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Abstract 

A mathematical model of neural processing is proposed which 
incorporates a theory for the storage of information. The model 
consists of a network of neurons that linearly processes incoming 
neural activity. The network stores the input by modifying the 
synaptic properties of all of its neurons. The model lends support to 
a distributive theory of memory using synaptic modification. The 
dynamics of the processing and storage are represented by a discrete 
systerfl. Asymptotic analysis is applied to the system to show the 
learning capabilities of the network under constant input. Results 
are also given to predict the network's ability to learn periodic input, 
and input subjected to small random fluctuations. 

1. Introduction 

1.i. Basic Considerations 

Neural  processing is loosely defined as the con- 
version of neural activity of one group of neurons into 
the activity of another group. The network presented 
in this paper models mechanisms underlying neural 
processing. It brings together into mathematical form 
prominent  physiological and psychological ideas of 
learning and memory.  These ideas can be stated under 
the following general areas: 

1) Neural Plasticity. Memory storage is believed 
to be the result of physical changes in neurons. The 
question of neural plasticity has been extensively in- 
vestigated, especially at the synaptic level [1-4],  and 
memory  models have been developed which assume 
synaptic modification [5, 6, 8-10]. 

2) Distributive Memory. There is evidence that a 
large number  of neurons is used in storing a memory  
trace [11], where an individual neuron plays a small 
role, but is involved in storing many traces. This 
distributive theory of memory  is similar to properties 
of holograms and has led to several holographic type 
models [12, 13]. 

3) Memory Consolidation. It is believed that the 
permanent  storage of an experience does not occur 
immediately, but is dependent on the persistence, or 
"reverberation", of neural activity initiated by the 
experience. This is referred to as the consolidation 
hypothesis of memory  [14]. The reverberating activity, 

thought to occur in neural "circuits", is associated 
with the notion of short term memory. 

The network proposed will be assumed to process 
neural activity linearly. Considering the threshold 
properties of the action potential this seems to be a 
major  simplification. However, there is evidence that 
linearity is a good approximation to the processing of 
spiking frequencies of neurons encoding sensory input 
[15]. We take the activity of a neuron to be the 
deviation of spiking frequency from the spontaneous 
frequency the neuron exhibits at rest. In this way 
positive and negative activity can be associated with 
excitation and inhibition respectively. 

1.2. The Model 

The assumptions and ideas above are incorporated 
into the following model of neural processing: 

Let J ,  jtr, and (9 represent three mutually disjoint 
sets of neurons. The neurons in J synapse onto some 
of the neurons in • ,  and some neurons i n / V  synapse 
onto the neurons in (9. The activity in .J  is therefore 
processed onto (9 via ~7, and Ar is defined as the net- 
work. We can imagine the location of J to be either 
peripheral to the brain or somewhere in the brain. In 
the first case J ,  for example, could be the ganglion 
cells making up the optic nerve that preprocesses 
visual stimuli. In the second case or could be cells in 
cortex projecting information to another cortical area. 

Let J and (9 contain n neurons each, where n is 
large. For  a given time t~{0, 1, 2 . . . .  }, let the input 
vector y(t)~R n denote the activity in J .  More specific, 
if J = { J l  . . . . .  J , } ,  then at time t the activity of J~ is 
y~(t). Similarly, let the output vector x(t)eR" denote the 
activity in (9 at time t. We assume the cells in ,4r undergo 
changes in time, and since the processing it performs is 
done linearly, we associate a linear operator 
M(t):Rn-*R" with 3P at time t. The elements in 0 are 
fed back into /K in such a manner as to have: 

x(t + 1) = M(t)(y(t) + ~x(t)), (1.2.1) 

where ~e R is called the amplification factor (see (1.2.2)). 

J - + ~  . (1.2.2t 
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As we will see, short term memory can be associated 
with x(t). Long term effects are achieved by the way 
M(t) is altered. We investigate a modification scheme 
in which the occurence of each y(t) is stored so that 
# is able to remember which inputs it has "seen". The 
scheme involves a function h mapping R n into the set 
of n x n matrices. The matrix M(t) changes according 
to the equation: 

M(t + 1) = QM(t) + ah(y(t) + ~x(t)) 

0<0,  a < l  0 + a = l  (1.2.3) 

where ~o is called the forgetting coefficient, and a is the 
modification coefficient. 

In Section 2 we introduce the Synapse Modification 
Model, originally formulated by Anderson [5, 6]. The 
matrix M(t) stores information by forming projection 
operators of subspaces spanned by the inputs. We will 
see how this modification scheme is related to co- 
ordinated changes in synaptic properties of # .  It is a 
distributive model in the sense that information is 
stored among many synapses. 

