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Abstract

We consider a class of matrices of the form Cn = (1/N)A1/2
n XnBnX∗

nA
1/2
n , where Xn is an n×

N matrix consisting of i.i.d. standardized complex entries, A
1/2
n is a nonnegative definite square-

root of the nonnegative definite Hermitian matrix An, and Bn is diagonal with nonnegative
diagonal entries. Under the assumption that the distribution of the eigenvalues of An and
Bn converge to proper probability distributions, as n

N → c ∈ (0,∞), the empirical spectral
distribution of Cn converges a.s. to a non-random limit. We show that, under appropriate
conditions on the eigenvalues of An and Bn, with probability 1, there will be no eigenvalues in
any closed interval outside the support of the limiting distribution, for sufficiently large n. The
problem is motivated by applications in spatio-temporal statistics and wireless communications.
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1 Introduction

The aim of this paper is to extend the result in Bai and Silverstein (1998) to the eigenvalues of a
more general class of random matrices, specifically matrices of the form

Cn = (1/N)A1/2
n XnBnX∗

nA1/2
n ,

where for n = 1, 2, . . ., Xn is n ×N (N = N(n)) consisting of i.i.d. standardized complex entries
(EX11 = 0, E|X11|2 = 1), A

1/2
n is a nonnegative definite square root of the n × n Hermitian

nonnegative definite matrix An, and Bn = diag(b1, b2, . . . , bN ), each bi ≥ 0. The matrices studied
in Bai and Silverstein (1998) assume Bn = IN , the N × N identity matrix. In that case Cn can
be viewed as the sample covariance matrix consisting of N samples of the random vector A

1/2
n X·1

(X·1 denoting the first column of Xn), which has population covariance matrix An. The matrix Cn

can then be interpreted as the sample covariance matrix consisting of N weighted samples. There
are other ways to interpret the matrix, being important in various applications. One example is
the spatio-temporal sampling model to be described in Section 1.2.1. In wireless communications,
Hn = (1/

√
N)A1/2

n XnB
1/2
n , for general nonnegative definite matrix Bn, is used to model the path

gains between different groups of antennas in a multiple-input-multiple-output (MIMO) system
(Section 1.2.2). It is typically assumed that X11 is complex Gaussian (real and imaginary parts
independently distributed as N(0, 1/2)), in which case the square of the singular values of Hn has
the same distribution as the eigenvalues of Cn (the bi’s being the eigenvalues of Bn).

1.1 Statement of the result

Results have previously been obtained on the limiting behavior of the empirical distribution func-
tion, FCn , of its eigenvalues (FCn(x) ≡ (number of eigenvalues of Cn ≤ x)/n), (Burda (2005),
Zhang (2006), Boutet de Mondvel, Khorunzhy and Vasilchuck (1996)), with differing assumptions
(the weakest appearing in Zhang (2006)) and varied (but equivalent) forms of expressions for the
result. The following limit result is expressed in terms of the Stieltjes transform of FCn , defined
for any distribution function G as

mG(z) =
∫

1
λ− z

dG(λ), z ∈ C+ ≡ {z ∈ C : =z > 0}.

Assume that the empirical distribution functions, FAn and FBn , converge weakly, as n → ∞, to
probability distribution functions, denoted respectively by FA and FB, and cn ≡ n/N → c > 0.
Then, with probability 1, FCn converges weakly to a probability distribution function F whose
Stieltjes transform m(z) = mF (z), for z ∈ C+, is given by

m(z) =
∫

1
a

∫
b

1+cbedFB(b)− z
dFA(a), (1)

where e = e(z) is the unique solution in C+ of the equation

e =
∫

a

a
∫

b
1+cbedFB(b)− z

dFA(a). (2)

It is remarked here that the result in Zhang (2006) covers arbitrary Hermitian nonnegative definite
Bn. Moreover, the assumption of identical distribution of the entries of Xn is weakened to a
Lyapunov-type condition.
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As in Bai and Silverstein (1998), the purpose of this paper is to prove, with additional assump-
tions, the almost sure non-appearance of eigenvalues of Cn in any interval away from the origin and
outside the support of F as n → ∞. Before the result can be formally stated we need one more
definition. Let F cn,An,Bn denote the distribution function whose Stieltjes transform is given by (1)
replacing c, FA and FB with cn, FAn and FBn , respectively.

The following will be proven:

Theorem 1: Assume the following:

(a) Xij, i, j = 1, 2, . . ., are i.i.d. complex-valued random variables with EX11 = 0, E|X11|2 = 1,
and E|X11|4 < ∞.

(b) N = N(n) with cn = n/N → c > 0 as n →∞.

(c) For each n, An is n×n Hermitian nonnegative definite, and Bn = diag(b1, . . . , bN ) is N ×N ,

each bi ≥ 0, satisfying FAn
D−→ FA, FBn

D−→ FB, both limits being probability distribution
functions.

(d) ‖An‖ and ‖Bn‖, the respective spectral norms of An Bn, are bounded in n.

(e) Cn = (1/N)A1/2
n XnBnX∗

nA
1/2
n , where A

1/2
n any Hermitian square root of An, Xn = (Xij),

i = 1, 2, . . . , n, j = 1, 2, . . . , N .

(f) The interval [a, b] with a > 0 lies in an open interval outside the support of F cn,An,Bn for all
large n.

Then,
P(no eigenvalue of Cn appears in [a, b] for all large n) = 1.

The applicability of Theorem 1 depends on finding a way to determine the intervals outside
the support of F cn,An,Bn , as it exists for sample covariance matrices (Silverstein and Choi (1995)).
In the latter case, the limiting Stieltjes transform m(z) has an explicit inverse z = z(m). It is
straightforward to verify that a Stieltjes transform is increasing on intervals on the real line outside
the support of its distribution function. Its inverse therefore exists on these intervals and is also
increasing. Therefore plotting z(m) for m real, and locating on the vertical axis places where the
inverse is increasing, yield intervals outside the support. There does not appear to be an explicit
inverse for (1). Nevertheless, preliminary work indicates a way to determine an inverse of m(z)
associated with an interval outside the support of the limiting spectral distribution. This has been
established in the case of another class of random matrices (Dozier and Silverstein (2007)). Work
in this area is currently being pursued.

1.2 Motivation

Our results give information on the behavior of individual eigenvalues. Results describing only
the limiting behavior of the empirical spectral distribution provide information on the proportion
of eigenvalues falling in any interval. But these results do not rule out the possibility of o(n)
eigenvalues scattered outside the support of the limiting empirical spectral distribution. The goal
of our research is to establish that such a phenomenon does not occur for large enough n. Further
research in our framework would allow for precise description of the location of the eigenvalues. In
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particular, we expect that the results proved here will be key to proving certain phase transition
phenomena observed in the context of sample covariance matrices with Bn = IN and An having a
few large isolated eigenvalues (Baik and Silverstein (2006), Baik, Ben Arous and Péché (2006), El
Karoui (2006), Paul (2007)).

1.2.1 Application to spatio-temporal statistics

The data model we are considering here arises in the field of spatio-temporal statistics, where the
rows of the n×N matrix Un = A

1/2
n XnB

1/2
n correspond to indices of spatial locations and the column

indices correspond to points in time. This class of models is also known as the separable covariance
model. This is because, under the assumptions made here on the entries of Xn (i.i.d., mean 0, finite
fourth moment), the joint (space-time) covariance of Un, viewed as an Nn× 1 vector consisting of
the columns of the matrix Un stacked on top of one another, is given by ΣUn = An ⊗ Bn, where
⊗ denotes the Kronecker product between matrices. Note that, if we further assume Gaussianity
for the entries of Xn, then the joint distribution of Un is NNn(0, An ⊗ Bn). Also, in that setting,
we do not require An and Bn to be diagonal, but only that they are nonnegative definite. The
interpretation of this covariance structure is that the entries of Un are correlated in time (column),
but the pattern of temporal correlation does not vary with location (row). In other words, there is
no space-time interaction in the process.

One advantage of this model from a statistical estimation point of view is that, when N is large
and n is comparatively small, so that n

N → 0 as n →∞, it is possible to get quite reliable estimate
of An from the sample covariance matrix Cn = 1

N UnU∗
n. Indeed, in that setting, if moreover ‖ An ‖

is bounded above, it is not hard to verify that ‖ Cn − 1
N (tr Bn)An ‖→ 0 a.s., as n → ∞. So, the

spectral properties of An can be recovered from that of the spectrum of Cn. Of course, the key
questions we are addressing here relate to the situation where n

N → c ∈ (0,∞). The behavior of
the empirical spectrum in that setting is hitherto unknown.

The results and techniques presented in this paper may prove useful in this problem for a number
of different reasons. A statistical problem related to such spatio-temporal processes is to understand
the temporal variability of the spatial field. One of the approaches for understanding the temporal
variability is to perform an eigen-analysis (in space) of the sample covariance matrix Cn. This is
because, the weights of the different eigenvectors of Cn, in representing the columns of Un (principal
components scores), vary in time. These weights therefore capture the temporal variability of the
orthogonal components (eigenvectors of Cn) of the spatial process. The eigenfunctions thus obtained
are usually referred to as empirical orthogonal functions (particularly in climatology, see, e.g. von
Storch and Zwiers (1999)). Understanding the asymptotic behavior of the sample eigenvalues and
eigenfunctions therefore is a relevant question, since, under the separable space-time model they
give a set of orthogonal components, and their relative strengths, of the spatial variation of the
process.

