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Summary

Results on the analytic behavior of the limiting spectral distribution of matrices of

sample covariance type, studied in Marčenko and Pastur [2] and Yin [8], are derived.

Through an equation defining its Stieltjes transform, it is shown that the limiting distri-

bution has a continuous derivative away from zero, the derivative being analytic wherever

it is positive, and resembles
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|x− x0| for most cases of x0 in the boundary of its support.
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1. Introduction. For N = 1, 2, . . . let MN = 1
NXNTnX

∗
N , where XN =

(
XN
ij

)
is

N × n, XN
ij ∈ C , identically distributed for all N, i, j, independent across i, j for each

N , E|X1
1 1 − EX1

1 1|2 = 1, n = n(N) with n
N → c > 0 as N → ∞, and Tn is n ×

n Hermitian, independent of XN . For any square matrix A with real eigenvalues, let

FA denote the spectral distribution of A, that is, the empirical distribution function of

the eigenvalues of A. Assume FTn
D−→ H, a.s., where H is a non-random probability

distribution function (p.d.f.). Then it is known that, with probability one, FMN
D−→ F ,

a non-random p.d.f. depending on H and c, if either: 1) Tn is diagonal ([2],[4]), or 2)

Tn ≥ 0 (Tn is non-negative definite), and H has moments of all order satisfying Carleman’s

sufficiency condition (ensuring only one p.d.f. having these moments) ([8]).

This result has direct bearing on multivariate statistical applications when the vector

dimension and sample size are both large but have the same order of magnitude (see [6]

for an application to array signal processing). Indeed, when Tn ≥ 0 and EX1
1 1 = 0, the

matrix 1
N
T

1/2
n X∗NXNT

1/2
n (T

1/2
n being any Hermitian square root of Tn) can be viewed

as a sample covariance matrix formed from N samples of the random vector T
1/2
n (X∗N )· 1.

The spectrum of this matrix agrees with that of 1
N TnX

∗
NXN , and for any Hermitian Tn

the spectra of this latter matrix and MN differ by |n−N | zero eigenvalues. From this it is

a simple matter to verify FMN = (1− n
N

)1[0,∞) + n
N
F

1
N TnX

∗
NXN (1B denoting the indicator

function on the set B). Thus, almost surely,

F
1
N TnX

∗
NXN

D−→ F0 ≡ (1 − 1

c
)1[0,∞) +

1

c
F. (1.1)

Important to applications is the behavior of F and its dependence on H and c. The

purpose of this paper is to derive certain fundamental properties, the most important being

the analyticity of F .

Under condition 2) it is shown in [8] that F0 has moments of all order satisfying

Carleman’s sufficiency condition, and are explicitly expressed. From the moments, F0

has been derived in two cases: when Tn = In (the n × n identity matrix), that is, when

H = 1[1,∞) ([1]), and when Tn = ( 1
mYnY

T
n )−1, where Yn is n×m with n < m, n/m→ y ∈

(0, 1), and contains i.i.d. N(0, 1) entries ([3]). In both cases F0 has a continuous density

on (0,∞). The moments of F0 can also yield some qualitative behavior ([5]), namely: i)

c and F0 uniquely determine H, and ii) F0
D−→ H as c → 0 (which should be expected,

since by the law of large numbers 1
N TnX

∗
NXN

i.p.−→ Tn for n fixed and N →∞).

Further analysis relying on the moment expressions appear extremely difficult. How-

ever, the approach taken in [2],[4] under condition 1) (where H is arbitrary) leads to a

characterization of F most suitable to analysis. It uses the Stieltjes transforms of mea-

sures, that is, for z ∈ D ≡ {z ∈ C : Imz > 0} and p.d.f. G on R, the Stieltjes transform

mG of G is the analytic function mapping D into itself defined by mG(z) =
∫ dG(λ)

λ−z for

z ∈ D. Because of the well-known inversion formula
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G{[a, b]} = lim
η→0+

1

π

∫ b

a

ImmG(ξ + iη)dξ (1.2)

(a, b continuity points of G), p.d.f.’s are uniquely determined by their Stieltjes transform.

It is shown in [2],[4] that:

For each z ∈ D, m = mF (z) is the unique solution for m ∈ D to the equation

m = −
(
z−c

∫
λdH(λ)

1 + λm

)−1

.
(1.3)

It follows that:
On D, mF (z) has a unique inverse, given by

zF (m) = − 1

m
+c

∫
λdH(λ)

1 + λm
m ∈ mF (D).

(1.4)

Although it appears unlikely a general form for F exists, quite a bit can be inferred

from this representation. We show how the above qualitative properties can be derived.

From (1.4) we find for all m ∈ mF (D) zF (m) = − 1
m+ c

m−
c
m2mH(− 1

m). Thus,mH is deter-

mined by F or F0 (via zF ) and c on the open set {m : − 1
m ∈ mF (D)}. Therefore i) follows.