Our goal is to understand mathematically the re- 
cognition properties of the Synapse Modification 
Model. This paper is the first step toward the task. The 
next two.sections contain some essential mathematical 
concepts and tools used in Section 2 to analyze the 
network's learning capabilities. It will be shown that 
the network is capable of learning a constant input. 
Evidence will also be given to Support the conjecture 
that the network can learn periodic input, as well as 
input subjected to small random fluctuations. 

Another modification scheme has been proposed 
in which synaptic properties are kept fixed but trans- 
mission properties of cells are able to change in a subset 
of W (this scheme for learning has been suggested by 
Pfaff [16]). The structure of the network in this case is 
in a form in which we are able to investigate properties 
of randomly connected networks [17]. At t = 0  con- 
nections are generated according to a controlled 
probability model. In that paper it is shown that, under 
reasonable assumptions, the spectral measure of M(0) 
converges in probability to a universal one as n tends 
to infinity. 

1.3. Discrete Systems and Stability 

From t = 0  onward, (x(t), M(t)), with (x(0), m(0))= 
(x0, Mo) is a solution to a discrete system, also called 
an ordinary difference equation; that is, it is a solution 
to an equation of the form: 

z(t + 1)=F(t, z(t)) (1.3.1) 

where z: {0, 1, 2, ...} ~ N ,  F: {0, 1, 2,...} x ~ is con- 
tinuous, and ~ is a finite dimensional Euclidean space. 
We write z(t, to, Zo) as the solution to (1.3.1) with 
Z(to, to, z0)=z o. For  each t, (x(t),M(t)) can be con- 
sidered to be an n2+n-dimensional vector, so that 
.~ = R "2 +". It is clear that F in (1.2.1), (1.2.3) depends on 
h and the sequence of inputs Y= {y(t)}[=o. 

For  non-linear systems such as (1.2.1), (1.2.3), it is 
unlikely that solutions can be found in closed form. 
One of the few theories we can apply to (1.3.1) concerns 
the asymptotic behavior of solutions. We use the theory 
on the Synapse Modification Model for special cases of 
Y. Section 2.4 deals in limiting properties of (1.2.1), 
(1.2.3), when Y= {y}t~_-0, that is, y(t)=y, t=0 ,  1, 2, . . . .  
In this case F is independent of t and we have: 

z(t + 1) = F(z(t)). (1.3.2) 

This is called an autonomous difference equation. We 
write z(t, Zo) as the unique solution of (1.3.2) with 
z(0, Zo) = z o. Each solution can be viewed as a collection 
of points in ~ ,  called an orbit. 

Let [III be the Euclidean norm on ~,  that is, if 

x=(x~ ..... x,) then llxll= ( ~ x~)l/2. We will use " 
following definitions: ~= \ / 

Definition. Let F(b)= b. The discrete system (1.3.2) 
is stable at b if r e > 0 3 6 > 0  such that Irzo-bll=<6~ 
Ilz(t, Zo) -b  I[ __<~Vt >__0. 

In words this means the system is stable at b if for 
any neighborhood N1 of b, there is another neighbor- 
hood N a of b in which any solution to the system 
starting in N;  will eventually be trapped in N~. 

Definition. The system (1.3.2) is asymptotically stable 
at b if it is stable at b and there is a neighborhood N 
of b such that zo~N~z(t, Zo)~b as t~oo.  

Definition. The system (1.3.2) is unstable at b if it is 
not stable there. The point b, where F(b)= b, is called 
a critical point of (1.3.2). 

We will make use of the following theorem which 
can be seen in Hahn [18]: 

Theorem 1.3. Suppose F(0)= 0 and is differentiable 

at 0. Let dV(0) = (0fi (z = 0)] be the differential of F at 0. 
\ 

Then \•zj / 
1. If all the eigenvalues of dF(O) are all less than 

one in absolute value, then (1.3.2) is asymptotically 
stable at 0. 

2. If at least one eigenvalue of dF(O) is greater than 
one in absolute value, then (1.3.2) is unstable at 0. 

The theorem can be used for any b such that 
F(b) = b, since we simply let v(t)= z(t)-b, so that 

v(t + 1) = F(v(t) + b)-  b. (1.3.3) 
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1.4. Existence of  Bounded and Periodic Solutions 

In Section 2.5 we apply the following theorem 
which is a special case of a theorem in Hurt [19]: 

Theorem 1.4. Suppose A is an n x n matrix with 
eigenvalues less than one in absolute value. Let II II be 
a norm on R" where the sup norm it induces on n x n 
matrices {that is, B n x n matrix~tlBllsup= sup IlBxll/ 

\ Ilxll=l / 
is such that [IAllsup< 1. 