1.2.2 Application to wireless communication

In wireless communications, Hn = (1/
√

N)A1/2
n XnB

1/2
n , for a general nonnegative definite matrix

Bn, appears in a variety of models, including both direct-sequence and multiple-carrier code-division
multiple-access systems (Tulino and Verdú (2004), sections 3.1-3.2), and in multiple-input-multiple-
output (MIMO) systems (Tulino and Verdú (2004), section 3.3). The importance of acquiring more
detailed information on the singular values of Hn beyond what the limiting empirical distribution
((1), (2)) reveals, which has been primarily used to estimate capacity, is becoming more apparent.
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For example, in Verdú (2002) an estimate of capacity requires knowledge of the largest singular
value of Hn which Theorem 1 provides. Indeed, the a.s. convergence of the largest singular value
of Hn is an analog of the corollary to Theorem 1.1 in Bai and Silverstein (1998) and readily
follows from Theorem 1 using similar arguments. Another example is in MIMO systems, where
Hn models the path gains between different groups of antennas. It is typically assumed that
X11 is complex Gaussian (real and imaginary parts independent N(0, 1/2)), in which case the
square of the singular values of Hn has the same distribution as the eigenvalues of Cn (the bi’s
being the eigenvalues of Bn). The matrices An and Bn are the covariances between the receiver
and the transmitter antennas, respectively. They reflect the scenario involving these two groups
of antennas, for example, their locations, and the nature of the interference encountered due to
their surroundings. The singular values of Hn, or equivalently the eigenvalues of Cn, indicate
several important properties of the communication scheme, due to the fact that any information
on Hn yields ways to allocate the transmitted signal in an optimal way. For example, if there is
a significant number of small eigenvalues, transmission can be achieved after performing a unitary
transformation, on the left and/or the right side of Hn, resulting in a reduced number of virtual
parallel antennas with little correlation between them. When the number of antennas is sizeable,
knowledge of the eigenvalues of Cn, depending only on An and Bn, is gained to some extent
from the limiting F . It yields the proper proportion of eigenvalues within any interval. However,
Theorem 1 is a step toward knowing the location of all the singular values, which provides much
more information. For example, it can ensure that no lone eigenvalue above or below the limiting
support exists. The importance of Theorem 1 lies in the determination of spectral behavior of Cn

entirely through An and Bn.

The essential portion of the proof of Theorem 1 will proceed in the following sections. The
main tools used in the proof are properties of Stieltjes transform and bounds on the moments of
martingale difference sequences. The results to be obtained here are analogous to those in sections
3-5 of Bai and Silverstein (1998), namely, we will show

sup
x∈[a,b]

|mn(z)−m0
n(z)| = o(1/(nvn)) a.s., (3)

where
mn = mn(z) = mF Cn (z) = (1/n)tr (Cn − zI)−1 (4)

is the Stieltjes transform of the empirical distribution function of the eigenvalues of Cn,

m0
n = m0

n(z) = mF cn,An,Bn (z) (5)

and z = x + ivn, where vn = κn−1/140, κ an arbitrary positive constant (fixed for all n).
The steps needed to conclude Theorem 1 from (3) are identical to those in section 6 of Bai and

Silverstein (1998), except for the fact that in the latter paper vn = N−1/68. In particular, following
the same arguments one can prove that, if a′, b′ are such that a′ < a, b < b′, and the interval [a′, b′]
also satisfies condition (f) of Theorem 1, then

sup
x∈[a,b]

∣∣∣∣∣
∫

I[a′,b′]cd(FCn(λ)− F cn,An,Bn(λ))
((x− λ)2 + v2

n)((x− λ)2 + 2v2
n) · · · ((x− λ)2 + 70v2

n)

+
∑

λj∈[a′,b′]

v140
n

((x− λj)2 + v2
n)((x− λj)2 + 2v2

n) · · · ((x− λj)2 + 70v2
n)

∣∣∣∣∣∣
= o(1), a.s. (6)
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where the λj ’s denote the eigenvalues of Cn. From this, using the fact that the integral in (6)
converges a.s. to 0, one can argue that, with probability one, no eigenvalue of Cn appears in [a, b]
for all sufficiently large n.

Before proceeding, we simplify here some of the assumptions. It is clear from assumption (d) of
Theorem 1 that, we can without loss of generality assume throughout that max{‖An‖, ‖Bn‖} ≤ 1
for all n. Also, the argument given at the beginning of section 3 of Bai and Silverstein (1998) carries
through in our case. Specifically, for any C > 0 let Yij = XijI(|Xij |≤C)−EXijI(|Xij |≤C) (where IA de-

notes the indicator function on the set A), Yn = (Yij), i ≤ n, j ≤ N , C̃n = (1/N)A1/2
n YnBnY ∗

n A
1/2
n ,

and λk, λ̃k the respective eigenvalues of Cn and C̃n in nonincreasing order. Then as in Bai and Sil-
verstein (1998), using the main result in Yin, Bai, and Krishnaiah (1988) on the largest eigenvalue
of (1/N)XnX∗

n, we have, with probability 1

lim sup
n→∞

max
k≤n

|λ1/2
k − λ̃

1/2
k | ≤ (1 +

√
c)E1/2|X1 1|2I(|X1 1|>C),

and because of assumption (a) we can make the bound on the right side arbitrarily small by choosing
C sufficiently large. Thus we can assume that the Xij are uniformly bounded.

The rest of the paper is organized as follows. In Section 2, we give the key steps to the derivation
of the integral equations for the limiting Stieltjes transforms of associated spectral measures. In
Sections 3 and 4 we will show, respectively

sup
x∈[a,b]

|mn(z)− Emn(z)| = o(1/(nvn)) a.s. (7)

and
sup

x∈[a,b]
|Emn(z)−m0

n(z)| = O(1/n). (8)

Some mathematical tools needed in proving these results are given in the Appendix. Throughout
this paper, K denotes a universal constant whose value may vary from one appearance to another.

2 Integral representation of Stieltjes transforms

Write Xn = [X·1, . . . , X·N ], and let yj = (1/
√

N)A1/2
n X·j . Then we can write

Cn =
N∑

j=1

bjyjy
∗
j .

Fix z ∈ C+ ≡ {z = x + iv ∈ C : v > 0}. Define

en = en(z) = (1/n)tr An(Cn − zI)−1, (9)

and

pn = − 1
Nz

N∑

j=1

bj

1 + cnbjen
=

∫ −b

z(1 + cnben)
dFBn(b). (10)

Write Cn = OΛO∗, Λ = diag(λ1, . . . , λn), in its spectral decomposition. Let An = {aij} = O∗AnO.
Then

en = (1/n)trAn(Λ− zI)−1 = (1/n)
n∑

i=1

aii

λi − z
. (11)
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We therefore see that en is the Stieltjes transform of a measure on the nonnegative reals with total
mass (1/n)trAn. It follows that both en(z) and zen(z) map C+ into C+. This implies that pn(z)
and zpn(z) map C+ into C+, and as z →∞, zpn → −(1/N)trBn. Therefore, from Lemma 5 we also
have pn a Stieltjes transform of a measure on the nonnegative reals with total mass (1/N)trBn.
It follows that en and pn are bounded in absolute value by v−1(1/n)trAn and v−1(1/N)trBn,
respectively.

More generally, from Lemma 5 we have any function of the form

−b

z(1 + m(z))
,

where b ≥ 0 and m(z) is the Stieltjes transform of a bounded measure on R+, to be the Stieltjes
transform of a measure on the nonnegative reals with total mass b. It follows that

∣∣∣∣
−b

z(1 + m(z))

∣∣∣∣ ≤
b

v
. (12)

Let C(j) = Cn− bjyjy
∗
j . We may, without loss of generality, assume that max(‖An‖, ‖Bn‖) ≤ 1.

Write

Cn − zI + zI + zpnAn =
N∑

j=1

bjyjy
∗
j + zpnAn.

Taking inverses and using the definition of Cn and C(j), we have

(Cn − zI)−1 + (zI + zpnAn)−1

=
N∑

j=1

bj(Cn − zI)−1yjy
∗
j (zI + zpnA)−1 + zpn(Cn − zI)−1An(zI + zpnA)−1

=
N∑

j=1

bj

(C(j) − zI)−1yjy
∗
j (zI + zpnA)−1

1 + bjy∗j (C(j) − zI)−1yj
+ zpn(Cn − zI)−1An(zI + zpnA)−1,

where the last step follows from Lemma 1 in the appendix.
Taking traces and dividing by n, we have

mn(z)−
∫

1
a

∫
b

1+cnben
dFBn(b)− z

dFAn(a) =
1
N

N∑

j=1

bjdj ≡ wm
n ,

where

dj =
(1/n)x∗jA

1/2
n (I + pnAn)−1(C(j) − zI)−1A

1/2
n xj

z(1 + bjy∗j (C(j) − zI)−1yj)
− (1/n)tr (Cn − zI)−1An(I + pnAn)−1

z(1 + cnbjen)
.

Multiplying both sides of the above matrix identity by An, and then taking traces and dividing by
n, we find

en(z)−
∫

a

a
∫

b
1+cnben

dFBn(b)− z
dFAn(a) =

1
N

N∑

j=1

bjd
e
j ≡ we

n,

where

de
j =

(1/n)x∗jA
1/2
n (I + pnAn)−1An(C(j) − zI)−1A

1/2
n xj

z(1 + bjy∗j (C(j) − zI)−1yj)
− (1/n)trAn(Cn − zI)−1An(I + pnAn)−1

z(1 + cnbjen)
.
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2.1 Bound on the approximation error

Notice that for each j, y∗j (C(j) − zI)−1yj can be viewed as a Stieltjes transform of a measure on
R+. Therefore ∣∣∣∣∣

1
z(1 + bjy∗j (C(j) − zI)−1yj)

∣∣∣∣∣ ≤
1
v
.