For the second property, we fix z ∈ D. From (1.1) we have mF (z) = − (1−c)
z

+cmF0(z). Us-

ing the fact that |mG(z)| ≤ 1
Imz for any p.d.f. G, we find mF (z) → − 1

z as c → 0. From

(1.4) it follows that zmF0(z) = −1 +
∫ λmF (z)

1+λmF (z)dH(λ). Since
∣∣∣ λmF (z)

1+λmF (z)

∣∣∣ ≤ |mF (z)|
ImmF (z) ,

which is bounded due to the convergence of mF (z), from the dominated convergence the-

orem (d.c.t.), we conclude as c→ 0 zmF0 (z) −→ −1−
∫ λ/z

1−λ/zdH(z) = zmH(z). Thus we

get ii).

We can also use (1.4) to show F{0}, the mass F places at 0, is max(0, 1− c(1−H{0})).
Consider a sequence {Tn} from 1) satisfying FTn

D−→ H, and FTn{0} → H{0}. Then it

is a simple matter to verify FMN {0} ≥ max(0, N−(n−nFTn{0})
N ), which implies F{0} ≥

max(0, 1− c(1−H{0})). For any p.d.f. G it is straightforward to show limy↓0 iymG(iy) =

−G{0}. Then, from (1.4) we find F{0} = 1− c+ c limy↓0
∫ dH(λ)

1+λmF (iy)
. If F{0} > 0, then,

as y ↓ 0, |mF (iy)| → ∞, and, since yRemF (iy) → 0 and yImmF (iy) → F{0}, we have
RemF (iy)
ImmF (iy) → 0 as y ↓ 0. Using 1

|1+λmF (iy)|2 ≤ 1 +
( RemF (iy)
ImmF (iy)

)2
and the d.c.t., we conclude

F{0} = 1− c+ c
∫

1{0}(λ)dH(λ) = 1− c+ cH{0}. Thus, F{0} = max(0, 1− c(1−H{0})).
Other properties previously derived from (1.3) include the continuity of F away from

0 ([7],[5]), a method for determining SF , the support of F , and the behavior of F near

certain points in ∂SF , the boundary of SF ([2]). The latter two will be given full treatment

in this paper. The main goal is to establish the following result.

Theorem 1.1. For all x ∈ R, x 6= 0,

lim
z∈D→x

mF (z) ≡m0(x) exists. (1.5)

The function m0 is continuous on R−{0}. Consequently (see Theorem 2.1 below), F has a

continuous derivative f on R−{0} given by f(x) = 1
π Imm0(x). The density f is analytic
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(possesses a power series expansion) for every x 6= 0 for which f(x) > 0. Moreover, for

these x, πf(x) is the imaginary part of the unique m ∈ D satisfying

x = − 1

m
+ c

∫
λdH(λ)

1 + λm
. (1.6)

Obviously the theorem reveals much of the analytic behavior of F in general, and its

dependence on H. For example, when H is discrete with finite support, m0(x) is the root

of a polynomial with coefficients depending linearly on x, making f algebraic in nature.

The theorem also shows how to determine F . For some H (1.6) can be solved explicitly,

for example, in the above 2 cases, or when H has support on at most 3 distinct points in

R (the degree of the resulting polynomial being at most 4). If no way of solving (1.6) is

apparent, then a simple numerical scheme can be applied.

It is remarked here that, even if F{0} = 0, it is still possible for f not to exist at 0.

For example, for the case H = 1[1,∞) and c = 1, f(x) = 1(0,4)
1

2π

√
4−x
x

([1]).

The proof of Theorem 1.1 relies on a result concerning the existence of a derivative of

a p.d.f. whenever the imaginary part of its Stieltjes transform converges. It will be stated

and proven in the next section, along with a result needed to establish the continuity of

m0. The third section completes the proof of Theorem 1.1. The fourth section gives a

detailed analysis on how the support of F can be determined from the graph of (1.6) on

{m ∈ R : m 6= 0,− 1
m ∈ ScH}. Section 5 shows, for most cases of x0 ∈ ∂SF , that f(x), for

x ∈ SF , resembles
√
|x− x0| near x0. Section 6 contains some concluding remarks.

2. Preliminary Results. The following theorems are stated under conditions sufficient

for this paper. Weaker conditions clearly exist for both.

Theorem 2.1 Let G be a p.d.f. and x0 ∈ R. Suppose ImmG(x0) ≡ limz∈D→x0 ImmG(z)

exists. Then G is differentiable at x0, and its derivative is 1
π ImmG(x0).

Proof. Fix ε>0. Let δ>0 be s.t. 1
π |ImmG(x+iy)−ImmG(x0)|< ε

2 whenever |x−x0|<δ,
y ∈ (0, δ). Let x1 < x2 be continuity points ofG s.t. x1 < x2 and |xi−x0|<δ, i=1, 2. From

(1.2), we can choose y ∈ (0, δ) s.t.
∣∣∣G(x2)−G(x1)− 1

π

∫ x2

x1
ImmG(x+ iy)dx

∣∣∣ < ε
2 (x2−x1).

For any x ∈ [x1, x2], we have |x− x0| < δ. Thus∣∣∣∣G(x2)−G(x1)

x2 − x1
− 1

π
ImmG(x0)

∣∣∣∣ ≤ 1

x2 − x1

∣∣∣∣G(x2)−G(x1)− 1

π

∫ x2

x1

ImmG(x+ iy)dx

∣∣∣∣
+

1

x2 − x1

∫ x2

x1

∣∣∣∣ 1π (ImmG(x+ iy)− ImmG(x0))

∣∣∣∣ dx < ε.

