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DESCRIBING THE BEHAVIOR OF EIGENVECTORS OF RANDOM
MATRICES USING SEQUENCES OF MEASURES ON ORTHOGONAL

GROUPS*

JACK W. SILVERSTEIN?

Abstract. A conjecture has previously been made on the chaotic behavior of the eigenvectors of a class
of n-dimensional random matrices, where n is very large [J. Silverstein, SIAM J. Appl. Math., 37 (1979), pp.
235-245]. Evidence supporting the conjecture has been given in the form of two limit theorems, as n -.
relating the random matrices to matrices formed from the Haar measure, h,, on the orthogonal group

The present paper considers a reformulation of the conjecture in terms of sequences of the form {,},
where for each n, tz,, is a Borel probability measure on 7,. A characterization of tz,, being "close" to h for n
large is developed. It is suggested that before a definition of what it means for {/x,} to be asymptotic Haar is
decided, properties {h,,} possess should first be proposed as possible necessary conditions. The limit theorems
are converted into properties on {tz,}. It is shown (Theorem 1) that one property is a consequence of the other.
Another property is proposed resulting in the construction of measures on D D[0, 1] which converge
weakly. It is shown (Theorem 2) that under this necessary condition for asymptotic Haar, not only is the
conjecture in general not true, but that the behavior of the eigenvectors of large dimensional sample
covariance matrices deviates significantly from being Haar distributed when the i.i.d, standardized
components making up the matrix differ in the fourth moment from 3.

1. Toward a definition of asymptotic Haar. In [6], a class of large dimensional,
symmetric, positive semidefinite random matrices resulted from a model for the
generation of neural connections of a hypothetical organism at birth. Denote by reV, one
of these random matrices which is n n, where n is very large. Briefly, W, is of the form
(1/C,,)V,V,, where V, (1)i]) is n dn and d is fixed; the l)i]’S are independent; l.)i] is 1
or -1 with equal probability, or zero; P (Pij) is n dn, where Pj Prob (v . 1), is
formed under rather general conditions, and, in particular, every row of P is a rotation
of the first row; and C, is the sum of the first row of P. It is shown in [6] that if C, -> o as
n--> oo, then the empirical distribution function F, (x) of the eigenvalues of W, con-
verges in probability as n--> o for each x to a fixed continuous distribution function
F(x). This result complements those on large dimensional random matrices (see for
example [2], [3], [5], [7], [9], [11], [12], [13]), in particular, results on sample covariance
matrices and matrices associated with the statistical theory of spectra.

In [10], a question is raised as to the behavior of the eigenvectors of W,. It has been
conjectured that this behavior is completely chaotic, and an attempt at formalizing this
conjecture has been the following: for each n let tT, denote the orthogonal group
consisting of n n orthogonal matrices, and let O t be distributed according to the
normalized Haar measure, h,, on tT,. Let D, be a nonrandom n n diagonal matrix with
diagonal elements arranged in nondecreasing order and such that the spectrum of D,
approaches F as n. The conjecture is that, for n large, the distribution of
W’, =-O,D,O r. is close (in some sense) to the distribution of W,.

Evidence supporting the conjecture is provided in [10] in the form of results which
demonstrate that W, and W’, have similar properties. Let {Pa oo(M)}a=0 be the spectral
family of M" W, or W’, let {x,}, x, l ", be any fixed sequence of unit vectors, and let
M’,M be two independent generations of M". Then it is proven in [10] that for
M"= W. or W’,

(.1) T i.p.
x,,P, (M")x. F(a) as n for every a [0, o),
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and

(1.2)
1 i.p.
-tr [(P,I(M’;)-Pa2(M))E]---->F(al)+F(az)-2F(al)F(a2) as n
n

for every a 1, a2 [0, a3) where tr is the trace function. The belief has been that these two
results are enough to prove the conjecture.