For each j, let e(j) = e(j)(z) = (1/n)trAn(C(j) − zI)−1, and

p(j) = p(j)(z) =
∫ −b

z(1 + cnbe(j))
dFBn(b),

both of course being Stieltjes transforms of measures on R+, along with the integrand for each b.
Using Lemma 1 and Lemma 2(a) in the appendix, (12) and the fact that ‖ Bn ‖≤ 1, we have

|pn − p(j)| = |en − e(j)|cn

∣∣∣∣
∫

b2

z(1 + cnben)(1 + cnbe(j))
dFBn(b)

∣∣∣∣ ≤
4c2

n

nv3
. (13)

In order to handle both wm
n , dj and we

n, de
j at the same time, we shall denote by En either An or

In, and wn, dj for now will denote either the original wm
n , dj or we

n, de
j .

Write dj = d1
j + d2

j + d3
j + d4

j , where

d1
j =

(1/n)x∗jA
1/2
n (I + pnAn)−1En(C(j) − zI)−1A

1/2
n xj

z(1 + bjy∗j (C(j) − zI)−1yj)

− (1/n)x∗jA
1/2
n (I + p(j)An)−1En(C(j) − zI)−1A

1/2
n xj

z(1 + bjy∗j (C(j) − zI)−1yj)
,

d2
j =

(1/n)x∗jA
1/2
n (I + p(j)An)−1En(C(j) − zI)−1A

1/2
n xj

z(1 + bjy∗j (C(j) − zI)−1yj)

− (1/n)trEn(C(j) − zI)−1An(I + p(j)An)−1

z(1 + bjy∗j (C(j) − zI)−1yj)
,

d3
j =

(1/n)trEn(C(j) − zI)−1An(I + p(j)An)−1

z(1 + bjy∗j (C(j) − zI)−1yj)

− (1/n)trEn(Cn − zI)−1An(I + pnAn)−1

z(1 + bjy∗j (C(j) − zI)−1yj)
,

and

d4
j =

(1/n)trEn(Cn − zI)−1An(I + pnAn)−1

z(1 + bjy∗j (C(j) − zI)−1yj)

− (1/n)trEn(Cn − zI)−1An(I + pnAn)−1

z(1 + cnbjen)
.
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For the rest of this subsection, we assume that for all n large, v = vn = κn−δ for some κ > 0 and
δ ≥ 0. We wish to show that for all δ ≤ 1/4, for arbitrary subset Sn ⊂ R containing at most n
elements, and arbitrary positive t and ε, we have

P(max
x∈Sn

|wn|v−12
n > ε) ≤ Ktε

−2tn2−t(1−34δ) (14)

by proving the same bound on each of

P( max
j≤N,x∈Sn

|di
j |v−12

n > ε),

for i = 1, 2, 3, 4. Note that the constants Kt and Kp (appearing later) are positive constants.
We begin with d1

j . We get from Lemma 2(c) and (13),

|d1
j | ≤

1
vn

4c2
n

nv3
n

1
vn

‖X·j‖2

n

16
v2
n

=
64c2

n

nv7
n

‖X·j‖2

n
.

From Lemma 3 it is straightforward to argue that for p ≥ 2

E‖X·j‖2p ≤ Kpn
p.

Therefore for p ≥ 2

P( max
j≤N,x∈Sn

|d1
j |v−12

n > ε) ≤ nP
(

max
j≤N

‖X·j‖264c2
n

n2v19
n

> ε

)
≤ Kp

nN

(nv19
n )p

ε−p.

For d2
j we use Lemma 2(a) and Lemma 3 to get, for p ≥ 2,

E|v−12
n d2

j |p ≤ Kpv
−13p
n n−p/2v−2p

n = Kp
1

(n1/2v15
n )p

,

so that for ε > 0, p ≥ 2

P( max
j≤N,x∈Sn

|d2
j |v−12

n > ε) ≤ Kpε
−p nN

(n1/2v15
n )p

.

Using Lemma 1, Lemma 2(a), 2(b), and (13) we have,

|d3
jv
−12
n | ≤ K

v13
n

(
1

nv2
n

+
1

nv6
n

)
≤ K

1
nv19

n

.

Therefore for any p ≥ 1 and ε > 0

P( max
j≤N,x∈Sn

|d3
j |v−12

n > ε) ≤ Kpε
−p nN

(nv19
n )p

.

Finally, for d4
j , we use Lemma 1 and Lemma 2(a) to find:

|d4
jv
−12
n | ≤ 4

v16
n

(|(1/n)X∗
·jAn(C(j) − zI)−1X·j − (1/n)trAn(C(j) − zI)−1|+ (nvn)−1).
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Therefore, by Lemma 3, for any ε > 0, p ≥ 2, we have

P( max
j≤N,x∈Sn

|d4
j |v−12

n > ε)

≤
∑

j≤N,x∈Sn

[
P

(
4

v16
n

|(1/n)X∗
·jAn(C(j) − zI)−1X·j − (1/n)trAn(C(j) − zI)−1| > ε

2

)
+ Kpε

−p(nv11
n )−p

]

≤ Kpε
−p nN

(n1/2v17
n )p

,

which, for δ ∈ [0, 1/4], can easily be verified to be the largest of the four bounds. Therefore, (14)
holds.

2.2 Existence, convergence, and continuity of the solution

We can at this stage provide a proof of the existence of a unique e with nonnegative imaginary part
satisfying (2) for any z = x + iv, v > 0, and the a.s. convergence in distribution of FCn to F . We
also show the continuous dependence of e on FA, FB, and c. We see from (14) with δ = 0, κ = v
and t > 3 we have

en(z)−
∫

a

a
∫

b
1+cnben

dFBn(b)− z
dFAn(a) and mn(z)−

∫
1

a
∫

b
1+cnben

dFBn(b)− z
dFAn(a)

converge a.s. to zero. Consider a realization for which both convergences to zero occur on a
subsequence {ni} for which en converges, say to e. Because of (12), we have, by the Dominated
Convergence Theorem (DCT)

pn =
∫ −b

z(1 + cnben)
dFBn(b) →

∫ −b

z(1 + cbe)
dFB(b) ≡ p

and
∫

a

a
∫

b
1+cnben

dFBn(b)− z
dFAn(a) =

∫ −a

z(1 + cnapn)
dFAn(a)

→
∫ −a

z(1 + cap)
dFA(a)

=
∫

a

a
∫

b
1+cbedFB(b)− z

dFA(a)

along the subsequence. Thus e is a solution to (2).
From uniqueness of e, proved below, we must have convergence of en to e on the whole sequence.

Therefore, again by the DCT we have

mn(z) →
∫

1
a

∫
b

1+cbedFB(b)− z
dFA(a).

This event occurs with probability one, and for a countable number of v’s with a limit point. Since
the limsup of the largest eigenvalue of Cn is a.s. bounded by (1+

√
c)2 (by Lemma 4), the sequence

{FCn} is almost surely tight. Therefore, FCn converges in distribution to F a.s.

10



For probability distribution functions FA and FB on [0, 1] and c > 0, let e = e(z) be a solution
to (2) with FA, FB, c replaced by FA, FB, and c, respectively. Assume that c ≤ c. Then we have

e− e =
∫

a

a
∫

b
1+cbedFB(b)− z

d(FA(a)− FA(a))

+
∫ a2

∫
b

1+cbed(FB(b)− FB(b))

(a
∫

b
1+cbedFB(b)− z)(a

∫
b

1+cbedFB(b)− z)
dFA(a)

+(c− c)
∫

e
a2

∫
b2

(1+cbe)(1+cbe)dFB(b)

(a
∫

b
1+cbedFB(b)− z)(a

∫
b

1+cbedFB(b)− z)
dFA(a) + γ(e− e), (15)

where

γ = c

∫ a2
∫

b2

(1+cbe)(1+cbe)dFB(b)

(a
∫

b
1+cbedFB(b)− z)(a

∫
b

1+cbedFB(b)− z)
dFA(a).

Notice that by (12), the first integrand in (15) is bounded in absolute value by 1/v, the second by
|z|/v3, and the third by |z|2/v5. Let e2 and e2 denote the imaginary parts of e and e. Then we
write

e2 =
∫ a(ace2

∫
b2

|1+cbe|2 dFB(b) + v)

|a ∫
b

1+cbedFB(b)− z|2 dFA(a) = e2α + vβ,

and

e2 =
∫ a(ac e2

∫
b2

|1+cbe|2 dFB(b) + v)

|a ∫
b

1+cbedFB(b)− z|2 dFA(a) = e2α + vβ.

By Cauchy-Schwarz inequality:

|γ| ≤
∫




ca2
∫

b2

|1+cbe|2 dFB(b)
∣∣∣a

∫
b

1+cbedFB(b)− z
∣∣∣
2




1/2 


ca2
∫

b2

|1+cbe|2 dFB(b)
∣∣∣a

∫
b

1+cbedFB(b)− z
∣∣∣
2




1/2

dFA

≤




∫ ca2
∫

b2

|1+cbe|2 dFB(b)
∣∣∣a

∫
b

1+cbedFB(b)− z
∣∣∣
2 dFA(a)




1/2 


∫
ca2

∫
b2|1 + cbe|2dFB(b)∣∣∣a

∫
b

1+cbedFB(b)− z
∣∣∣
2 dFA(a)




1/2

=
(

e2α

e2α + vβ

)1/2 (
e2α

e2α + vβ

)1/2

.

Notice that for v small we have by Lemma 2(a)

e2α/β ≤ e2c

∫
b2

|1 + cbe|2 dFB(b) = −=
∫

b

1 + cbe
dFB ≤ 4c

v
.