It follows that G is continuous at x0, and for any sequence {xn} of continuity points

of G converging to x0

lim
n→∞

G(xn)−G(x0)

xn − x0
=

1

π
ImmG(x0). (2.1)

Let {xn} be any real sequence satisfying xn ↓ x0. For each n choose continuity

points x
(n)−
cp , x

(n)+
cp s.t. x0 < x

(n)−
cp ≤ xn ≤ x

(n)+
cp , (1 − 1

n )(xn − x0) ≤ x
(n)−
cp − x0, and
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x
(n)+
cp − x0 ≤ (1 + 1

n)(xn − x0). Then

(
1− 1

n

)
G(x

(n)−
cp )−G(x0)

x
(n)−
cp − x0

≤ G(xn)−G(x0)

xn − x0
≤
(

1 +
1

n

)
G(x

(n)+
cp )−G(x0)

x
(n)+
cp − x0

,

and we have (2.1) holding for this sequence. A similar argument can be made for {xn}
with xn ↑ x0. This complete the proof.

Theorem 2.2. Let X be an open and bounded subset of Rn, let Y be an open and

bounded subset of Rm, and let f : X → Y be a function, continuous on X. If, for all

x0 ∈ ∂X, limx∈X→x0 f(x) = f(x0), then f is continuous on all of X.

Proof. Let x0 ∈ ∂X. Given ε > 0, there exists a δ > 0 such that x ∈ X, ‖x− x0‖ < δ ⇒
‖f(x) − f(x0)‖ < ε

2 (‖ · ‖ denoting Euclidean norm). Let x̂ ∈ ∂X satisfy ‖x̂ − x0‖ < δ.

Then, since there exists x̄ ∈ X such that ‖x̄ − x0‖ < δ and ‖f(x̂)− f(x̄)‖ < ε
2
, we must

have ‖f(x̂)− f(x0)‖ < ε. Thus, f is continuous for all x ∈ X.

Once (1.5) is verified, existence of the continuous density f on R−{0} will follow from

the above theorems. Clearly, showing limz∈D→x ImmF (z) = Im0(x) (x 6= 0) is sufficient,

since the mapping z → Imz is continuous. As will be seen (in the next section), the latter

is verified mid-way through the proof. The importance in establishing (1.5) lies mainly in

analyzing the behavior of f at boundary points of its support, to be discussed in Section 5.

3. Proof of Theorem 1.1. For z ∈ D we write z = x+ iy, and mF (z) = m1 + im2. The

open ball in C with radius r centered at z will be denoted by B(z, r). From (1.4) we find

the following relationship between (x, y) and (m1,m2)

x = − m1

m2
1 +m2

2

+ c

∫
λ(1 + λm1)dH(λ)

(1 + λm1)2 + λ2m2
2

y = m2

(
1

m2
1 +m2

2

− c
∫

λ2dH(λ)

(1 + λm1)2 + λ2m2
2

)
.

(3.1)

Lemma 3.1. m2(x + iy) is bounded for x + iy lying in any bounded region of D away

from the imaginary axis.

Proof. Suppose not. Then there exists a sequence {(xn, yn)} such that xn → x̄ 6= 0, and

mn
2 ≡m2(xn + iyn) ↑ +∞ as n→∞. Let mn

1 = m1(xn + iyn). We have

xn = − mn
1

(mn
1 )2 + (mn

2 )2
+ c

∫
λ(1 + λmn

1 )dH(λ)

(1 + λmn
1 )2 + λ2(mn

2 )2
→ x̄ as n→∞.

However, using |ab| ≤ 1
2 (a2 + b2), we find

max

(∣∣∣∣ mn
1

(mn
1 )2 + (mn

2 )2

∣∣∣∣ , ∣∣∣∣ λ(1 + λmn
1 )

(1 + λmn
1 )2 + λ2(mn

2 )2

∣∣∣∣) ≤ 1

2mn
2

→ 0 as n→∞.

Therefore, by the d.c.t., we have x̄n → 0, a contradiction.
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Lemma 3.2. Under the same conditions as in Lemma 3.1, m1(x+ iy) is bounded.

Proof. We prove again by contradiction, using the same notation as above, where now

|m1(xn + iȳn)| ↑ ∞ as n→∞. We have
|mn1 |

(mn1 )2+(mn2 )2 ≤ 1
|mn1 |

→ 0 as n→∞. Since yn > 0

and mn
2 > 0 for all n, we have, from (3.1), 1

(mn1 )2+(mn2 )2 > c
∫ λ2dH(λ)

(1+λmn1 )2+λ2(mn2 )2 . Therefore,

∀ ε ∈ [0, 1), we have

c

∫
λ2|mn

1 |1+εdH(λ)

(1 + λmn
1 )2 + λ2(mn

2 )2
≤ |mn

1 |1+ε

(mn
1 )2 + (mn

2 )2
≤ 1

|mn
1 |1−ε

→ 0,

which implies limn→∞
∫ λ2mn1 dH(λ)

(1+λmn1 )2+λ2(mn2 )2 = 0. Moreover, for ε ∈ (0, 1), we have as n→∞∫
R−
[
− 1
|mn

1
|1+ε ,

1
|mn

1
|1+ε

] |λ|dH(λ)

(1 + λmn
1 )2 + λ2(mn

2 )2
≤
∫

λ2|mn
1 |1+εdH(λ)

(1 + λmn
1 )2 + λ2(mn

2 )2
→ 0.