The validity of the conjecture will imply certain properties of the neural model.
However, the same question can be asked of other classes of large dimensional random
matrices, at least for those not constructed from Gaussian variables. It is known, for
example, that the Wishart matrix W(I, dn) behaves like W’ except Dn is random (see
[1, Chapt. 13]). We remark here that the results in [10] are true for sample covariance
matrices in which the elements in the sample vectors are i.i.d., mean 0, having moments
of all orders (the results in 10] rely totally on [6, Lemma 1 ], and the proof of this lemma
can be slightly modified to include these cases). It is also believed that these results are
valid for more general random matrices. Thus, statements concerning Wn are relevant
for a large class of random matrices.

The present paper continues the investigation of the eigenvectors of Wn primarily
by developing some ideas toward a well-defined statement of the conjecture. To begin
with, it seems more fitting to shift the attention from Wn to the measure it induces on
Let On tTn be random, defined on the same probability space as Wn, and such that
Or,WnOn An, where An is diagonal with its diagonal elements arranged in nonde-
creasing order. We may as well assume that the distribution of On is the same as that of
OnJ for each diagonal J containing + l’s along its diagonal. Also we may assume that,
conditioned on any collection of subsets of eigenvalues of Wn being equal within each
subset, the distribution of On is the same as that of OnK whenever K (7n transforms
only among each subset of columns of On corresponding to a subset of equal eigen-
values, and leaves all other columns unchanged. Let ’n be the Borel probability
measure induced by

The conjecture can now be expressed in terms of vn and hn being "close" for n
large. We will use the expression asymptotic Haar to describe this, at present a vague
property on sequences {/zn} where, for each n, /xn is a Borel probability measure
on

The most obvious and by far the strongest statement of asymptotic Haar is: for
every e > 0, we have for all n sufficiently large I/xn (A)- hn (A)] < e, for every A Bn ---the collection of Borel sets of tTn (the metric on n being induced from the operator
norm). This definition is too restrictive if we do not want to exclude from being
asymptotic Haar all sequences {/zn} of atomic measures. If we let Sn, represent the
collection of all open balls on n having Haar measure 6, then another definition which
would allow certain sequences of atomic measures is: for every e > 0, 1 -> 6 > 0, we have
for all n sufficiently large ]/xn(B)-hn(B) < e for every B Sn,. Several alternative
definitions can certainly be proposed along the same lines.

It is the author’s view that, instead of initially focusing on one definition of
asymptotic Haar, attention should be drawn on intuitive and reasonable consequences
of the definition. Various properties {hn} possess should be considered as necessary
conditions for asymptotic Haar. Also, examples of sequences that should not be
asymptotic Haar need to be found. For example, (1.1) and (1.2) can be restated in terms
of the following properties.

We say that {un} satisfies property I if for any sequence of unit vectors {xn}, xn ,
any number b such that O-<b-<_ 1, and any sequence of integers {ran} satisfying
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0 -<_ m. -<_ n and m,,/n --> b as n , we have,
T T i.p

(1.3) x.O,,D(n, m,,)O,,x. b as n-,

where O,, is/x,-distributed, and where D(n, m,) is n n and has 0 for all its entries
except for l’s in the first m, diagonal entries.

We say that/x, satisfies property II if for any bl, b2 such that 0 =< bl, b2 <= 1, and any
.}, {m .} satisfying 0 _-< m <= n and m ’,,In --> bi as n oo,two sequences of integers {m 2

1, 2, we have,

(1.4)
1 a.tr [(O,D(n, m )0,, O’,D(n m2,,)0’,,7")2]

i.r,.

b + b2-2blb2 as n c,
n

where O,, and O’,, are independent and/x,-distributed.
The sequence {h,} satisfies I. The easiest way of seeing this is to use the fact that

xO,D(n, m,)O,x, is beta-distributed with mean m,/n which goes to b, and variance
2m,, (n m,,)/n 3 which goes to 0 (see 10, proof of Theorem 1 ]).

The sequence {u,} also satisfies I. The proof is elementary and technical and will be
omitted.

Theorem 1 in the next section shows that ii is a consequence of I, a somewhat
surprising result. Thus, we have so far only one necessary condition for asymptotic
Haar.