Let F:{ .... - 1 , 0 ,  1 . . . .  } xR"--+R" satisfy: 
1. For  some N > 0 ,  [[F(t, z)][ < N ( 1 -  []A[[~up) for all 

re{. . . ,  - 1 , 0 ,  1, ...} and all z such that [[z[[<N. 
2. There exists F1<1-[[A]Is,p such that for all 

Zl, Z 2 with [Izi[[<N, i = 1 , 2 ,  and for all r e { . . . - 1 ,  
0, 1 . . . .  } we have: 

HF(t, Zl)-V(t ,  z2) H =<El []Zl -z2[  [ . (1.4.1) 

Then there exists a bounded solution z*(t) of: 

z ( t + l ) = A z ( t ) + F ( t , z ( t ) )  t e {  .... - 1 , 0 ,  1 . . . .  } (1.4) 

where [[z*(t)[[ < N  for all t. This is the only bounded 
solution with [[z*(t)[l<NVt. Moreover, if F(t,z)  is 
periodic in t with period T, then z*(t) is periodic with 
period T. 

We will see in Section 2.5 that conditions can be 
put on the inputs to ensure bounded (or periodic) 
solutions. Since we are looking at solutions from t = 0 
onwards, the uniqueness property will not hold for 
bounded F, but it will hold for F periodic in t since 
there is only one way to extend F backwards in time 
so that it will be periodic for all te{. . .  - 1 ,  0, 1 . . . .  }. 

2. Synapse Modification Model 
2.1. Derivation 

Let Ar consist of two disjoint sets of neurons 
/ ~ I = { X I ,  ... /~,*} and A # z = { x  2 . . . . .  /V2}. We as- 
sume each/VJ s A~ 1 makes synaptic contact with every 
/~2 e j 2 ,  that is, a synapse exists between a dendritic 
branch o f /~ 2  and an axonal branch of ~/'~. Therefore, 
neural activity is being processed from A/"I to A~2. Let 
J = {J1 . . . . .  or and (9 = {(91 . . . . .  (9,}. We assume that 
for each i t  {1 . . . . .  n}, X 2 and only A# 2 makes synaptic 
contact with (9i. Also, for j e  {1 . . . . .  n}, ~r and (gj both 
make synaptic contact wi th /V J, and these are the only 
neurons synapsing onto /~J. Figure 1 shows in 
schematic form the wiring of J ,  Y ,  and (9, for n = 3. 

At time te{0, 1, ...} we associate a number m/a(t) 
with the synapse between ~ # J e H  1 and / ~ { e / d  2, 
called the synaptic strength between these cells. Let 
b)(t) and b2(t) be the activities at time t of /VJ  and A/'~ 
respectively. Processing of or and (9 onto / ~  and of 
A/"z onto (9 is assumed to occur with no time delay, 

o c 

Fig. 1. Schematic diagram of the network for n = 3 

and is to consist only of translating activity. Recalling 
the definitions of the input vector y(t) and the output 
vector x(t) we have: 

bJ(t)=yj(t)+c~x~(t), j =  1 . . . . .  n (2.1.1) 

x/(t) = ba~(t), i = 1 . . . . .  n.  (2.1.2) 

Processing of A/'1 onto AF 2 is assumed to be 
governed by the following equation: 

b2(t + 1)= ~ mij(t)bJ(t), i= 1,. . . ,  n. (2.1.3) 
j=l 

Let M(t)=(m/j(t)). Using (2.1.1) and (2.1.2), and 
putting (2.1.3) in vector notation we get (1.2.1). 

We assume mij(t) changes according to 

mij( t+l)=omij( t )+ab~(t)bJ( t ) ,  0=<0, a=<l, 0 + a = l  

= omij(t ) + a(yi(t) + ~xi(t))(yj(t) + ~xj(t)). (2.1.4) 

Therefore we arrive at the equations governing the 
Synapse Modification Model: 

x(t + 1) = M(y(t) + ~x(t)) 

M(t  + 1) = oM(t) + a(y(t) + ~x(t))(y(t) + ~.x(t)) r (2.1.5) 

O<=o,a<=l 0 + a = l  c ~ R .  

The symbol T stands for the transpose operation. 

2.2. Physical Significance 

This model assumes that processing is being per- 
formed by taking a weighted sum of activity in J ,  
where the weights are the synaptic strengths associated 
with the synapses. There seems to be no evidence for 
or against synapses participating in neural processing 
in this way. 