It is easy to verify that λ
(1+λm1)2+λ2m2

2
is increasing on [−(m2

1 +m2
2)−

1
2 , (m2

1 +m2
2)−

1
2 ],

and, since mn
2 is bounded, 1

|mn1 |1+ε < ((mn
1 )2+(mn

2 )2)−
1
2 , for n sufficiently large. Therefore,

for n large,∫[
− 1

|mn
1
|1+ε ,

1

|mn
1
|1+ε

] |λ|dH(λ)

(1 + λmn
1 )2 + λ2(mn

2 )2
≤

1
|mn1 |1+ε(

1− |mn1 |
|mn1 |1+ε

)2 → 0 as n→∞.

Therefore limn→∞
∫ λdH(λ)

(1+λmn1 )2+λ2(mn2 )2 = 0, and we conclude as in the previous lemma that

xn → 0, a contradiction.

Fix an x0 ∈ R− {0}. Because of the two lemmas (1.5) follows if convergent subse-

quences of {mF (zn)} for any {zn} ⊂ D, zn → x0, are shown to be unique. Since mF is

analytic on C − SF , (1.5) holds for all x ∈ ScF . Thus we may assume x0 ∈ SF .

Lemma 3.3. If there exists a sequence {z̄n} ⊂ D for which limz̄n→x0 mF (z̄n) = m̄ ∈ D
then limz∈D→x0 mF (z) exists.

Proof. Let m̄n = mF (z̄n). From (1.4), we have z̄n = zF (m̄n), and since
∫ λdH(λ)

1+λm is

analytic for m ∈ D, we have zF (m̄) = x0 (zF considered as an analytic function on

C − {m : m = 0 or −m−1 ∈ SH}).
Let B = B(m̄, ε) where 0 < ε < Imm̄. Then zF (m) is analytic and nonconstant on B.

Therefore, by the open mapping theorem (o.m.t.), zF (B) is open and contains x0. Thus,

for any {zn} ⊂ D with zn → x0, zn ∈ zF (B) for large n. For these zn, there exists mn ∈ B
such that zF (mn) = zn. But B ⊂ D, so that by the uniqueness property in (1.3), we must

have mF (zn) = mn which lies in B. Therefore, since ε was arbitrary, limz∈D→x0 m(z)

exists and the limit must be m̄.

At this stage we know limz∈D→x0 ImmF (z) converges. To complete the proof of (1.5),

we need to show convergence when
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lim
z∈D→x0

ImmF (z) = 0. (3.2)

Lemma 3.4. For fixed a ∈ R satisfying 1
a2+t − c

∫ λ2dH(λ)
(1+λa)2+λ2t 6= 0 for some t > 0, there

are at most two positive t’s satisfying 1
a2+t − c

∫ λ2dH(λ)
(1+λa)2+λ2t = 0.

Proof. We can assume H 6= 1[0,∞). Consider g(t) = (a2 + t)
∫ λ2dH(λ)

(1+λa)2+λ2t for t > 0. It can

easily be verified that g is analytic on (0,∞), and we can assume it is non-constant. For

positive integer n, let dn(t) =
∫ λ2ndH(λ)

((1+λa)2+λ2t)n . The nth order derivative can be expressed

as (−1)n+1n!(dn(t) − (a2 + t)dn+1(t)). It follows that for any local extreme point t the

first non-zero nth order derivative, where necessarily, n must be even, can be written

as (−1)n+1n!d−1
n (t)(d2

n(t)− dn−1(t)dn+1(t)) which, by a simple application of the Schwarz

inequality, must be positive. Thus g can have at most one local extreme, and consequently,

there are at most two solutions to g(t) = c−1. This completes the proof.

Lemma 3.5. Assume 0 /∈ (ma,mb) ⊂ R. If
∫ hλ2dH(λ)

(1+λm0)2+λ2h2 → 0 as h ↓ 0, ∀m0 ∈
(ma,mb), then (−m−1

a ,−m−1
b ) ⊂ ScH .

Proof. Fix m0 ∈ (ma,mb). Let g(λ) = hλ2

(1+λm0)2+λ2h2 . It is a simple matter to show

for 0 < h < |m−1
0 |, g is increasing on A ≡ (−m−1

0 − h,−m−1
0 ] and is decreasing on

(−m−1
0 ,−m−1

0 + h]. We have
∫
g(λ)dH(λ) ≥∫

A

h(m−1
0 + h)2dH(λ)

(hm0)2 + h2(m−1
0 + h)2

=
(m−1

0 + h)2

m2
0 + (m−1

0 + h)2

H(−m−1
0 )−H(−m−1

0 − h)

h
.

Thus, limh↓0
H(−m−1

0 )−H(−m−1
0 −h)

h = 0. Similarly, we find limh↓0
H(−m−1

0 +h)−H(−m−1
0 )

h = 0.