Therefore 


∫ ca2
∫

b2

|1+cbe|2 dFB(b)
∣∣∣a

∫
b

1+cbedFB(b)− z
∣∣∣
2 dFA(a)




1/2

=
(

e2α

e2α + vβ

)1/2

11



=
(

e2α/β

v + e2α/β

)1/2

≤
(

4c

v2 + 4c

)1/2

≤ 1−Kv2

for v small, and for some positive constant K. A corresponding bound obviously exists for the
other factor making up the bound on γ, so we conclude that for v small

|γ| ≤ 1−Kv2 (16)

for some positive constant K.
We see then that (15) and (16) together reveal two things: uniqueness of solutions to (2) (with

FA = FA, FB = FB, and c = c), and continuous dependence of solutions to (2) on FA, FB under
the topology of weak convergence of probability measures (which follows from the DCT), and c.

2.3 Bound on the difference between Stieltjes transforms

At this point on we assume that vn = κn−δ with δ ∈ (0, 1/35], so that vn → 0 as n → ∞. The
main goal in this subsection is to prove the following:

P(max
x∈Sn

v−1
n |mn −m0

n| > ε) ≤ Ktε
−tn−δt/4 for t ≥ 280. (17)

We have e0
n = e0

n(z) (with z = x + iv where v > 0 is arbitrary) a unique solution to

e =
∫

a

a
∫

b
1+cnbedFBn(b)− z

dFAn(a). (18)

Let m0
n denote the Stieltjes transform of F cn,An,Bn . Then,

m0
n = m0

n(z) =
∫

1
a

∫
b

1+cnbe0
n
dFBn(b)− z

dFAn(a). (19)

Let e0
2, e2, m0

2, m2 denote the imaginary parts of e0
n, en, m0

n, mn, respectively. Also, let we
n and

wm
n be as defined earlier in Section 2.1. Then

e0
2 =

∫ a(acne0
2

∫
b2

|1+cnbe0
n|2 dFBn(b) + v)

|a ∫
b

1+cnbe0
n
dFBn(b)− z|2 dFAn(a),

e2 =
∫ a(acne2

∫
b2

|1+cnben|2 dFBn(b) + v)

|a ∫
b

1+cnben
dFBn(b)− z|2 dFAn(a) + =we

n,

m0
2 =

∫ acne0
2

∫
b2

|1+cnbe0
n|2 dFBn(b) + v

|a ∫
b

1+cnbe0
n
dFBn(b)− z|2 dFAn(a),

m2 =
∫ acne2

∫
b2

|1+cnben|2 dFBn(b) + v

|a ∫
b

1+cnben
dFBn(b)− z|2 dFAn(a) + =wm

n ,

and as above we have
en − e0

n = (en − e0
n)γ

n
+ we

n,

12



where

|γ
n
| ≤




∫ cna2
∫

b2

|1+cnben|2 dFBn(b)
∣∣∣a

∫
b

1+cnben
dFBn(b)− z

∣∣∣
2 dFAn(a)




1/2 


∫ cna2
∫

b2

|1+cnbe0
n|2 dFBn(b)

∣∣∣a
∫

b
1+cnbe0

n
dFBn(b)− z

∣∣∣
2 dFAn(a)




1/2

.

Using the argument leading up to (16), we have for small v > 0,




∫ cna2
∫

b2

|1+cnbe0
n|2 dFBn(b)

∣∣∣a
∫

b
1+cnbe0

n
dFBn(b)− z

∣∣∣
2 dFAn(a)




1/2

≤
(

4cn

v2 + 4cn

)1/2

≤ 1−Kv2

for some positive constant K.
Let µn = nδ/4. Therefore we have vnµ3

n → 0.
Let λmax denote the largest eigenvalue of (1/N)XnX∗

n, and let K1 > (1 +
√

c)2. Since

|λ− (x + ivn)|−1 ≤ 3
2
|x|−1

for fixed λ and |x| large, we have for all n large

|en − e0
n| ≤ 3µ−1

n v3
n (20)

whenever |x| > µnv−3
n and λmax ≤ K1. Notice that, since max{|en|, |e0

n|} ≤ v−1
n

1
ntrAn, whenever

(1/n)trAn ≤ v4
nµ−1

n we have

v−3
n |en − e0

n| ≤ 2v−4
n (1/n)trAn ≤ 2µ−1

n . (21)

Now, let α, β be such that e2 = e2α + vnβ + =we
n. Then

∫ cna2
∫

b2

|1+cnben|2 dFBn(b)
∣∣∣a

∫
b

1+cnben
dFBn(b)− z

∣∣∣
2 dFAn(a) =

e2α

e2α + vnβ + =we
n

.

Using Cauchy-Schwarz we have

|en| ≤ β1/2((1/n)trAn)1/2 + |we
n|.

Next, as in Bai and Silverstein (1998) p. 329, for all n large |en| ≥ 1
2µ−1

n v3
n(1/n)trAn whenever

|x| ≤ µnv−3
n and λmax ≤ K1. So, for all n large, whenever |x| ≤ µnv−3

n , |we
n| ≤ v12

n , λmax ≤ K1, and
(1/n)trAn > v4

nµ−1
n we have

1
2
µ−1

n v3
n(1/n)trAn ≤ |en| ≤ β1/2((1/n)trAn)1/2 + |we

n| ≤ β1/2((1/n)trAn)1/2 + µnv8
n(1/n)trAn.

Therefore

1
3
µ−1

n v3
n(1/n)trAn ≤ (1/n)trAn(

1
2
µ−1

n v3
n − µnv8

n) ≤ β1/2((1/n)trAn)1/2,

from which we get

β ≥ 1
9
v10
n µ−3

n .

13



Therefore
vnβ + =we

n ≥
1
9
v11
n µ−3

n − v12
n > 0,

and so
|en − e0

n| ≤ K−1v−2
n |we

n| ≤ K−1v10
n .

Thus, combining this with (21) and (20), we have, for all n large

max
x∈Sn

v−3
n |en − e0

n| ≤ K−1v7
n + 3µ−1

n + 2v−4
n max

x∈Sn

(I[|we
n|>v12

n ] + I[λmax>K1]).

Therefore, for these n, and for any positive ε and t we have

P(max
x∈Sn

v−3
n |en − e0

n| > ε)

≤ Ktε
−t

(
n−7δt + n−δt/4 + v−4t

n [P(max
x∈Sn

|we
n|v−12

n > 1) + P(λmax > K1)]
)

≤ Ktε
−tn−δt/4, (22)

where the last step follows by replacing t with

17
4 δt + 2
1− 34δ

in (14) and t with 17
4 δt in Lemma 4. Taking the difference between mn and m0

n and using Cauchy-
Schwarz, we get

|mn −m0
n|

≤ |en − e0
n|




∫ cn

∫
b2

|1+cnben|2 dFBn(b)
∣∣∣a

∫
b

1+cnben
dFBn(b)− z

∣∣∣
2 dFAn(a)




1/2 


∫ cna2
∫

b2

|1+cnbe0
n|2 dFBn(b)

∣∣∣a
∫

b
1+cnbe0

n
dFBn(b)− z

∣∣∣
2 dFAn(a)




1/2

+ |wm
n |.

As before, we have the second factor on the right bounded above by 1, while by Lemma 2(a) the
first factor is bounded above by 4c3/2

n v−2
n . Therefore, for any positive ε and t we get from (14) and

(22),

P(max
x∈Sn

v−1
n |mn −m0

n| > ε) ≤ P(max
x∈Sn

v−3
n |en − e0

n| > ε(2c1/2
n )−1) + P(max

x∈Sn

|wm
n |v−1

n > ε/2)

≤ Ktε
−t max(n−δt/4, n2−t(1/2−17δ)). (23)

Now it is easy to verify (17) from (23).

2.4 A rate on FCn outside the support

Let E0 denote the expectation, and Ek denote the conditional expectation with respect to the σ-
field generated by {y1, . . . , yk}. Also, let ε > 0 be such that [a′, b′], with a′ = a− ε and b′ = b + ε,
also satisfy condition (f) of Theorem 1. The goal of this subsection is to prove the following bound:

max
k≤N

Ek(FCn([a′, b′]))2 = o(v2
n), a.s. (24)
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Suppose that the n elements in Sn are equally spaced between −√n and
√

n. Since, for |x1 −
x2| ≤ 2n−1/2,

|mn(x1 + ivn)−mn(x2 + ivn)| ≤ 2n−1/2v−2
n

|m0
n(x1 + ivn)−m0

n(x2 + ivn)| ≤ 2n−1/2v−2
n ,

and when |x| ≥ √
n, for n large enough, for K1 as in Lemma 4,

|mn(x + ivn)| ≤ 2n−1/2 + v−1
n I[λmax>K1]

and
|m0

n(x + ivn)| ≤ 2n−1/2,

Therefore, for all n large

sup
x∈R

|mn −m0
n| ≤ max

x∈Sn

|mn −m0
n|+ 4n−1/2v−2

n + v−1
n I[λmax>K1],

and hence we conclude from (17) and Lemma 4, that for these n, and for any ε > 0 and t ≥ 280,
0 < δ ≤ 1

35 ,

P(v−1
n sup

x∈R
|mn −m0

n| > ε) ≤ Ktε
−t(n−δt/4 + n−t(1/2−3δ)) ≤ Ktε

−tn−δt/4. (25)

Since for any r > 0,
Ek(v−r

n sup
x∈R

|mn(x + ivn)−m0
n(x + ivn)|r),

for k = 0, 1, . . . , n forms a martingale, from Jensen’s inequality it follows that for any t ≥ 1,

(Ek(v−r
n sup

x∈R
|mn(x + ivn)−m0

n(x + ivn)|r))t

for k = 0, 1, . . . , n forms a submartingale. Therefore, from Lemma 2.5 and Lemma 2.6 of Bai and
Silverstein (1998), and (25), for any ε > 0, t ≥ 1, and r > 0, so that 2rt ≥ 280, we have,

P(max
k≤N

Ek(v−r
n sup

x∈R
|mn(x + ivn)−m0

n(x + ivn)|r) > ε)

≤ ε−tE(v−rt
n sup

x∈R
|mn(x + ivn)−m0

n(x + ivn)|rt)

≤ 2ε−tK
1/2
2rt n−δrt/4, (26)

whenever δ ∈ (0, 1/35]. From this, it follows that with probability 1,

max
k≤N

Ek(v−r
n sup

x∈R
|mn(x + ivn)−m0

n(x + ivn)|r) → 0. (27)

Let λ1 ≥ . . . ≥ λn be the eigenvalues of Cn, and write

mnj = mout
nj + min

nj , j = 1, 2,

where j = 1 refers to the real part of mn and j = 2 refers to the imaginary part of mn, so that

mout
n2 (x + ivn) =

1
N

∑

λj∈[a′,b′]

vn

(x− λj)2 + v2
n

,

15



and
mout

n1 (x + iv) =
1
N

∑

λj∈[a′,b′]

x− λj

(x− λj)2 + v2
n

.

