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A theorem in Yin, Bai, and Krishnaiah (J. Multivariate Anal. 13 (1983), 
508-5 16) shows that the smallest eigenvalue of a class of large dimensional sample 
covariance matrices stays almost surely bounded away from zero. The theorem 
assumes a certain restriction on the class of matrices. With slight modifications of 
the proof in op tit, it is shown here that the theorem is true for all relevant 
matrices. 0 1984 Academic Press, Inc. 

Let { Yil}i, j = 1, 2 ,..., be i.i.d. N(0, 1) random variables. For n = 1,2 ,..., let 
Y,, = (Yii) i = 1,2 ,..., p; j = 1,2 ,..., n, where p/n + y E (0, 1) as n + cc, and 
let A n= l/n Y,Y,T. 

Let &, and & denote, respectively, the smallest and largest eigenvalues of 
A,. In proving their result on the limiting eigenvalue distribution of large 
dimensional multivariate F matrices Yin, Bai, and Krishnaiah [l] needed to 
show that 4, stayed almost surely bounded away from 0 as n -+ co. They 
were successful in showing this property for y < 4. Their result follows from 
the following statement of Theorem 3.2 [ 11: Let y < f. Then 

P@., < E) < CD%=” O<E<Eg, (1) 

where C, D, and a are positive constants. 
The result on 3, easily follows: (1) implies lim,,, J, 2 (I.‘. E for any 

E E (0, E,,] such that Dca < 1. 
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With slight modifications in the proof of Theorem 3.2 we will presently 
show the truth of (1) for ally E (0, l), extending the result on multivariate F 
matrices to all possible cases. We will indicate only the changes in the proof, 
referring the reader to [ 1 ] for the remaining details. 

Choose /? < j and y > d such that y < 2@(1 - y). Then 

+-2pY-B(l-y)>+. (2) 

Let 6 = 2/3(1 -JJ) - 7. For the moment, let E > 0 be such that E“ < 4. Let 
r=E4 and K=e-‘. 

We can improve the bound on x;A “xk given in [ 1, p.5 121, namely 

x,TA,x, = (xk - z)’ An(xk - z) + 2z*A,x, - z’A,z 

< Kr* + 2 IIx~(~(z~A~z)~‘* < Kr* + 2 llxkll K”*(z*A~z)“~ 

< Kr* + 4K1’*c1’*. \ 

With this bound positive constants C, , D,, and &,, exist for which 

+e -D$ff 

for all E E (O,_E,,]. We have 

Kr* + 4K’~*&‘/* 
y+ wtr -P/n) + 4E y/2+ 1/2-~ZPlnK--B(1-Y) 

r2P/” 
=& 

Since p/n -+ y as n -+ co we have from (2) y/2 + l/2 - 2/Q/n) - /?( 1 - y) > y 
for all n sufficiently large. 

Choose a > 0 such that a < y/2. Then we can find a D > 0 independent of 
E such that for every E E (O,_E,,] and for all n suffkiently large (independent 
of E) 

P@, Q E) < C,(DnY + e-Olcms”). 

Let s0 > 0 be such that s0 <so and DcaeDIE-s > 1 for all E E (0, E,,]. Then 
for all n suffkiently large and for all E E (0, so] we have 

P@, < E) < 2C, DngCL”. 

Finally, choose a C > 0 for which (1) holds for all n. 
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