Therefore H′(−m−1
0 ) exists and is 0. Since m0 was arbitrary on (ma,mb), H is constant

on (−m−1
a ,−m−1

b ). Therefore (−m−1
a ,−m−1

b ) ⊂ ScH .

Lemma 3.6. Assume (3.2). As n→∞, if zn ∈ D→ x0, ẑn ∈ D→ x0, mF (zn)→m0 ∈ R,

mF (ẑn)→ m̂0 ∈ R and m0 < m̂0, then, ∀ m̄ ∈ (m0, m̂0), there exists {z̄n} ⊂ D such that

z̄n → x0, and mF (z̄n)→ m̄. The sequence {z̄n} can be chosen so that RemF (z̄n) = m̄.

Proof. Fix m̄ ∈ (m0, m̂0). For all n sufficiently large, there exists z̄n on the line segment

joining zn and ẑn s.t. RemF (z̄n) = m̄. Necessarily, z̄n → x0, so that ImmF (z̄n)→ 0.

Lemma 3.7. Under the same assumptions as in Lemma 3.6, and, additionally, 0 /∈
(m0, m̂0), we have (−m−1

0 ,−m̂−1
0 ) ⊂ ScH .

Proof. Fix m1 ∈ (m0, m̂0). From Lemma 3.6 we know that for any δ > 0, mF (D) intersects

the line {m1 + im2 : δ ≥m2 > 0} at infinitely many points. Therefore, for these points,

from (3.1), we have
1

m2
1 +m2

2

− c
∫

λ2dH(λ)

(1 + λm1)2 + λ2m2
2

> 0. (3.4)

From Lemma 3.4, {m2 > 0 : 1
m2

1+m2
2
− c

∫ λ2dH(λ)
(1+λm1)2+λ2m2

2
= 0} has at most two points.

Therefore, ∃ δ0 > 0, such that ∀m2 ∈ (0, δ0], (3.4) holds, which implies
∫ m2λ

2dH(λ)
(1+λm1)2+λ2m2

2
→
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0 as m2 ↓ 0. Thus, from Lemma 3.5, (−m−1
0 ,−m̂−1

0 ) ⊂ SHc.
We can now complete the proof of (1.5). Suppose (3.2) holds but m(z) does not

converge as z → x0. Because of Lemmas 3.1,3.2, the conditions of Lemma 3.6 are sat-

isfied and we can find (m0, m̂0) such that 0 /∈ (m0, m̂0). Therefore, from Lemma 3.7,

(−m−1
0 ,−m̂−1

0 ) ⊂ SH
c. Moreover, from Lemma 3.6, for any m̄ ∈ (m0, m̂0), there exists

{z̄n} ⊂ D such that z̄n → x0 and mF (z̄n) → m̄ as n → ∞. Since zF is the inverse of

mF on mF (D) and analytic on C − {m : m = 0 or −m−1 ∈ SH}), we have x0 = zF (m̄),

∀ m̄ ∈ (m0, m̂0).

Therefore, zF is a constant function on (m0, m̂0), and, consequently, on mF (D), a

contradiction. Therefore, (1.5) holds for all x ∈ R− {0}.
The existence of the density f , defined in terms of m0, and continuous on x ∈ R−{0}

follow from the theorems in Section 2. Continuity gives us πf(x) being the imaginary part

of a solution to (1.6) when f(x) > 0. The following argument shows uniqueness. Suppose

distinct m,m′ ∈ D satisfy (1.6). There exist disjoint open balls B(m, ε), B(m′ , ε′) each

lying entirely in D. As a result of the o.m.t., zF (B(m, ε)) ∩ zF (B(m′, ε′)) is open and

contains x. Therefore, there exists a z ∈ D and distinct m,m′ ∈ D such that both (z,m)

and (z,m′) satisfy the equation in (1.3), violating the uniqueness of the solution.

It remains to show the analyticity of f . Consider an x0 ∈ R−{0} for which f(x0) > 0.

We can eliminate the case H = 1[0,∞) since all mass at zero will yield F = 1[0,∞) as well,

resulting in f ≡ 0 on R− {0}. Let m = m0(x0) = m1 + im2. We have m2 > 0, and

therefore, zF is analytic at m. Moreover, from continuity, zF (m) = x0.

Suppose z′F (m) = 0. By splitting up the real and imaginary parts, this yields two

equations in m1 and m2. Another equation arises from the imaginary part of zF (m) being

zero. We arrive at a 3 × 3 linear homogeneous system with unknowns 1
|m|4 − c

∫ λ4dH(λ)
|1+λm|4 ,

c
∫ λ3dH(λ)
|1+λm|4 , c

∫ λ2dH(λ)
|1+λm|4 , and non-singular coefficient matrix. This implies

∫ λ2dH(λ)
|1+λm|4 = 0,

which can only hold if H = 1[0,∞). Therefore, z′F (m) 6= 0, so that by the inverse function

theorem (i.f.t.), in a neighborhood U ⊂ D of m, zF has an inverse on zF (U), which

contains x0. This inverse must agree with mF on zF (U) ∩ D. Therefore, mF has an

analytic extension onto zF (U). Thus, near x0 mF (z) =
∑∞
n=0 an(z − x0)n and therefore,

f(x) = 1
π

∑∞
n=0 Iman (x− x0)n for any real x near x0.