Similarly, write m0
n1 and m0

n2 to mean the real and imaginary parts of m0
n. By (27), with probability

1, we have
max
k≤N

Ek(v−r
n sup

x∈R
|mn2(x + ivn)−m0

n2(x + ivn)|r) → 0. (28)

Define the sequence {Gq}∞q=1 of functions on R2 by

GPn−1
j=1 (N(j)+1)+k(x1, x2) = EkF

Cn(x1)FCn(x2),

for k = 0, 1, 2, . . . , N(n). Clearly, each Gq is a probability distribution function on R2. Also, for
q =

∑n−1
j=1 (N(j) + 1) + k, the two-dimensional Stieltjes transform, m

(G)
q (x1 + iv1, x2 + iv2) of Gq is

Ekmn(x1 + iv1)mn(x2 + iv2). Notice x < 0, λ > 0 implies that
∣∣∣∣

1
λ− (x + iv)

− 1
λ− x

∣∣∣∣ ≤
v

x2
.

Therefore, from (27), we have with probability 1,

|m(G)
q (x1, x2)−m0

n(x1)m0
n(x2)| → 0, as q →∞,

for countably many negative x1 having a negative limit point, and countably many negative x2 also
having a negative limit point.

It is straightforward to show the following: Assume that f(z1, z2) is a function of two complex
variables, and analytic on a open rectangle E1 × E2 ⊂ C2 (that is, for fixed z1 ∈ E f(z1, z2) is
analytic in z2, and visa versa). Let {zn

1 } ⊂ E1, {zn
2 } ⊂ E2, where {zn

1 } has a limit point in E1,
{zn

2 } has a limit point in E2. Then f is uniquely determined by the values it places on the set
{(z1, z2) : z1 ∈ {zn

1 }, z2 ∈ {zn
2 }}. This, together with the a.s. tightness of Gq, gives us, with

probability 1, Gq(y1, y2) converging weakly to F (y1)F (y2).
Notice that the integrands of

∫

[a′,b′]c×[a′,b′]c

dEkF
Cn(x1)FCn(x2)

((x− x1)2 + v2
n)((x− x2)2 + v2

n)

and ∫

[a′,b′]c

dEkF
Cn(x1)

(x− x1)2 + v2
n

on their respective domains are uniformly bounded and equicontinuous for x ∈ [a, b]. Therefore,
from Problem 8, p. 17, in Billingsley (1968), and using the fact that

∫ b′

a′

vn

(x− u)2 + v2
n

dF cn,An,Bn(u) = 0 for all x ∈ R,

the sequence {gq}∞q=1 defined by

gq = sup
x∈[a,b]

Ekv
−2
n |min

n2(x + ivn)−m0
n2(x + ivn)|2

16



for q =
∑n−1

j=1 (N(j) + 1) + k (with 0 ≤ k ≤ N(n)), converges to 0 a.s. as n → ∞. Thus we have,
a.s., maxn≥n0 max1≤k≤N(n) gPn−1

j=1 (N(j)+1)+k → 0, as n0 →∞. This implies that

max
0≤k≤N

sup
x∈[a,b]

Ekv
−2
n |min

n2(x + ivn)−m0
n2(x + ivn)|2 → 0 a.s.

This, together with (28), implies that

sup
x∈[a,b]

max
k≤N

v−2
n Ek(mout

n2 (x + ivn))2 → 0. (29)

Now, for any x ∈ [a, b], we have

v−1
n mout

n2 (x + ivn) ≥
∫ b

a

1
(u− x)2 + v2

n

dFCn(u)

≥
∫

[a,b]∩[x−vn,x+vn]

1
(u− x)2 + v2

n

dFCn(u)

≥ 1
2v2

n

FCn([a, b] ∩ [x− vn, x + vn]).

We select xj ∈ [a, b], j = 1, . . . , J , such that vn < xj − xj−1, and [a, b] ⊂ ∪J
j=1[xj − vn, xj + vn].

Notice that, as a consequence, J ≤ (b − a)v−1
n . Then from the inequality above, it follows that,

with probability 1,

v−2
n max

k≤N
Ek(FCn([a, b]))2 ≤ v−2

n max
k≤N

Ek(
J∑

j=1

FCn([a, b] ∩ [xj − vn, xj + vn]))2

≤ v−2
n max

k≤N
Ek(

J∑

j=1

2vnmout
n2 (xj + ivn))2

≤ 4J max
k≤N

J∑

j=1

Ek(mout
n2 (xj + ivn))2, by Hölder’s inequality

≤ 4J2 max
1≤j≤J

max
k≤N

Ek(mout
n2 (xj + ivn))2

≤ 4(b− a)2v−2
n sup

x∈[a,b]
max
k≤N

Ek(mout
n2 (x + ivn))2

→ 0,

by (29).
This shows that,

max
k≤N

Ek(FCn([a, b]))2 = o(v2
n), a.s.

Clearly, the same argument holds for [a′, b′] replacing [a, b], and so we have (24). Now, taking
δ = 1/35, from (24) we get,

max
k≤N

Ek(FCn([a′, b′]))2 = o(N−2/35) a.s. (30)
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3 Convergence of mn − Emn

Throughout the rest of the paper we take vn = κn−δ with δ = 1
140 , and some constant κ > 0. In

this section, we verify (7). Since for real x1, x2, |mn(x1 + ivn)−mn(x2 + ivn)| ≤ |x1− x2|v−2
n (and

from this, the same bound holds for |Emn(x1 + ivn)−Emn(x2 + ivn)|), we can prove (7) if we prove
that

max
x∈Sn

Nvn|mn(x + ivn)− Emn(x + ivn)| → 0, a.s. as n →∞, (31)

for the set Sn consisting of n2 points equally spaced in [a, b].
Write D = Cn − zI, Dj = D − bjyjy

∗
j (where yj = 1√

N
A

1/2
n X·j), and Djj′ = Dj − bj′yj′y

∗
j′ , for

j′ 6= j. Note that Dj = C(j) − zI. Then, mn = 1
n trD−1. Also, let D = Cn − zI, where z is the

complex conjugate of z. Note that D = D∗. Also, let

αj = y∗j D
−2
j yj − 1

N
tr (D−2

j An), aj =
1
N

tr (D−2
j An),

βj =
1

1 + bjy∗j D
−1
j yj

, b̂j =
1

1 + bj
1
NE[tr (D−1

j An)]
,

γj = y∗j D
−1
j yj − 1

N
E[tr (D−1

j An)], γ̂j = y∗j D
−1
j yj − 1

N
tr (D−1

j An).

We first derive bounds for the moments of γj and γ̂j . Integrating first with respect to X·j , that is,
conditioning on the set {X·i : j 6= i}, and using Lemma 3, for all p ≥ 2,

E|γ̂j |p ≤ KpN
−pE[tr (A1/2

n D−1
j AnD

−1
j A1/2

n )]p/2 ≤ KpN
−p/2v−p

n , (32)

where the last step follows from the fact that ‖ D−1
j ‖≤ v−1

n , and that ‖ An ‖≤ 1.
Now, using the fact that (Ej−Ej−1)[fn(X·1, . . . , X·N )] (for any bounded fN ) forms a martingale

difference sequence w.r.t. the sigma-fields Fj−1 generated by columns {X·1, . . . , X·(j−1)}, and that
E0[tr (D−1

j An)] = E[tr (D−1
j An)], and EN [tr (D−1

j An)] = tr (D−1
j An), from Burkholder’s inequality

(Lemma 2.2 in Bai and Silverstein (1998))

E|γj − γ̂j |p = N−pE

∣∣∣∣∣∣

N∑

j′ 6=j

(Ej′ − Ej′−1)[tr (D−1
j An)]

∣∣∣∣∣∣

P

= N−pE

∣∣∣∣∣∣
∑

j′ 6=j

Ej′ [tr (D−1
j −D−1

jj′ )An]− Ej′−1[tr (D−1
j −D−1

jj′ )An]

∣∣∣∣∣∣

p

= N−pE

∣∣∣∣∣∣
∑

j′ 6=j

(Ej′ − Ej′−1)

[
bjy

∗
j D

−1
jj′AnD−1

jj′ yj

1 + bjy∗j D
−1
jj′ yj

]∣∣∣∣∣∣

p

≤ KpN
−pE


∑

j′ 6=j

∣∣∣∣∣(Ej′ − Ej′−1)

[
bjy

∗
j D

−1
jj′AnD−1

jj′ yj

1 + bjy∗j D
−1
jj′ yj

]∣∣∣∣∣
2



p/2

≤ KpN
−p/2v−p

n , (33)

where in the last step we use Lemma 2.10 of Bai and Silverstein (1998) to bound the term within
conditional expectations by ‖ An ‖ v−1

n ≤ v−1
n .
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Therefore, from (32) and (33) it follows that for any p ≥ 2,

E|γj |p ≤ KpN
−p/2v−p

n . (34)