At this stage, we are in a position to consider whether I is enough to characterize
asymptotic Haar. For each n let/x, be absolutely continuous with respect to h,, having
density f.. Let {x.}, {m.} be as in I. Using the fact that xr.O,,D(n m,,)O 7".x. is beta-
distributed when O. is h.-distributed, we get from the Cauchy-Schwarz inequality:

2

x.O.D(n, m.)O.x. f,,(O,,) dh.(O.)
n

(1.5) <= x,,O.D(n, m.)O.x. dh.(O.) [2(O.)dh,,(O.)

n

Thus, if Ie f(O,,) dh,(O) o(n), then we get L-convergence in (1.3) so that {x}
satisfies I. This is true if {’,,} is any uniformly bounded sequence of densities. For
example, if f, 2 on a closed subset of ff, having Haar measure 1/2, and 0 elsewhere, then
{x,} satisfies I. Under the quite reasonable assumption that the above sequence should
not be considered to be asymptotic Haar, then we must conclude that I is not enough to
characterize asymptotic Haar.

Other properties of {h} therefore, need to be considered.
The remainder of this paper is devoted to developing another property, and

considering the consequences, if this property is to be a necessary condition for
asymptotic Haar.

For O e ff Haar-distributed and any unit vector x e N", we have Orx,-dis
tributed like (’1, ’_,""", ’,)/(F.__.I ’)/, where ’, ’,.. ’, are i.i.d, n(0, 1). Form

( [nt]h )n 1
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where [s] is the greatest integer -< s. We have Xn (t) a random element of D D[0, 1]
(the space of all r.c.l.1, functions on [0, 1]) and from straightforward applications of
Donsker’s Theorem and the theory of weak convergence of measures [4], we have:

(1.7) X, L W,
where W is a Brownian bridge. Hence, another necessary condition for asymptotic
Haar:

We say that {/xn} satisfies property III if, for every sequence {x,,}x, R qf unit
vectors, if (st1, st2, , ’n) Or,xn where On is/xn-distributed, and if Xn (t) is as in (1.6),
then (1.7) holds.

This property seems to be a reasonable necessary condition for asymptotic Haar. It
ensures that TO,,xn be close totbeing uniformly distributed on the unit sphere in R

TIn fact, O nXn need only have a distribution resembling the distribution of
(Y1, Y2,’", Yn)/(= y/2)1/2 where the Y’s are i.i.d, with E(Y)=I and
var (y2)= 2.

It would also seem reasonable that the behavior of the eigenvectors of large
dimensional sample covariance matrices be a prime example for asymptotic Haar. But
with the inclusion of III as a necessary condition, this is not the case. Let {u0}, i, f
1, 2,..., be i.i.d, random variables having mean 0, variance 1, and satisfying
E(lul")=<m for all integers m >2 and for some a. For each n let Un =(ui),

1, 2,. ., n, 1, 2,. , s, where n/s -+ y > 0 as n -+ oo, and let/zn be the measure
on 7n induced from (1/s)UnUr,. Theorem 2 in the next section shows that if E(u.) # 3,
then {/zn} does not satisfy III. The proof relies on standard tools used in the theory of
weak convergence on metric spaces, along with a recent result on the almost sure
convergence of the largest eigenvalue of sequences of sample covariance matrices [5],
where the above growth condition on the moments of lu{ is assumed.

In the formation of Wn, letting P0 P for all i, j where p : 1/2, we are in the above
case with E(u141) E(()ll/Xp)4) lip. We must therefore conclude that with III as a
necessary condition for asymptotic Haar, the original conjecture is, in general, false. It
may be argued that III is too strong, and it may be possible to find interesting properties
shared by {un} and {hn}. Moreover, {un} may still satisfy III when p 1/2 or when the Pii’s
are not all the same. However, we feel that failure to satisfy III indicates significant
departure from Haar measure.

The requirement that E(u11)= 3 suggests that for sample covariance matrices, in
order to satisfy III, the u0.’s have to be near to being Gaussian distributed, as in the
Wishart case. It appears worthwhile to determine what conditions on the ui’s are
needed to ensure III.

