 - ﬁ)z, 1+ ‘/}7)2).
In [6] it is shown that the empirical d.f. of (1/ m)W,T,, under certain conditions on
the p Xp matrix T,, converges in probability to a nonrandom d.f. F. The specific
conditions on 7, are the following:
1) T, is symmetric positive definite a.s.
2) W, and T, are independent.
3) If G, is the empirical d.f. of the eigenvalues of T,, then for every positive integer
k, {x*dG,(x) converges in L? to a nonrandom value H,, where £2_, H; /%=
0.
The moments { E, }¥_; of F are also derived. They are given by

B .
—w k! n n
(1.2) Ek= E yk Z ——W—!—HII...HWW.

w

No further information of F is given.
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In [5] it is shown the conditions are satisfied for 7,=((1/n) Efp)”l where W, is
W(1,n), W, and W, are independent, and p/n—y’€(0,1/2) as p—~c0. In particular, 3)
is verified by showing

k X a+yy)? x
[ x 4G, (x) 5 N ‘/_)ZXdF()

The matrix ((1/m)W,)(1/ n)_I/Zp)‘1 is seen to be a multivariate F matrix, fundamental
to statistical work in multivariate analysis.

In this paper we will derive the limiting empirical d.f. of ((1/m)W,)(1/ n)ﬂ/p)“l.
We will show for any y’ €(0,1), if

f‘“‘/_> S dF(x), k=12,

Wt xk
then { E, }¥_, are the moments of the d.f. F, ,, where for 0 <y <1 F, . has density
fy,y'(x)
1=y [ x- 1= 1= V([ [1+1-0-y)1-y) |\
N/ * =y =y
= 27rx(xy’+y)
1-{1-(1-y)(1-)) 1+1-(1-»)1-») \*
or : ,
1-y’ 1-y
0 otherwise.

and for 1 <y <oo F, , has mass 1—1/y at zero and density f, ,» on

((1~xf1—(1—y)(1—y’) )2 (1+¢1—(1—y)(1—y’) )2)

1=y 1=y

The derivation of F, . will be handled in the next section by first evaluating a
general expression for E (e’X ) s€C, where X is a random variable having moments
(E,}, and { H,} are the moments of a random variable Y having support on a closed
interval on R™* bounded away from zero. This expression will be seen to involve an
integral of a functlon in the complex plane depending on the generating function of the
moments of Y~ !. Then F, , will be determined by evaluating the integral when Y~!
has d.f. F,..

2. Derivation of F, ,.. Assume that { H,} are the moments of the random variable
Y having support on [a b] with0<a<b<oo. Let G(2)=E((1 ——zY) 1), zeC. Then G
is analytic on C —[1/b,1/a)] and for |z|<1/b, G(2)=XF_oH,z* (H,=1). Let G,(z)=
E((1—-zY Y1), Then G, is analytic on C—[a,b]. Moreover, we have G,(z)=1-
GQ1/z), zeC —[a,b].

Let X be a random variable having moments { E, } given by (1.2). We may ignore
the question of whether { E, } are the moments of a random variable since the following
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steps will be reversible and we will wind up with F, . a proper probability d.f.

Expanding E(e°X), s€C, in a formal power series around s =0 we have

(1.3)

Esk (] k k—w H"l...H”w
sXY — k _ k Yy 1 w
E(e™)=% A =1+ 24 Y Wl ¥ PR
k=0 : k=1 w=1 Yom+ - An,=k-w+1, U w’
n+ - +wn,=k

0 k k—w H ... H"w

—1+ Y sty L 3 e

k=1 w=1 W' o 2m4 o b wmDny=wo1, 20 My

k—=Q2ny+ - +wn,)20

H1(k~(2n2+ - +wn))
(k—Q2ny+ -+ +wn,))!

=1_l+.1_e}’5H1+ io: y_" Z u
' Yy

w=2 . ny+ - +(w—Dn,=w-1

nyl---n,t

(Sy)kHl(k—(2n2+ st wn,)
(k=Q@ny+ - +wn )

>

kzmax(w,2ny,+ -+ +wn,)

Notice when w22 and n,+ --- +(w—Dn,=w~—1, 2n,+ -+ - +wn>w. There-
fore
(1.4)
1.1

E(e*)=1-L4Lorm
Yoy
© L —w ) Hr oo J M
H, Y 2 2ny+ - +wn,,
+e’wlz w' Z n'_"nw' (Sy) :
w=2 Y ony+ - +(w=Dn,=w-1 "2° w*