Next, we write

mn − Emn =
1
n

N∑

j=1

(Ej − Ej−1)[tr (D−1)]

= − 1
n

N∑

j=1

(Ej − Ej−1)

[
bj

y∗j D
−2
j yj

1 + bjy∗j D
−1
j yj

]
(since Ejtr (D−1

j ) = Ej−1tr (D−1
j ))

= − 1
n

N∑

j=1

(Ej − Ej−1)

[
bj

y∗j D
−2
j yj

1 + bj
1
NE[tr (D−1

j An)]

]

+
1
n

N∑

j=1

(Ej − Ej−1)

[
b2
j

y∗j D
−2
j yj(y∗j D

−1
j yj − 1

NE[tr (D−1
j An)])

(1 + bj
1
NE[tr (D−1

j An)])2

]

− 1
n

N∑

j=1

(Ej − Ej−1)

[
b3
j

y∗j D
−2
j yj(y∗j D

−1
j yj − 1

NE[tr (D−1
j An)])2

(1 + bj
1
NE[tr (D−1

j An)])2(1 + bjy∗j D
−1
j yj)

]

= − 1
n

N∑

j=1

bj b̂jEjαj +
1
n

N∑

j=1

b2
j b̂

2
jEjaj γ̂j

+
1
n

N∑

j=1

b2
j b̂

2
j (Ej − Ej−1)[αjγj − bjy

∗
j D

−2
j yjβjγ

2
j ]

= W1 + W2 + W3. (35)

3.1 Boundedness of b̂j

Let
p0

n = −1
z

∫
b

1 + cnbe0
n

dFBn(b) and p̂n = −1
z

∫
b

1 + cnbE(en)
dFBn(b).

We have
m0

n = −1
z

∫
1

ap0
n + 1

dFAn(a), and e0
n = −1

z

∫
a

ap0
n + 1

dFAn(a). (36)

We have then

e0
n = −1

z

1
p0

n

∫
ap0

n + 1− 1
ap0

n + 1
dFAn(a) = − 1

zp0
n

− m0
n

p0
n

.

Therefore
e0
np0

n = −1
z
−m0

n.

Suppose z = zj ∈ C+ → x ∈ [a′, b′] as j →∞. Then

e0
n(z)p0

n(z) → −1
x
−m0

n(x) ∈ R.

We see that both {p0
n(zj)} and {e0

n(zj)} remain bounded, since if, say e0
n goes unbounded on some

subsequence, p0
n would tend to zero on that subsequence, and from (36) it will render e0

n converging
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to a finite number, a contradiction. Since =m0
n(x) = 0, we must have limj→∞=p0

n(zj) = 0. This
in turn implies limj→∞=e0

n(zj) = 0 as well. Therefore, the measures defining p0
n and e0

n have
derivative 0 for each x ∈ [a′, b′], so that (a′, b′) is outside the support of both these measures, which
after considering a slightly larger ε, this statement extends to [a′, b′].

From continuity, we have e0
n(z) → e0(z), and consequently, m0

n → m0(z), and p0
n(z) →

p0(z), e0, m0, p0 defined for the limiting empirical distribution, for all z ∈ C+ ∪ [a′, b′]. We
must have [−1/p0

n(a′),−1/p0
n(b′)] not intersecting with any of the eigenvalues of An (respectively,

[−1/p0(a′),−1/p0(b′)] not intersecting with the support of FA). Therefore, since p0
n(x) → p0(x),

for x = a′, a, b, b′, and p0(a′) < p0(a) < p0(b) < p0(b′), we must have −1/p0
n(z) uniformly bounded

away from the eigenvalues of An for all z = x + iv, x ∈ [a, b], and for v ∈ [0, v0] for some positive
v0.

Similarly, −1/(cne0
n) is uniformly bounded away from the eigenvalues of Bn for all z = x + iv,

x ∈ [a, b], v ∈ [0, v0]. Therefore, using (22) and arguments analogous to those leading to (27) (now
applied to en instead of mn), we have, with z = x + ivn

sup
x∈[a,b]

|p̂n(z)− p0
n(z)| = sup

x∈[a,b]
|e0

n(z)− E(en(z))| cn

|z|

∣∣∣∣
∫

b2

(1 + cnbe0
n)(1 + cnbE(en))

dFBn(b)
∣∣∣∣

≤ sup
x∈R

K

vn
|e0

n(z)− E(en(z))| ≤ KE(v−1
n sup

x∈R
|en − e0

n|) → 0

as n →∞. Thus we conclude
sup

x∈[a,b]
‖(I + p̂n(z)An)−1‖ ≤ K, (37)

and
max
j≤N

sup
x∈[a,b]

1
|(1 + cnbjE(en))| ≤ K. (38)

Let for j 6= j ≤ N ,

b̂j =
1

1 + cnbjn−1Etr (AnD−1
j )

and b̂j j =
1

1 + cnbjn−1E(tr (AnD−1
j j ))

.

From Lemma 1

|(1/n)tr (AnD−1
j )− en| ≤ (nvn)−1 and |(1/n)tr (AnD−1

j j )− en| ≤ 2(nvn)−1,

so that from (38) we also have for all n large

max
j≤N

sup
x∈[a,b]

(|b̂j |, max
j 6=j

|b̂j j |) ≤ K. (39)

3.2 Bounds on W1, W2, W3

Let Fnj be the spectral distribution of the matrix
∑

k 6=j bkyky
∗
k. From Lemma 2.12 of Bai and

Silverstein (1998), and (30), we get

max
j
Ej(Fnj([a′, b′]))2 = o(v8

n) = o(N−2/35), a.s. (40)

Define
Bj = I[Ej−1Fnj([a′,b′])≤v4

n]∩[Ej−1(Fnj([a′,b′]))2≤v8
n] .
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Note that, Bj = I[EjFnj([a′,b′])≤v4
n]∩[Ej(Fnj([a′,b′]))2≤v8

n] a.s., and we have

P
(∪N

j=1[Bj = 0] i.o.
)

= 0.

Therefore, for any ε > 0,

P
(

max
x∈Sn

|NvnW1| > ε i.o.
)

≤ P








max

x∈Sn

∣∣∣∣∣∣
vn

N∑

j=1

Ej(αj)

∣∣∣∣∣∣
> ε




N⋂

j=1

[Bj = 1]


 ∪




N⋃

j=1

[Bj = 0]


 i.o.




≤ P


max

x∈Sn

∣∣∣∣∣∣
vn

N∑

j=1

Ej(αj)Bj

∣∣∣∣∣∣
> ε i.o.


 ,

where ε = infn nε/(N max1≤j′≤n bj′ |b̂j′ |) > 0, since max1≤j≤N |bj | ≤ 1, and max1≤j≤N supx∈[a,b] |b̂j |
is bounded for all n (by (39)). Note that, for each x ∈ R, {Ej(αj)Bj} forms a martingale difference
sequence.

By Lemma 2.1 in Bai and Silverstein (1998), and Lemma 3, for each x ∈ [a, b], and p ≥ 2,

E

∣∣∣∣∣∣
vn

N∑

j=1

Ej(αj)Bj

∣∣∣∣∣∣

p

≤ Kp


E




N∑

j=1

Ej−1|vnEj(αj)Bj |2



p/2

+
N∑

j=1

E|vnEj(αj)Bj |p



≤ Kp


E




N∑

j=1

Ej−1v
2
nN−2Bj tr

(
A1/2

n D−2
j AnD

−2
j A1/2

n

)



p/2

+ vp
n

N∑

j=1

E|αj |p



≤ Kpv
p
nN−pE




N∑

j=1

BjEj−1tr (D−2
j D

−2
j )




p/2

(since ‖ An ‖≤ 1)

+ Kpv
p
nN−p

N∑

j=1

E
(
tr (A1/2

n D−2
j AnD

−2
j A1/2

n )
)p/2

( by Lemma 3)

≤ Kp


vp

nN−pE




N∑

j=1

BjEj−1tr (D−2
j D

−2
j )




p/2

+ v−p
n N1−p/2


 ,

since maxj ‖ D−1
j ‖≤ v−1

n and ‖ An ‖≤ 1.
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Let λkj denote the k-th smallest eigenvalue of
∑

k′ 6=j bk′yk′y
∗
k′ . We have, for x ∈ [a, b]

N∑

j=1

BjEj−1tr (D−2
j D

−2
j )

=
N∑

j=1

BjEj−1


 ∑

λkj 6∈[a′,b′]

1
((λkj − x)2 + v2

n)2
+

∑

λkj∈[a′,b′]

1
((λkj − x)2 + v2

n)2




≤
N∑

j=1

(nε−4 + Bjv
−4
n nEj−1Fnj([a′, b′]))

≤ KN2. (41)

Here the last step follows from (40).
Therefore, for p ≥ 70

34 ,

P


max

x∈Sn

∣∣∣∣∣∣
vn

N∑

j=1

Ej(αj)Bj

∣∣∣∣∣∣
> ε


 ≤ Kp,εn

2N−p/140,

which is summable when p > 420. Therefore, by Borel-Cantelli lemma,

max
x∈Sn

|W1| = o(1/Nvn) a.s. (42)

Next we prove
max
x∈Sn

|W2| = o(1/Nvn) a.s. (43)

by following similar arguments. First, observing that {Ej(aj γ̂j)Bj} forms a martingale difference
sequence, and using Lemma 2.1 of Bai and Silverstein (1998), Lemmas 1 and 3, and the fact that
|aj | ≤ n

N v−2
n , we have,

E

∣∣∣∣∣∣
vn

N∑

j=1

Ej(aj γ̂j)Bj

∣∣∣∣∣∣

p

≤ Kp


E




N∑

j=1

Ej−1|vnEj(aj γ̂j)Bj |2



p/2

+
N∑

j=1

E|vnEj(aj γ̂j)Bj |p



≤ Kpv
p
nN−pE




N∑

j=1

BjEj−1(|aj |2tr (D−1
j D

−1
j ))




p/2

(by Lemma 3)

+ Kpv
−p
n N−p

N∑

j=1

(
tr (D−1

j D
−1
j )

)p/2
(by Lemma 3, and since max

j
|aj | ≤ n

N
v−2
n )

≤ Kp


vp

nN−pE




N∑

j=1

BjEj−1(|aj |2tr (D−1
j D

−1
j ))




p/2

+ v−2p
n N1−p/2


 ,
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since maxj ‖ D−1
j ‖≤ v−1

n , so that maxj tr (D−1
j D

−1
j ) ≤ nv−2

n .
Moreover, using same notation as before, the fact that ‖ An ‖≤ 1, and arguing as in the

derivation of (41), we have
N∑

j=1

BjEj−1(|aj |2tr (DjD
−1
j ))

≤
N∑

j=1

BjEj−1N
−2n

[∑

k

1
((λkj − x)2 + v2

n)2

] [∑

k

1
(λkj − x)2 + v2

n

]
,

(by Cauchy-Schwarz applied to |aj |2)

≤
N∑

j=1

BjN
−2nEj−1(nε−4 + v−4

n nFnj([a′, b′]))(nε−2 + v−2
n nFnj([a′, b′]))

≤ KN2.