In conclusion, it should be emphasized that one purpose of this paper is to begin an
investigation on how to characterize the closeness of measures on n to Haar measure,
where n is large. The considerations given are clearly the author’s view on how to
proceed in defining asymptotic Haar. We suggest continuing the characterization by
finding other mappings of Tn onto a common metric space S, resulting in weak
convergence of the measures on S induced by {h,}. Intuitively, the mappings Fn: Tn S
should all be similar, sort of invariant across dimensions. They should also illuminate
the intrinsic uniformity of Haar measure.

We find it interesting that the Wn’s do .not in general fall into the present
characterization of asymptotic Haar. Still, {vn} and {hn} are similar, and a first step
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toward determining just how similar they are would be to understand those sequences
{Ix,} satisfying I.

The fact that sequences {tz,} arising from sample covariance matrices do not in
general satisfy III is of even greater interest, and this suggests a behavior of the
eigenvectors of these matrices for large n which runs counter to our intuition. A
description of this behavior is important to multivariate theory, and work in this area
should be pursued.

2. The theorems.
THEOREM 1. I-* II.
Proof. Assume {,} satisfies I. Let P(m,, O,)=-O,D(n, m,)Or. Convergence of

Tx,P(m,, O,)x, to b in probability is equivalent to

(2.1) E(x 7" Ie 7".P(m., O.)x.)= x.P(m., O.)x. dlx.(O.)b asn

and

(2.2) E((x.7"P(m., O.)x.)2) f (x 7- )2 2.P(m., O.)x. dlz.(O.) b as n-o.

The expected values in (2.1) and (2.2) are polynomials in the components of x, and are

therefore continuous in x,. Let {x’} and {x} be the sequences such that
/’(m,E(x O,)x,) attains its maximum at x, and its minimum at x’,’. Since (2 1) holds

for all sequences of unit vectors, it is certaintly true for {x’,} and {x}. Therefore,

(2.3) E(x.rP(m., O.)x.) b + o. (x.) where la. (x.)l <= a. and a. 0 as n az.

Similarly,

(2.4) .7"P(m., b 2E((x O.)x.)2) +/3. (x.) where I/3. (x.)l -</3. and/3. 0 as n .
Also, for any two sequences {x,}, {y,} we have

.7.p(m.
i.p.

b2(2.5) (x O.)x.)(yP(m., O.)y.) as/I

and as above we have

(2.6) .7.p m. 7- b 2E((x O.)x.)(y.P(m., O.)y.))= + y.(x., y.),

.}, {m]} be as in II. Sincewhere [y.(x., y.)[ 3’ and y. 0 as n - c. Let {m

(2.7)

1 2 rex. m2 1
O.)P(m 2 0’.)tr [(P(m., O.)-P(m., 0.))2] +--tr P(m,,

n n n n

1
--trP(m 2 0’ 0.),.)P(m.,
n

it is sufficient to prove

(2.8) tr P(m ., O.)P(m 2., 0’.) blb2
n

as n c.



SEQUENCES OF MEASURES FOR RANDOM MATRICES 279

We have

1 1
On)O 2 tTtr P(m 1,,, O.)P(m2., 0’.) tr P(m .D(n, m .)0,,

(2.9)

1
tr onTp(ffl 1., O.)O’D(n, m)

E (O’,,Tp(m ’., 0.)0’.).
n=l

Y oYYn(m’., O.)o,,
Hi=l

where o’i is the ith column of O’ For fixed O’ we have, from (2.3)

1 "- 2 1 "., o’irP(m1. O,)ol, dtx,,(O,,)=m----e"b+ ., Oln(Oli)
n i=1 H i=1

and

Oln(Oi) <--Og

Therefore,

(2.11) ( 10,*)P(m20’))=(m2"IE tr P(m., \----/bl+n,
where g:, -+ 0 as n --> , and so

(_ 10,)p(m 2 0’))(2.12) E tr P(m,, ->bib2 as n --> .
We have

1 O,,)P(m, 0’,, , o m,,,tr P(m,,,
n i=1

(2.13)