11 2 g (ysH)™ - (ysH,. )™
—1 — =4 = LysH, n+1
1 +=erH Y 2 ml--om,) )

yoy n=0 (n+1)' my+2my+ - +nm,=n

Notice that

E (YSHz)ml"'()’SHnﬂ)m"
m+ --nm,=n ml'm"‘ ’
defined to be 1 when n=0, is the coefficient of z” in the series expansion about z=0 of
exp(ysZy.1H, . 12%)=exp(ys((G(z)-1)/z— H,)). Note also that 1/(n+1)! is the
coefficient of z" in the expansion about z=0 of (e*—1)/z. Both functions are analytic
in a neighborhood of the origin, independent of y and s. Therefore we can write ([3, p.
158))

1 1 (e5/7-1) 1
1.5) E(e**)=1—=4——¢rsH ____eys((G(z)—l)/z—Hl)(_)d
(15) () Yy y2lmi §z|=r<1/b 5/z 2]
~1-1, 1 ¢ e$/2¥s(G()=1/2) g,
y sy2mi lz|=r<1/b
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Making the substitution z—1/z we have

1

1
1.6 E(esX)=1-—+ : es2¥3(G/)=D; =24,
9 =15 50
=1_l+ 1 ¢ esz~yszG,(z)z—2dz'
Yy SY2mid=r>b

Using integration by parts we have

sX 1 1 sz(1-yG,(z 1

() EeN=1-telg e ()t
Provided

(1.8) v=z(1-yG,(z))

is invertible along |z| =, we make the substitution (1.8) and arrive at

1 1
1.9 E(e** 1—— se av
( ) ( ) y y27Tl ﬁz(v)|=r>b Z(U)

Since G,(z)—0 as|z|— oo, for any § € (0,1) we have for all r sufficiently large

(1.10) (1-8)lzl<lvl< (1 +8)]

along the contour.

To derive F, ,, 0<y’<1, we apply (1.9) to the case when Y~! has density f,.
Using the identity
4 Y(x—c)(d—x) . 5
(1.11) f . de==(Vd—c)
valid for 0 €c<d, it is straightforward to show, first for z real, z>(1— f— )~2, and

therefore for all z€C —[(1+y)") %1 —y") 7>

(112) Gy()=gs [C ﬂx—<1—«7>2)<<1+¢7>2—x) s

277y -y (1- xz)x

1-2(1-y)+ (1) (- () )= (0 -7

2y'z

where we will interpret all square roots of the form

(1.13) J(z=a))(z—a;), a1, a,€R, a;<a,

to be positive on (a,, ) and to vary continuously off this interval. Notice then, that
the square root will be negative for z € (— 0,4,). ‘
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Solving for z in (1.8) we find

- (2y’/y+(“\‘1 —y o+ 1=y (v(1-p)+(1-y))*— 4o

(114) 2(y'/y+1-y")

_Qy/y+(1=y))o+1-yx(1-y) /(=) (v—b,)
- 2(y'/y+1-y")

where

1+/1-(1-y)(1-y) \*
1-y’ )

b1=

1-/1-(1-y)(1-y) )2 -
1-y’ ’ 2

Notice in (1.14) if the plus sign in front of the square root is used we would have
z~v for v large, whereas if the minus sign is used, then z ~ O/ (Y /y)+A=y)).
Therefore, for 7 in (1.9) sufficiently large (1.8) is invertible along |z|=r and we have

_@y/y+(1=y))v+1-y+(1-y)/(v-b,)(v-b,)

(1.15) z(v) 2(y'/y+1-y")

and

1 2y /y+A=y))o+1-y—(1-y)(v—b,)(v—b,)
z(v) 2v0(vy’/y+1)

(1.16)

Integrating e°/z(v) along contours as in Fig. 1 when y#1, and letting the two
horizontal lines approach the real axis, we get (noting the discontinuity of the square
root across [b,, b,]) : ‘

1 1
1.17 E(eX)=1——+ - : eV ——dv
(1.17) (e y yz”’§z+y/y’|=r1<y/y’ z(v)
1
+ - e’ dv
y2mi 9t§z|=rz<min<y/y',él) z(v)

1 e, (=) (x~b,)(b,—x)
+E‘/1;1 ¢ x(xy'+y) .

For y=1 the limiting inner contour should not encompass the origin, and we will
get (1.17) except the second integral will not appear.

We see that when v= —~y /y’, the numerator of 1 /z(v) is zero. Therefore the first
integral in (1.17) vanishes. When v=0 the numerator of 1 /z(v) is 2(1—y) when
0<y<1, and is zero when y> 1. Therefore, the term involving the second integral in
(1.17) is (1/y —1)I3};, where I, is the indicator function on the set 4.
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Fic. 1.

We therefore have
(1.18) E(e¥)= (1~—)1(1w)/ e % dx.

Using the fact that F, , is a proper probability d.f. we conclude that (1.18) for
s=1it, tER, is the characterlsnc function of the random variable X with d.f. F, .
that the d.f. of X must be F,,
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