Since maxj max{bj , supx∈[a,b] |b̂j |} is bounded, for large enough n, we have (43) by arguments similar
to the ones used already in the derivation of (42).

Note that, Lemma 1 implies that

max
j

sup
x∈[a,b]

|bjy
∗
j D

−2
j yjβj | = max

j
sup

x∈[a,b]

∣∣∣∣∣
bjy

∗
j D

−2
j yj

1 + bjy∗j D
−1
j yj

∣∣∣∣∣ ≤
1
vn

. (44)

Using Lemma 2.2 of Bai and Silverstein (1998) followed by Hölder’s inequality, we have

E

∣∣∣∣∣∣
vn

N∑

j=1

(Ej − Ej−1)(αjγj − bjy
∗
j D

−2
j yjβjγ

2
j )

∣∣∣∣∣∣

p

≤ Kpv
p
nNp/2−1

N∑

j=1

(E|αjγj |p + v−p
n E|γj |2p) (by (44))

≤ Kpv
p
nNp/2−1

N∑

j=1

(
N−p

(
E(tr (D−2

j D
−2
j ))p

)1/2
N−p/2v−p

n + v−3p
n N−p

)

(by Cauchy-Schwarz, Lemma 3, the fact that ‖ An ‖≤ 1, and (34))
≤ Kpv

p
nNp/2(N−pNp/2v−2p

n N−p/2v−p
n + v−3p

n N−p) (since ‖ D−1
j ‖≤ v−1

n )

≤ Kpv
−2p
n N−p/2.

Thus, using arguments as in the proof of (42) and (43), we get

max
x∈Sn

|W3| = o(1/Nvn). (45)

Hence, (31), and consequently, (7), follow from (42), (43) and (45).

4 Convergence of expected value

In this section we prove (8). Recall the definitions of D, Dj and Djj from Section 3. Also, let

βj j =
1

1 + bjy∗j D
−1
j j yj

.

23



For j 6= j ≤ N let λkjj denote the k-th smallest eigenvalue of Djj , and let Fnjj denote the empirical
distribution function of this matrix. Using (40) and Lemma 2.12 of Bai and Silverstein (1998) we
get

max
j 6=j

E(Fnjj [a′, b′])2 = o(v8
n).

Therefore

max
j≤N

sup
x∈[a,b]

E(trD−1
j D

−1
j )2 = max

j≤N
sup

x∈[a,b]
E


 ∑

λkj 6∈[a′,b′]

1
(λkj − x)2 + v2

n

+
∑

λkj∈[a′,b′]

1
(λkj − x)2 + v2

n




2

≤ max
j≤N

sup
x∈[a,b]

E(nε−2 + v−2
n nFnj([a′, b′]))2 ≤ Kn2,

and, max
j≤N

sup
x∈[a,b]

E(trD−2
j D

−2
j )2 ≤ max

j≤N
sup

x∈[a,b]
E(nε−4 + v−4

n nFnj([a′, b′]))2 ≤ Kn2.

The latter implies of course
max
j≤N

sup
x∈[a,b]

EtrD−2
j D

−2
j ≤ Kn.

Similarly,

max
j 6=j

sup
x∈[a,b]

E(trD−1
jj D̄−1

jj )2 ≤ Kn2, and max
j 6=j

sup
x∈[a,b]

E(tr D−2
jj D

−2
jj ) ≤ Kn.

Moreover

max
j 6=j

sup
x∈[a,b]

E(tr D−1
jj D

−1
jj )4 ≤ E(nε−2+v−2

n nFnjj([a′, b′]))4 ≤ Kn4(ε−8+v−8
n E(Fnjj([a′, b′]))2) ≤ Kn4.

Write

Cn − zI + zI + zp̂nAn =
N∑

j=1

bjyjy
∗
j + zp̂nAn.

Taking first inverses and then expected values we have

E(Cn − zI)−1 + (zI + zp̂nAn)−1

= E




N∑

j=1

bj(Cn − zI)−1yjy
∗
j (zI + zp̂nAn)−1 + zp̂nD−1An(zI + zp̂nAn)−1




=
N∑

j=1

bj

[
E

(C(j) − zI)−1yjy
∗
j (zI + zp̂nAn)−1

1 + bjy∗j D−1yj
− 1

z(1 + cnbjE(en))
(E(Cn − zI)−1An(I + p̂nAn)−1

]
.

Taking the trace on both sides and dividing by n we have

E(mn(z))−
∫

1
a

∫
b

1+cnbE(en)dFBn(b)− z
dFAn(a) =

1
zN

N∑

j=1

bj d̂j ≡ ŵm
n ,

where

d̂j = E[βj(1/n)X∗
·jA

1/2
n (I + p̂nAn)−1D−1

j A1/2
n X·j ]− (1/n)trE[D−1]An(I + p̂nAn)−1

(1 + cnbjE(en))
.
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Multiplying both sides of the above matrix identity by An, and then taking traces and dividing by
n, we find

E(en(z))−
∫

a

a
∫

b
1+cnbE(en)dFBn(b)− z

dFAn(a) =
1

zN

N∑

j=1

bj d̂
e
j ≡ ŵe

n,

where

d̂e
j = E[βj(1/n)X∗

·jA
1/2
n (I + p̂nAn)−1AnD−1

j A1/2
n X·j ]− (1/n)trAnE[D−1]An(I + p̂nAn)−1

(1 + cnbjE(en))
.

Again, we let En denote either An or In. We first show that

n−1 max
j≤N

sup
x∈[a,b]

|(trEnE[D−1]An(I + p̂nAn)−1 − trEnE[D−1
j ]An(I + p̂nAn)−1| = O(n−1). (46)

Using βj = b̂j − bjβj b̂jγj , (3.3) of Bai and Silverstein (1998), (34), (37), and (39) we conclude that
the left hand side of (46) becomes

= n−1 max
j≤N

bj sup
x∈[a,b]

|E[βjy
∗
j D

−1
j An(I + p̂nAn)−1EnD−1

j yj ]|

≤ n−1 max
j≤N

bj sup
x∈[a,b]

(|b̂j ||E[y∗j D
−1
j An(I + p̂nAn)−1EnD−1

j yj ]|

+bj |b̂j ||E[βjγjy
∗D−1

j An(I + p̂nAn)−1EnD−1
j yj ]|)

≤ Kn−1 max
j≤N

sup
x∈[a,b]

(N−1|E[trA1/2
n D−1

j An(I + p̂nAn)−1EnD−1
j A1/2

n ]|

+v−1
n (E|γj |2)1/2(E|y∗j D−1

j An(I + p̂nAn)−1EnD−1
j yj |2)1/2

≤ Kn−1 max
j≤N

sup
x∈[a,b]

(N−1E[trD−1
j D

−1
j ])

+v−1
n N−1/2v−1

n N−1(E[trD−2
j D

−2
j ] + E(trD−1

j D
−1
j )2)1/2 ≤ Kn−1.

Thus (46) holds.
From Lemma 3 and (37) we get

max
j≤N

sup
x∈[a,b]

E|(1/n)x∗jA
1/2
n (I + p̂nAn)−1EnD−1

j A1/2
n xj − (1/n)tr EnD−1

j An(I + p̂nAn)−1|2

≤ Kn−2 max
j≤N

sup
x∈[a,b]

E[trD−1
j D

−1
j ] ≤ Kn−1. (47)

We next show

max
j≤N

sup
x∈[a,b]

n−2E|trEnD−1
j An(I + p̂nAn)−1 − trEnE[D−1

j ]An(I + p̂nAn)−1|2 ≤ Kn−1. (48)

Using (3.3) of Bai and Silverstein (1998), and the fact that βjj = b̂jj − bj b̂jjβjjγjj , the left hand
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side of (48) becomes

= max
j≤N

sup
x∈[a,b]

n−2
∑

j 6=j

E|(Ej − Ej−1)trEnD−1
j An(I + p̂nAn)−1|2

≤ 2 max
j≤N

sup
x∈[a,b]

n−2
∑

j 6=j

b2
jE|βjjy

∗
j D

−1
jj An(I + p̂nAn)−1EnD−1

jj yj |2

= 2 max
j≤N

sup
x∈[a,b]

n−2
∑

j 6=j

b2
jE|(b̂jj − bj b̂jjβjjγjj)y∗j D

−1
jj An(I + p̂nAn)−1EnD−1

jj yj |2

≤ K max
j≤N

sup
x∈[a,b]

n−2
∑

j 6=j

[
E|y∗j D−1

jj An(I + p̂nAn)−1EnD−1
jj yj |2

+ v−2
n (E|γjj |4E|y∗j D−1

jj An(I + p̂nAn)−1EnD−1
jj yj |4)1/2

]

≤ K max
j≤N

sup
x∈[a,b]

n−2
∑

j 6=j

b2
jn
−2

[
E(trD−2

jj D
−2
jj ) + E(trD−1

jj D
−1
jj )2

+ v−2
n n−1v−2

n (E(tr D−2
jj D

−2
jj )2 + E(tr D−1

jj D
−1
jj )4)1/2

]

≤ K max
j≤N

sup
x∈[a,b]

n−2
∑

j 6=j

n−2(n + n2 + v−4
n n−1(n2 + n4)1/2)

≤ Kn−1.