This completes the proof of Theorem 1.1.

4. The Support of F. It is mentioned in [2] that, on open intervals in ScF , the func-

tion mF (x) exists, and is continuous, real and increasing. Therefore, the inverse function

exists on these intervals, also being continuous, real and increasing. These statements

hold true for any Stieltjes transform. By finding the intervals on which the inverse is

increasing and computing their values on these intervals, SF can be determined. In-

tuitively, (1.6) must be the inverse, and [2] make that claim, however, without proof.

Several things need to shown. For example, even though the domain of (1.6) is clearly
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B ≡ {m ∈ R : m 6= 0,−m−1 ∈ ScH}, might there exist an extension of this function into

Bc (in R) which constitutes part of the inverse of mF? That is, in order to determine

SF , do we need to look further than simply plotting (1.6) on B? As will be shown the

answer is no. Plot (1.6) on B. Find the extreme values on each increasing interval. Delete

these points and everything in between on the real line. Do this for all increasing intervals.

What is left will be SF .

The above fact will follow from the first two theorems. This section also contains

general qualitative information on the graph of (1.6) useful for applications (see [6]). For

example, it will be shown that each interval in B corresponds to at most one interval in

ScF
In the following, xF will denote (1.6), that is, the restriction of zF on B.

Theorem 4.1 For any x0 ∈ I ⊂ ScF , where I is an open interval, let m0 = mF (x0). Then

m0 ∈ B, x0 = xF (m0), and x′F (m0) = 1
m2

0
− c

∫ λ2dH(λ)
(1+λm0)2 > 0.

Proof. We have m′F (x0) =
∫ dF(λ)

(λ−x0)2 > 0. Thus, by the i.f.t., mF has an inverse ẑ(m)

in a neighborhood N of x0. By the o.m.t., mF (N) is open and contains m0. Therefore,

for m ∈ mF (N) → m0, we have ẑ(m) → x0. But, on mF (N ∩ D) = mF (N) ∩ D, from

(1.3), we must have ẑ = zF , that is, ẑ extends zF analytically onto mF (N). Therefore, for

m ∈ D→ m0, we have zF (m)→ x0.

Suppose that m0 = 0. For m = im̄, m̄ > 0, we have ImzF (im̄) → 0 as m̄ ↓ 0, and,

therefore, from (3.1) 1
m̄(1 − c

∫ m̄2λ2dH(λ)
1+m̄2λ2 ) → 0. By the d.c.t. we have

∫ m̄2λ2dH(λ)
1+m̄2λ2 →

0 as m̄ ↓ 0. Thus m̄−1 must converge to 0, a contradiction. Therefore, m0 6= 0.

From (1.4) it is straightforward to verify mH(m) = −zF (−m−1)+m(1−c)
cm2 . Therefore, as

m ∈ D → −m0
−1, we have mH(m) converging to a real number. Thus, by Theorem 2.1,

H′(−m0
−1) exists and is equal to 0. This implies H′ = 0 on J ≡ {− 1

mF (x) : x ∈ I}, which

is open due to the monotonicity of mF on I. Thus H is constant on J , implying J ⊂ ScH ,

so that xF is well-defined at m0, and we have x0 = ẑ(m0) = xF (m0). Since m′F (x0) > 0

we have x′F (m0) > 0, and the proof is complete.

Theorem 4.2. Suppose that m0 ∈ B and x′F (m0) = 1
m2

0
− c

∫ λ2dH(λ)
(1+λm0)2 > 0. Let x0 =

xF (m0). Then x0 ∈ ScF and mF (x0) = m0.

Proof. By the i.f.t. zF has an inverse m̂(z) in a neighborhoodB(m0, δ) of m0 for some δ > 0

satisfying: 0 /∈ (m0 − δ,m0 + δ); ∀m ∈ (m0 − δ,m0 + δ), −m−1 ∈ SHc; and ∀m = m1 +

im2 ∈ B(m0, δ) (3.4) holds. By the o.m.t., zF (B(m0, δ)) is open and x0 ∈ zF (B(m0, δ)).

Thus, for some ε > 0, (x0− ε, x0 + ε) ⊂ zF (B(m0, δ)). Notice, for m ∈ B(m0, δ), from (3.1)

and (3.4), zF (m) ∈ R ⇐⇒ m ∈ R. Therefore, for z ∈ zF (B(m0, δ)→ x ∈ (x0 − ε, x0 + ε),

we must have m̂(z) converging to a real number.

From (3.1) and (3.4), we have zF (B(m0, δ) ∩ D) ⊂ D. From (1.3), we must have

mF (zF (B(m0, δ) ∩D)) = B(m0, δ) ∩D and mF (z) = m̂(z) for any z ∈ zF (B(m0, δ) ∩D).

Therefore, m̂ extends mF analytically onto zF (B(m0, δ)), and for any z ∈ D → x ∈
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(x0 − ε, x0 + ε), we must have ImmF (z) → 0. Therefore, by Theorem 2.1, F ′(x) exists

and is 0. Thus F is constant on (x0 − ε, x0 + ε), which implies x0 ∈ ScF . Therefore, mF is

well defined at x0, and, consequently, mF (x0) = m0.