We have no evidence supporting the modification 
scheme either. Synaptic strength could he related to 
some aspect of a synapse known to be involved in the 
efficacy of transmission. For example, the amount of 
transmitter released by the presynaptic celt, the in- 
fluence the transmitter substance has on depolarizing 
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the post-synaptic membrane, or the amount of pre- 
and post-synaptic contact. The activities of /g ' r  and 
/V) are responsible for altering the synaptic strengths 
between: W~ and W~; /V~ and j / a ;  WJ and W2"i, 
J J  and W}. Is this physically realizable? We offer 
one possible explanation: 

Suppose: 1. Modification of some aspect of a 
synapse depends on the simultaneous presence of a 
quantity of substance S~ on the presynaptic and of a 
quantity of another substance S 2 on the post-synaptic 
side. 

2. The quantity of $1 depends on the activity of the 
presynaptic cell. 

3. All /V~-  W~ connections are special in the 
sense that the quantity ofS z on all synaptic sights of the 
dendrite of W~ depends on the activity of W~. 

Then the appropriate modifications could be 
achieved. 

The third assumption replaces the backwards in- 
formation hypothesis needed to support Anderson's 
association model [5, 6] which has been studied by 
Cooper [8], and Grossberg's model [9, 10]. In Ander- 
son's model the pairing of an input vector f with an 
output vector g is stored in memory by adding the 
outer product gfT to the linear operator. The synapse 
connecting ceils W~ and X} alters due to the activity 
in A/r and /V}. Some way of receiving knowledge of 
the activity in/V} must be assumed. Assumption three 
seems more feasible than the backwards information 
hypothesis. 

2.3. A Model for Recognition 

The main reason for investigating this modification 
scheme (2.1.4) can be seen from the following: 

Suppose M(0)= 0, inputs y(t) come into A/" at each 
t~{0, 1 . . . .  , T} and no inputs come in after Tfor some 
time, that is, y(t)=0 for t >  T and less than some T 1. 
Suppose x(T~) is negligible due to the amplification 
factor c~ (1~1 < 1, say). At time T1 a vector y is processed. 
If it is orthogonal to all previous inputs, then 
x (TI+ I )=0 .  If not, then I[x(Zx+l)tl is a non-zero 
quantity, the size depending mainly on the relation 
between y and the previous inputs. We see then that W 
will recognize previous inputs or linear combinations 
of them. If TI is much larger than T then, due to the 
forgetting coefficient ~, Ilx(Zx+l)]l will be small, 
indicating the vague remembrance of y. 

Due to the feedback of x(t) an input y seen for a few 
moments will linger around for quite some time after- 
wards. For example, if y appears at time t, then at time 
t + 1, ayy T is added to ~M(t). Then x(t + 2) will contain 
cryyr(y(t + 1) + c~x(t)) = a < y, y(t + 1) + ctx(t) > y. Another 

multiple of Py~yyr - I ly l lZ  (called the projection 
operator of the space spanned by y) is added to 
o~M(t+ 1), and so on. It is clear then that x(t) can be 
associated with a short term memory mechanism. 

The assumption restricting ~ to the real domain 
and ~ + a =  1 are imposed mainly for mathematical 
convenience. It seems more reasonable to replace 
with a matrix. However, there should be some relation- 
ship between ~ and u. We simply assume that the 
amount forgotten is the same as the amount stored. We 
feel ~ should be close to 1, that is, little forgetting should 
occur over a short period of time. One part of the analy- 
sis in Section 2.4 depends on the size of ~. Too many 
cases would have to be considered if~ is 2/3 or less. So 
we shall assume that ~ is greater than 2/3. 

The next three sections contain the mathematical 
analysis done thus far on the Synapse Modification 
Model. In Section 2.4 we investigate the stability 
properties of (2.1.5) under constant input. In Section 
2.5 we derive some conditions for the existence of 
bounded and periodic solutions. Section 2.6 looks at 
the model subjected to random input. Section 2.7 
contains some concluding remarks. 

2.4. Constant Input 

We begin with some definitions and obvious 
lemmas involving outer products. 

Definition. ( ) denotes the Euclidean inner product 

in R", i.e. x, y ~ R " ~ ( x ,  y)  = ~ xiy i. 
i = 1  

Definition. I] I] denotes the Euclidean norm on R", 
i.e. Ilxl[ =((x, X)) 1/2. 

Definition. IrA is an n x n matrix, then IIA[l~.p is the 
sup norm induced by the Euclidean norm on R", i.e. 
IIAIl~up= sup Ilaxll. 

Ilxll=l 

Definition. IAI denotes the determinant of A. 