So (48) is true.
We get the same bound when (I + p̂nAn)−1 is removed from the expressions, that is, we also

have
max
j≤N

sup
x∈[a,b]

E|γj − γ̂j |2 ≤ Kn−1.

Moreover, using (32),

max
j≤N

sup
x∈[a,b]

E|γ̂j |2 ≤ Kn−2E[trD−1
j D

−1
j ] ≤ Kn−1.

Thus
max
j≤N

sup
x∈[a,b]

E|γj |2 ≤ Kn−1.

Therefore, with d̂em
j denoting either d̂j or d̂e

j , and with ŵem denoting either ŵe or ŵm, we have,
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using Lemma 1, (46), (47), (34), and the fact that βj = b̂j − b̂2
jγj + b̂2

jβjγ
2
j ,

sup
x∈[a,b]

|ŵem|

= sup
x∈[a,b]

∣∣∣∣∣∣
1

zN

N∑

j=1

bj d̂
em
j

∣∣∣∣∣∣

≤ Kn−1 + max
j≤N

sup
x∈[a,b]

∣∣∣∣∣E[βj(1/n)x∗jA
1/2
n (I + p̂nAn)−1EnD−1

j A1/2
n xj ]−

(1/n)trEnE[D−1
j ]An(I + p̂nAn)−1

1 + cnbjE(en)

∣∣∣∣∣

≤ Kn−1 + K max
j≤N

sup
x∈[a,b]

(
E|βj − b̂j +

cnbj b̂j

1 + cnbjE(en)
E(en − (1/n)trA1/2

n D−1
j A1/2

n )|(1/n)(E(trD−1
j D

−1
j ))1/2

+ |E[βj((1/n)x∗jA
1/2
n (I + p̂nAn)−1EnD−1

j A1/2
n xj − (1/n)tr EnE(D−1

j )An(I + p̂nAn)−1)]|
)

≤ Kn−1 + K max
j≤N

sup
x∈[a,b]

(
||b̂2

j |E|γj − βjγ
2
j |+ v−1

n n−1|n−1/2

+ |b̂j |2|E[(γj − βjγ
2
j )((1/n)x∗jA

1/2
n (I + p̂nAn)−1EnD−1

j A1/2
n xj − (1/n)trEnE(D−1

j )An(I + p̂nAn)−1)]|
)

≤ K(n−1 + max
j≤N

sup
x∈[a,b]

(E|γj |2 + v−2
n E|γj |4)1/2)n−1/2)

≤ K(n−1 + (n−1 + v−2
n n−2v−4

n )1/2n−1/2)
≤ Kn−1. (49)

As before, we have
E(en)− e0

n = (E(en)− e0
n)γn + ŵe

n

where, after inserting p̂n and p0
n,

|γn| ≤



∫ cna2
∫

b2

|1+cnbE(en)|2 dFBn(b)

|z|2|ap̂n + 1|2 dFAn(a)




1/2 


∫ cna2
∫

b2

|1+cnbe0
n|2 dFBn(b)

|z|2|ap0
n + 1|2 dFAn(a)




1/2

.

(50)

Let G0
n, G0 denote the distribution functions defining e0

n, e0. Then G0
n
D−→ G0. We have

∫
1

(λ− x)2
dG0(λ) =

d

dx
e0(x)

uniformly bounded for x ∈ [a, b]. For λ in either (−∞, a′] or [b′,∞), {(λ− x)−2 : x ∈ [a, b]} form a
uniformly bounded, equicontinuous family of functions in λ. From Billingsley (1968), Problem 8,
p. 17, we have then

lim
n→∞ sup

x∈[a,b]
| d

dx
e0
n(x)− d

dx
e0(x)| = 0.

Since for all x ∈ [a, b], λ ∈ [a′, b′]c and positive v

∣∣∣∣
1

(λ− x)2 + v2
+

1
(λ− x)2

∣∣∣∣ ≤
v2

ε4
,
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recalling that e0
2 = =e0

n, we have for any sequence of positive v′n converging to 0,

lim
n→∞ sup

x∈[a,b]

∣∣∣∣
e0
2(x + iv′n)

v′n
− d

dx
e0
n(x)

∣∣∣∣ = 0.

Therefore, we conclude that

sup
n,x∈[a,b]

e0
2(x + ivn)

vn
≤ K, (51)

Writing again e0
2 = e0

2α + vnβ we have, by (51) and the conclusion in Section 3.1 concerning the
eigenvalues of Bn remaining away from −1/(cne0

n),

sup
x∈[a,b]

e0
2α

vnβ
≤ sup

x∈[a,b]

e0
2

vn
cn

∫
b2

|1 + cnbe0
n|2

dFBn(b) ≤ K.

Therefore

sup
x∈[a,b]

∫ cna2
∫

b2

|1+cnbe0
n|2 dFBn(b)

|z|2|ap0
n + 1|2 dFAn(a) = sup

x∈[a,b]

e0
2α/(vnβ)

(e0
2α/(vnβ)) + 1

is uniformly bounded away from 1. Moreover, from continuity and the uniform convergence of
E(en) and p̂n, we must have that the supremum over all x ∈ [a, b] of the first factor on the right
hand side of (50) is also uniformly bounded away from 1 for all n large. We therefore have from
(49)

sup
x∈[a,b]

|E(en)− e0
n| = O(n−1).

Again

|E(mn)−m0
n|

≤ |E(en)− e0
n|




∫ cn

∫
b2

|1+cnbE(en)|2 dFBn(b)

|z|2|ap̂n + 1|2 dFAn(a)




1/2 


∫ cna2
∫

b2

|1+cnbe0
n|2 dFBn(b)

|z|2|ap0
n + 1|2 dFAn(a)




1/2

+ |ŵm
n |.

The second factor on the right is of course bounded by 1, and from (37) and (38), the first factor
is bounded, uniformly for x ∈ [a, b]. Therefore, by (49), we conclude that (8) holds.

Thus combining the results of this section and the previous section, we arrive at (3), and along
with section 6 of Bai and Silverstein (1998), this completes the proof of Theorem 1.

Appendix : mathematical tools

Lemma 1 For n× n A, τ ∈ C, and r ∈ Cn for which A and A + τrr∗ are invertible,

r∗(A + τrr∗)−1 =
1

1 + τr∗A−1r
r∗A−1.

(follows from r∗A−1(A + τrr∗) = (1 + τr∗A−1r)r∗.)
Moreover, (Lemma 2.6 of Silverstein and Bai (1995)), let z ∈ C+ with v = Imz, A and B n×n

with B Hermitian, and r ∈ Cn. Then

∣∣tr (
(B − zI)−1 − (B + rr∗ − zI)−1

)
A

∣∣ =
∣∣∣∣
r∗(B − zI)−1A(B − zI)−1r

1 + r∗(B − zI)−1r

∣∣∣∣ ≤
‖A‖
v

.
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Lemma 2 (Lemma 2.3 of Silverstein (1995)): For z = x + iv ∈ C+ let m1(z), m2(z) be Stieltjes
transforms of any two measures with respective total mass M1, M2; A, B, and C n × n with A
Hermitian nonnegative definite, and r ∈ Cn. Then

(a)
‖(m1(z)A + I)−1‖ ≤ max(4M1‖A‖/v, 2)

(b)

|trB((m1(z)A + I)−1 − (m2(z)A + I)−1)|
≤ |m2(z)−m1(z)|n‖B‖ ‖A‖max(4M1‖A‖/v, 2)max(4M2‖A‖/v, 2)

(c)

|r∗B(m1(z)A + I)−1Cr − r∗B(m2(z)A + I)−1Cr

≤ |m2(z)−m1(z)|‖r‖2‖A‖‖B‖max(4M1‖A‖/v, 2)max(4M2‖A‖/v, 2)

(‖r‖ denoting Euclidean norm on r).

Lemma 3 (Lemma 2.7 of Bai and Silverstein (1998)) : For X = (X·1, . . . , ·Xn)T i.i.d. standardized
and bounded entries, C n× n matrix we have for any p ≥ 2

E|X∗
·1CX·1 − trC|p ≤ Kp(trCC∗)p/2

where Kp depends on the distribution of X·1.

Lemma 4 (Analog of (3.1) of Bai and Silverstein (1998)) : When the entries of Xn are bounded
the largest eigenvalue of 1

N XnX∗
n, denoted by λmax, satisfies

P(λmax > K) = o(n−t)

for any K > (1 +
√

c)2 and any positive t.

Lemma 5 (Lemma 2.2 of Shohat and Tamarkin (1970), and Theorems A.2, A.4, A.5 of Krein and
Nudelman (1997)): If f is analytic on C+, both f(z) and zf(z) map C+ into C+, and there is a
θ ∈ (0, π/2) for which zf(x) → c, finite, as z →∞ restricted to {w ∈ C : θ < arg w < π − θ}, then
c < 0 and f is the Stieltjes transform of a measure on the nonnegative reals with total mass −c.
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