From these two theorems we can conclude: x ∈ ScF ⇐⇒ m ∈ B and x′F (m) > 0 (in

either direction, x and m are real and are related by mF (x) = m and xF (m) = x).

Each of the remaining theorems in this section sheds some light on the qualitative

behavior of the graph of xF , useful in determining SF . For ease of exposition, we assume

H 6= 1[0,∞).

Theorem 4.3. Suppose m1 < m2, [m1,m2] ⊂ B and x′F (mi) ≥ 0 for i = 1, 2. Then

x′F (m) > 0 for all m ∈ (m1,m2).

Proof. Write x′F (m) = m−2(1 − cg(m)) where g(m) =
∫ λ2m2dH(λ)

(1+λm)2 . Suppose that, for

some m̄ ∈ (m1,m2), x′F (m̄) ≤ 0. Then it follows that g(m) has a local maximum at

some m0 ∈ (m1,m2). However, upon computing the second derivative of g we find that

g′′(m0) = 6
∫ λ2dH(λ)

(1+λm0)4 > 0, a contradiction.

Thus, on any interval I ⊂ B, there is at most one interval on which xF (m) is increasing,

in the sense that there cannot be two disjoint intervals in I on which xF (m) is increasing

separated by either an interval on which xF (m) is nonincreasing, or by a point where x(m)

has zero derivative.

Theorem 4.4. Let [m1,m2], [m3,m4] be two disjoint intervals in B satisfying ∀m ∈
(m1,m2) ∪ (m3,m4), x′F (m) > 0. Then [x1, x2], [x3, x4] are disjoint where xi = xF (mi),

i = 1, 2, 3, 4.

Proof. From the intermediate value theorem, we have xF ([mi,mi+1]) = [xi, xi+1], i = 1, 3.

Suppose that x0 ∈ [x1, x2] ∩ [x3, x4] and x0 6= 0. Then ∃ m̄i ∈ [mi,mi+1], i = 1, 3 such

that xF (m̄1) = xF (m̄3) = x0. For any m̂ ∈ (m1,m2) ∪ (m3,m4), we have from Theorem

4.2 x̂ = xF (m̂) ∈ SF c and m̂ = mF (x̂). Because of the continuity of m(z) on D − {0}
(Theorem 1.1), we have mF (x̂) = m̂ ∈ (mi,mi+1) → mi as x̂ ∈ (xi, xi+1) → x0, i = 1, 3.

Thus the limit of m(z) does not exist at x0, a contradiction.

We can therefore assume that x2 = x3 = 0. If 0 ∈ SF c, then m(z) is analytic at 0,

and therefore m(z) is continuous on D, and, from the previous argument, we arise at a

contradiction.

If 0 ∈ SF , then, since (x1, 0)∪(0, x4) ⊂ ScF , F has positive mass, say α, at 0. Therefore

mF (z) = −αz +
∫

(−∞,x1]∪[x4,∞)
dF(λ)
λ−z , so that, by the d.c.t., limx↑0 mF (x) = ∞. But we

must have limx↑0 mF (x) = m2, a contradiction.

Thus, on any two disjoint intervals in B for which xF (m) is increasing for all the points

in the interior of those intervals, the images of those intervals under xF (m) are disjoint.

Theorem 4.5. If (−∞, b) ⊂ B ((b,∞) ⊂ B), then xF (m)→ 0 as m→−∞ (m→∞).

Proof. Follows easily from the monotone convergence theorem.
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5. Behavior Near a Boundary Point. Let a ∈ R − {0} be a point in ∂SF . For

convenience, throughout this section we will assume a to be a right end-point of an interval

of ScF , that is, [a− δ, a) ∈ ScF for some δ > 0. The analysis on the other possibility for a

will follow analogously.

Let ma = m0(a) (defined in (1.5)). We know from Theorem 1.1 and the previous

section that limm↑ma xF (m) = a, and x′F (m) > 0 for m ∈ [m0(a− δ),ma).

Theorem 5.1. ma 6= 0.

Proof. Suppose not. Then, for some ε > 0, (−ε, 0) ⊂ B, which implies (ε−1,∞) ⊂ ScH .

Writing mxF (m) = −1 + c
∫ λmdH(λ)

1+λm , we see the integral must converge to c−1 as m ↑ 0.

However, choosing M > ε−1, we have by d.c.t.
∫ λmdH(λ)

1+λm =
∫

(−∞,M ]
λmdH(λ)

1+λm → 0 as

m ↑ 0, a contradiction.

Notice that Theorem 5.1 is still true if a = 0 provided limx↑0 m0(x) < ∞, with ma

defined to be this limit (the only other possibility being x′F (m) > 0 for all m sufficiently

large (see Theorem 4.5)).

It is still possible for −m−1
a ∈ SH , that is, when H{[−m−1

a ,−m−1
a +ε]} > 0 ∀ε > 0

and limm↑ma
∫ λ2dH(λ)

(1+λm)2 exists, so for c sufficiently small, x′F > 0 on [m0(a− δ),ma). This

can only occur when H is not discrete, for example, when H(x) = (x − 1)3 for x ∈ [1, 2].

Further work is needed in this case. Preliminary analysis shows the behavior of f near 0

to deviate from what will be derived below.