Lemma 1. x, y, ze R"~(xyr)z  = x(yT z)= (y, Z) X. 

Lemma 2. x ~ R n ~ x x  r is a symmetric matrix in R n 
with eigenvalues I[xl[ 2 and 0. Ilxll 2 has multiplicity one 
and 0 has multiplicity n -  1. 

Lemma 3. x, y~R"~lLxyrlls.o= IIxH Ilyl[. 

Let y( t)=y t~{0, 1 . . . .  }. Then (2.1.5) becomes: 

x(t + 1) = M(t)(y + ex(t)) 
M(t + 1)=QM(t)+a(y+c~x(t))(y+ctx(t)) r (2.4.1) 

0<O,a=<l ,  0 + a = l  c~eR. 

Let x(0) = Xo, M(0) = Mo. 
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We assume 0 < 11. If c~=0, then (2.4.1) becomes:  

x(t  + 1) = M(t )y  
(2.4.2) 

M ( t  + 1) = Qm(t)  + ayy  T 

so that  

M(O = OtMo + ~r os yyT t > 1 
\ s=O 

t - 1  

Therefore:  

(2.4.3) 

M ( t ) ~ a  ~ O~ y y T _  y y T =  yyT 
s=O 1 --ff 

and 

a s  t - *  o(3 

(2.4.4) 

x( t )~ l l y l l2y  as t -*oe .  (2.4.5) 

For  c~ 4= 0, we calculate the critical points of (2.4.1). 
Assume y q= 0. The  case y = 0 will be dealt with shortly. 
We solve: 

x = M ( y  + c~x) 

M = o M  + a(y + ex) (y  + c~x) r 
(2.4.6) 

o r  

x = M ( y  + c~x) 

M = (y + c~x)(y + ~x) r . 

Therefore:  

(2.4.7) 

x = rly + ~x II 2(y + ~x) (2.4.8) 

which gives us 

(1 -c~[l y + ~xl l2)x= Ily + c~xll 2y . (2.4.9) 

(1 - < l y  + ~xll 2) cannot  be zero, since if it was []y + ~xll 2 
would be zero and that would imply 1=0.  Also 
Ily+~xl] 2 cannot  be zero, since if it was x would be 

1 
- - y  and 0 at the same time. 

Therefore,  x is a non-zero multiple of y, say x = xoy. 
Then M must  be a multiple of yyr ,  say M = moyy  r. 

F r o m  the first equat ion in (2.4.7) we get 

xo y = mo y y r  (y + C~Xo y) = m o  Ily II 2y q_ O~Xomo II Y II 2y 

(2.4.10) 
so that  

Xo(1 - ~mo ll Y ll 2) = mo Il y ll 2 . (2.4.11) 

1 We will not carry out the analysis of the case 0=1 ,  a = 0 ,  
which corresponds to no learning. This case essentially results in a 
linear equation in x(t). The limiting properties of solutions to the 
equation will depend on y and (Xo, Mo). 

If (1-m0rlYl[ 2) is zero, mo would be zero, which 
implies 1=0.  Therefore  (1-molly[J2)4=0 and we get 

molry[I z 
Xo = l_~mo[ry[] 2 . (2.4.12) 

F r o m  the second equation in (2.4.15) we get 

moyy r = ( 1 + ~Xo)2yy r (2.4.13) 

so that  

moll, I 11 mo= -  V olly tl 2 ]J 

1 

= ( l_~mollYl lZ)  2 > 0 .  (2.4.14) 

Therefore  all critical points are of the form" 

X = X o y  
M = moyy  r (2.4.15) 

where 

too( 1 - C~mo I[Yll 2)2 = 1 

mollY][ 2 (2.4.16) 
X o -  l_~molly l]  z �9 

Let m =  IIMIF =moflyl] 2 (Lemma 3). Then  we get: 

m(1 - c~m) 2 = IrY II 2. (2.4.17) 

The graph of  f ( m ) = m ( 1 - - ~ m )  2 for c~>0 is shown 
in Fig. 2. 

( 1 )  4 
Since f = 2 ~ '  it is clear from the graph that  

the following theorem holds: 

Theorem 2.4.1. For  c~>0, there are three cases: 
2 1 

1. If [lyll > - - -  then there is one critical point  
31/ ' 

1 
(x 1, M 1) where IlMrl > - .  