For fixed O’ we have

1 m
.i P(m,,, 0,)oZ (O ,T

n i=1

+-- Z (o’iTp(m O,)oti. )(i2P(m’n, On)0!.i2 )"
n ii2

tr P(m

(2.14)
_,m(\---/ b21 + Z Pn (O li) "- Z ln (O.il, O.i2),

n i=1 n il#i2

from (2.4) and (2.6). The absolute value of the sum of the last two terms is bounded by
+ ,/. Therefore,

(2.15, E((nl-- 2 ,))=(mtr P(m ., O,)P(m,, 0,) \--- b+ r,
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where r/. - 0 as n o, so that

(2 16) E((n1-- tr P(m 10n)P(m, O’ (bib2)2 as n - c.

From (2.12) and (2.16) we get (2.8) and we are done.
THEOREM 2. Let {uij}i, j 1, 2,..., be i.i.d, random variables having mean 0,

variance 1, and satisfying E([u[’)< m for all integers m > 2, and for some a. For
each n let U (uij), 1, 2,. ., n, 1, 2,. , s, where (n/s) y > 0 as n c, and
let/ be the measure on ? induced from M --(1/s)UU.

If {/z} satisfies III, then E(ux)- 3.
Proof. Let F(a), a [0, ) be the empirical distribution function of the eigen-

values of Mn. Let Fy (a) be the limiting distribution function which is given in Theorem
2.1 of [7]. Since Fy(a) is continuous for a [0, o) we can conclude from Theorem 3.2 of
[7] that

(2.17) sup [F(a)-F(a)[ 0 as n.
[0,)

The functions F(a) and F(a) are elements of Do=Do[0,)-
{x D[0, c): lim,_, x(t) exists and is finite} [8]. From (2.17), it follows that

(2.18) F(a)----F(a) as n inDo.

Assume III and let {x,} be given. For our purpose X, (t) of (1.6) can be constructed
directly from M,. In fact, we have

P,, (Mn(2.19) X,,(F,(a)) -(x )x, -F,(a)),

where {P(M)} is the spectral family of M,. A simple extension of the material in [4, pp.
144-145] to nondecreasing functions in Do[0, ) and [4, Theorem 4.4] leads us to

conclude that III and (2.18) imply

0(2.20) X,(F,(a)) WFy(a Wa in Do.

For every positive integer r, we have

xMx trM a dX(F (a)) rar-lX(F (a)) da,

where we have used the fact that with probability 1, Xn(F(a)) vanishes outside a
bounded set.

For any b >0, the mapping that takes x Do to ob rar-lx(a)da is continuous.
Therefore, from [4, Theorem 5.1],

fo
b Io(2.22) ra-aX,,(Fn(a)) da ra- WY da.

With the growth condition on E(lull’) we have from [5] that the maximum
eigenvalue ofM converges almost surely to (1 + 4)2. Therefore, when b > (1 + 4)z we
have

f? fo
b

(2.23) ra-Xn(F,(a)) da- rar-x,(F,,(a)) da -------0 as n.
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Therefore,

)Iox,M,,x, trM - rar-1W] da ra r- W] da.
aO

The limiting distribution is thus Gaussian, with mean and variance only depending on
Wa.

Let r 1. We have

(1 ) 1
(2.25) x/ - tr Mn 1 ns yi,j (u.- 1),

which has mean 0 and variance (1/s)(E(u411)- 1) 0 as n - o. Therefore, we need only
consider 4-/4-)(x ,M,x,- 1). Let x, (1, 0, , 0). Then

(xr (1 ) ; 1
Mx- 1)= ui- 1 E (u- 1),

which from the Central Limit Theorem converges in distribution to n (0, (y/2)(E(u)
1)). Therefore, III depends on the value of E(u) which must be 3, because in the
Wishart case, u is n (0, 1).

We remark that from preliminary work, it is believed that E(u )= 3 is enough to
ensure (2.24) for all r 1.
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