We henceforth assume ma ∈ B. Then, from Theorem 4.3 and the fact that xF cannot

be constant, a local maximum for xF must occur at ma, that is, x′F < 0 on an interval to

the right of ma. We assume, again, that H 6= 1[0,∞).

Theorem 5.2. x′′F (ma) < 0.

Proof. Suppose x′′F (ma) = 0. Then it follows that
∫

λ2

(1+λma)3 dH(λ) = 0 and x′′′(ma) =

− 6c
m2
a

∫ λ2dH(λ)
(1+λma)4 < 0. But since the first nonvanishing derivative of a function at a local

extreme must be of even order, we arise at a contradiction.

Let us now establish an expression for f near and to the right of a, which displays its

similarity to the square root function. Write m0(x) = m1(x) + im2(x). When m2(x) > 0,

m0 = m0(x) satisfies (1.6), so that x, mj = mj(x), j = 1, 2, satisfy (3.1) with y = 0. It

follows that

x = c

∫
λdH(λ)

(1+λm1)2 + λ2m2
2

and 0 =
1

m2
1+m2

2

− c
∫

λ2dH(λ)

(1+λm1)2 + λ2m2
2

. (5.1)

We have (m1(a),m2(a)) = (ma, 0). Choose δ and ε sufficiently small so that 0 /∈
(a, a + δ), x ∈ (a, a+ δ) =⇒ m1(x) ∈ (ma − ε,ma + ε) ⊂ B, and xF (ma − ε) ∈ ScF .

We argue that f(x) = 1
πm2(x) > 0 for all x ∈ (a, a+δ). Suppose x0 ∈ (a, a+δ) is such

that m2(x0) = 0. Letting z ∈ D→ x0 and using (1.4) together with Theorem 1.1, we find,

with m1 = m1(x0), x0 = xF (m1), and from the second equation in (3.1), x′F (m1) ≥ 0.

Therefore, from Theorem 4.3, m1 ∈ [ma − ε,ma], forcing x0 ≤ a, a contradiction.
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Therefore, f > 0 on (a, a + δ), and (5.1) holds for all x ∈ (a, a + δ), mj = mj(x),

j = 1, 2. Differentiating implicitly both equations in (5.1) with respect to x, it is straight-

forward to derive m2m
′
2 =

m1A2+(m2
1−m2

2)A3

(A2+A3m1)2+A2
3m

2
2
, where Aj = 2c

∫ λjdH(λ)
((1+λm1)2+λ2m2

2)2 , j = 2, 3.

For x ∈ (a, a + δ), let g(x) = 2m2(x)m′2(x), and g(a) = −C2
−1 where C2 ≡ x′′F (ma)

2 . It is

straightfoward to verify that g is right continuous at a. Thus for x ∈ [a, a + ε)

m2(x) =

(∫ x

a

g(t)dt

) 1
2

. (5.2)

We remark that the above argument will carry over for the case a = 0, as long as

limz∈D→0mF (z) exists and is contained in B.

From Theorem 5.2 it follows from an argument given in [2] that for x > a,

f(x) =
1

π

(
a− x
C2

) 1
2

(1 + o(1)). (5.3)

From L’Hopital’s rule, we see that (5.2) gives us (5.3). But (5.2) yields additionally

limx↓am′2(x)
/√

a−x
C2

′
= 1, demonstrating f(x) to have more in common with 1

π

(
a−x
c2

) 1
2

than what can be inferred from (5.3).

6. Conclusion. The results in this paper provide general analytic properties of F , and,

consequently, on F0 via (1.1), for arbitrary H, along with an analysis of xF sufficient

enough to allow the determination of SF through its graph. The former is particularly

relevant in multivariate statistics, where the eigenvalues of a population covariance matrix

of sizable dimension need to be inferred from those of a sample covariance matrix resulting

from a sample size insufficient to permit the use of conventional estimation methods. One

scheme to determine H, the spectral distribution of the population matrix, follows from

the way property i) in the introduction is verified, namely through Stieltjes transforms

and the inverse of mF . Using the properties of F established in this paper, that is, its

analyticity away from the origin, and the “square root” behavior of its derivative near

boundary points (which include all non-zero points in ∂SF , since now H is discrete), an

approximation of F (which only manifests itself in the limit), and, consequently, mF , can

be made by an appropriate smoothing of the spectral distribution of the sampled matrix.

The approximation would hopefully be an improvement over simply using the sampled

eigenvalues. Research along these lines is currently being pursued.

Other fundamental properties which can be proven using (1.3),(1.4) concern informa-

tion beyond property ii) in the introduction when SH contains boundary points. By track-

ing the relative extreme values of xF , it is straightforward to show the (eventual existence

and) convergence of points in ∂SF0 to their corresponding points in (∂H)− {0} as c→ 0.

Moreover, for every [b1, b2] ⊂ SH for which 0 /∈ [b1, b2], and (b1 − ε, b1) ∪ (b2, b2 + ε) ⊂ ScF0

for some ε > 0, the corresponding interval [a1, a2] ⊂ SF0 (when it exists for c sufficiently
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small) satisfies F0{[a1, a2]} = H{(b1, b2]} (see [5] for the case when SH ⊂ [0,∞)). These

and other results concerning the continuous dependence of F0 on c will appear in future

work.
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