2 1 
2. If I l y l l - 3  1 ~ /~ '  then there are two critical 

1 
points (x~,M21), ( x~ ,M~)  where I I M ~ l l = ~  and 

1 
IIM~ 11 > - .  

2 1 
3. I f O <  I[YII < 3 l a /~  then there are three critical 

v o w  
points (x~, M~), (x~, M32), x 3 M 3 ( 3, 3), where O<lrM131[ < 

1 1 
3 ~  < PIM~II < - < [ I M ~ I ] .  c~ 
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f (m)  

I r'Cl 

/ /  • 1_ 
3 ~  

Fig. 2. G r a p h  off(m)=m(1-ctrn)  z for c t>0  

f l r n )  

m 

Fig. 3. G r a p h  of f (m)=m(1 -c~rn) 2 for ~ < 0  

For ~ < 0  the graph of f (m)  is shown in Fig. 3. 
It is clear that in this case we get one critical point (x, M). 

We will use Theorem 1.3 to determine conditions 
f o r  s t a b i l i t y .  

We m a k e  the t r ans fo rmat ions :  

{ x'(t) (2.4.18) x(t) x 

M'(t) = M(t) - M 

where  (x, M) is a critical point  of (2.4.1). W e  consider  then:  

x'(t + 1) = ~Mx'(t) + M'(t)(y + c~x) + aM'(t)x'(t) 
M'(t + 1) = ~M'(t) + a~(y + c~x)x'(t) r + Gax'(t)(y + :tx) r + ~raZ(t)x'(t) r . 

(2.4.19) 

This  can be conver ted  into a sys tem in n 2 +  n d imens iona l  space by 
letting M'i(t) be the ith co lu m n  of M'(t) and  consider ing:  

F x'} t) ] 

[_M'.(0A 

Let w= y+~x.  

I 
(XWW T w i t  

D 1 ~I 
D= D 2 0 

�9 i 
D~ 0 

where I is the n x  
matr ix,  and :  

(W[o~ 0 . . . 0  
D i = (rot iI + : i 

, , . 0  

The  differential D at z = 0  of this huge  system is: 

W2IoIO ' o l  1 .  

o s A 

n identi ty matr ix,  the zeros denote  the n • n 0 

w1 w2 00 ]) 
w n 0 

T 
ith c o l u m n  

(2.4.22) 

The  eigenvalues 2 of D satisfy p(2)-= [ D -  21,2+,1 = 0  where p(2) 
is the character is t ic  po lynomia l  of D and  1,2 +, is the n 2 + n x n z + n 
ident i ty  matrix.  

A s s u m e  for the m o m e n t  2+Q.  Mult ip lying the n +  1, ...,  2n 
rows of D - 2 1 , 2 + ,  by - w  1 + (Q-2)  and  adding  these rows to the 
first n rows will result  in a mat r ix  with zeros in the first n rows and  
n +  1, ...,  2n columns�9 We  con t inue  in this m a n n e r  until  all e lements  
in the first n rows and  n + 1, . . . ,  n 2 +  n co lumns  are zero�9 The n  the 
de t e rminan t  of the resul t ing mat r ix  is jus t  ( ~ - ) 0  "2 t imes the de- 
t e rminan t  of the n x n mat r ix  in the upper  left corner.  This  n • n 
mat r ix  tu rns  out  to be (2+0) :  

( Q - 2 )  "((2Q--1--2)wwT--((O~--)O!+~rl]WI,2)I). (2.4.23) 

Since wwT=M and  I[wll2= I[MII we can write for 2 # Q :  

p(2)=c~"(~-2)  "2-" ( 2 0 - 1 - ) 0 M -  ( ( Q - 2 ) !  + ~ I I M l l ) I  . (2.4.24) 

Since p(2) is con t inuous  in 2, (2.4.32) is t rue for 2=~o, which 
gives us n 2 - n roots  of p(2), all less than  1 in absolu te  value. 

F r o m  L e m m a  2, ( 2 0 - 1 - ) 0 ) M  has 0 as an  eigenvalue with 
mult ipl ici ty n - l ,  and  has  ( 2 i f - 1 - 2 ) H M I I  as an eigenvalue with 
mult ipl ici ty 1. Therefore,  we get 2 ( n -  1) roots  of p(2) f rom the two 
roots  of: 

p1(2) _--22 - c92 - cr~ I1M II (2.4.25) 

and  two roots  of p(2) f rom the two roots  of: 

p2(;~) = ,t2 - ~ , t -  ~ II M II + ct(2Q - 1 - 2)II M II 

= 22 - (Q + c~ l] M [1)2 + c~(3~ - 2) 11M1[. (2.4.26) 

We have found all the roots  of p(2) since n(n-  1)+ 2 ( n -  1)+ 2 = 
n2+n. 

We now determine  how the roots  of p1(2) and  p2(2) are in 
relat ion to the uni t  circle. Cons ider  first pt(2). If the roots  of p1(2) 
are real, if P l ( - 1 )  and  pl(1) are positive, and  if the m i n i m u m  of 
p~(2) lies between - 1 and  1, then  the roots of p~(2) are less than  one 
in abso lu te  value. If P l ( -  1) or p~(1) is negative, then  the roots  of 
p1(2) are real and  at least  one of t hem is greater  than  one in absolu te  
value. 

We will work  t h rough  the case for ct>0. The  m i n i m u m  of p1(2 ) 
occurs  at Q + 2 and  its value there is: 

p~ = - ~ -  -c~ l lMII  < 0 .  (2.4.27) 



Therefore, the roots of p~(2) are real and the min imum lies 
between - 1 and 1. We have 

1+~  
p ~ ( -  1)= 1 + 0  -crc~l[M II ~ 0r >< - -  (2.4.28) 

~XO" 

1 
p~(1) = 1 - ~ o -  a~llMll ~ 0~-IIM[I ~ - .  (2.4.29) 

c~ 

We approach pz(2) in the same way. The min imum of p2(2) occurs 
at (Q +~[[M[])+ 2 and its value there is: 

( ~ )  -(O-c~"Ml')~ 2c~rllMl,<0. (2.4.30) 
P 2  - -  4 

Therefore the roots of p2(2) are real. We have: 

/32( - -  1 )  = 1 + ~ + ct(3O - 1)IIM 11 > 0 (2.4.31) 

since we are assuming ~ is greater than ] (Section 2.3), and 

1 
p2(1) = 1 - o - ~ i l M l l  +c430-2)l lMll  <> 0~=~IIMI] >< 3~' (2.4.32) 

When p2(1)>0, (~ +~IIMII)-2 is between - 1 and 1. 

Comparing (2.4.28), (2.4.29), and (2.4.32), and using 
Theorem 1.3 we have: 

Theorem 2.4.2. For c~>0, (2.4.1) is asymptotically 
1 

stable at (x, M) if I[MI] < 3ct' (2.4.1) is unstable at 
1 

(x, M) if ]IMII > ~ .  

Combining with Theorem 2.4.1 we have: 

Theorem 2.4.3. For c~ > 0: 
2 1 

1. If Ilyll > - - -  the critical point (.X "1, M 1) 
is unstable. 3 ] / J~ '  one 

2 1 
__ - -  2 2 

2. If Ilyll = 3 1 / ~ '  (x2, M2) is unstable. 

2 1 
3. I f0<  I[yll < ~ i - ~ . '  then (x 3, M 3) is asymptotical- 

ly stable and (x 3, M 3) and (x 3, M 3) are both unstable. 
For c~ < 0, using the assumption 0 > 2, we arrive at 

the following theorem: 
I+Q 

Theorem 2.4.4. For c~<0 if ][MII < N(3~-1) '  then 

the critical point (x, M) is asymptotically stable. If 
1+0 

[IM[I > I~[(3Q- 1)' then (x, M) is unstable. 

We now consider y=0 .  We see fi'om (2.4.7) that 
the critical points must satisfy: 

M = O~2XX T 
x = ct 31[ x [] 2x (2.4.33) 

so that either x=O, M=O, or IIx[l=l~1-3/~ which in 
1 

this case implies IIM II = ~ .  For c~ > 0 we conclude that 
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x=0 ,  M = 0  is asymptotically stable, and all other 
critical points are unstable. 

1+~ 
For c~ < 0, since ~ < 1 we conclude that x = 0, 

M = 0  is asymptotically stable, and all other critical 
points are unstable. 

Theorem 1.3 tells us nothing about the critical point 
(x 2, M~) in case 2 of Theorem 2.4.1 (~>0) or when 

~o+1 
IIMll- (~<0), From looking at phase por- 

Ic~l(3Q - 1) 
traits when n=  1 we are quite certain this point is 
unstable. We have no way of analytically proving it at 
the moment. 

It is possible to show, when ~ > O, that the critical 
points form a region in which solutions are bounded. 
Equation (2.4.8) can be rewritten as: 

x o = (1 + C~Xo) 3 II yll 2. (2.4.34) 

Figure 4 contains the graph of v=(1 + ~u) 3. A line going 
1 

through the origin with slope ~ will intersect this 

curve in one, two, or three places, depending on the 
size of [[yl[2. Since the roots of (2.4.42) are a continuous 
function of Ilyll, we can conclude: 

1. In case 1 of Theorem 2.4.1 x 1 =xoy with Xo<0. 
2. In case 2 of Theorem 2.4.1 x2=xoly ,  x~=xo2Y 

with x0~ >0, x02 <0. 
3. In case 3 of Theorem 2.4.1 xa=xoly ,  x3=xo2y, 

x 3 =xo3Y with O<xol <Xo2, Xo3 <0. 
Suppose (x, M)=(xoy , moyy r) is a critical point 

with xo>O, and let (x,M) be such that Ilxrl__<llxlF, 
]lMl[~up__< IlM[lsup. Then: 

IIM(y§ ~ I[MIl~up(rlYl[ § ~[Ixll) 

IlMIr~up(llyll §  

=mollyll2(llyll +C~xollyll) 

=(from (2.4.10)) Ilxll 
and 

(2.4.35) 

rl~M + ~(y § ~x)(y-t-c~x)W ll ~lrMIIsup + a]l y + ~x[I 2 

<-_~[IMHsup+a(llyl[ + c~[IxI[) 2 

=~mollylr2 § +~xo)2lly[I 2 

= (from (2.4.14)) 

(Qmo + amo)lrylP 2 = IiMfl~up. 
(2.4.36) 

Therefore, in case 2 of Theorem 2.4.1 all solutions 
starting in 

B2={(x ,M)  ; ilxl[ < fix1211, irMiisup < 2 = HM1 ][sup} (2.4.37) 
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Fig. 4. Three lines intersecting the curve v=(l+c~u) 3. Each line is 
1 2 1 2 1 

given by: v= y 2  u where 1. 2[[Y]I1 > ~ ~ '  2. ]lyll= ~ ~ ,  

3. Ilyll < 3 ] / ~  

stay in B2, and in case 3 of Theorem 2.4.1 all solutions 
starting in 

B3=_ {(x,M); Ilxll < Ilx2311, IlMllsup< 11M23Hsup} (2.4.38) 

stay in B 3. 
We are quite sure these solutions will approach 

critical points. From Hurt [20] we conclude that 
cluster points of a bounded solution forms an invariant 
set S, that is, solutions starting in S will remain in S. If 
we could show that S contains only one point then we 
are done. We have not yet found a way of proving this. 

For n=  1, with x, m, yER, (2.4.1) becomes: 

x(t + 1) = m(t)(y + ~x(t)) 
(2.4.39) 

m(t + 1) = Ore(t) + a(y + c~x(t)) 2 . 

Figure 5 is a phase portrait of (2.4.39) with c~=.2, 
y=.5,  0 =.9. 

We originally investigated the structure of phase 
portraits of (2.4.39) by looking at the analogous set of 
differential equations: 

{~(t) = m(O(y + ~x( t ) ) -  x(t) 
(2.4.40) 

rh(t) = (~ - 1)re(t) + a(y + c~x(t)) 2 . 

The analogue of Theorem 1.3 for differential 
equations has been known for quite some time. The 
analysis of (2.4.40) also predicts the global structure of 
the phase portrait of(2.4.39) above the x axis. Intuitive- 
ly, it seems that whenever the steps are small in (2.4.39) 
x(t+ 1)-x(t) and m(t+ 1)-re(t) are close to 2(0 and 
rh(t) in (2.4.40) so (2.4.39) and (2.4.40) should be similar. 

rrl 

Fig. 5. Phase portrait of (2.4.39) with y=0.5, c~=0.2, 0=0.9 



Notice, though, the chaos occurring below the x axis. 
The steps are large due to the changing of sign of x(t). 

We do not know of any theory proving the global 
relationships of(2.4.39) and (2.4.40) but feel much more 
can be done with autonomous difference equations. 

2.5. Bounded  and Periodic Solutions 

Suppose the inputs y(t) ( t>O) are bounded or 
periodic with period T. We will use Theorem 1.4 to 
find conditions on the inputs and the parameters to 
ensure the existence of a bounded solution, and, if the 
inputs are T-periodic, this solution is periodic. 

We will, as before, consider  (x, M) to be a vector in R "=+~ space 
(see 2.4.20) and  we use the Eucl idean norm.  Let  [ [M]I~=(Z m2j) 1/2. 
it can be shown  tha t  [ [ M I I ~ <  IIMliN. T hen  we have:  \ i~ / 

[l(x, M)II =(llx[[ 2 + iIMi[2) ~/2 . (2.5.1) 

Notice  that :  

HxyTl[E=(~ij(xlYj)2)l/2=(~i X2~j y2)l/2=llXll l[yl,. (2.5.2) 

W e  let 

F(t, (x, M)) = (M(y(t) + c~x), a(y(t) + ax)(y(t) + ex) r) (2.5.3) 

so tha t  the mat r ix  A is an  n 2 + n  x n 2 + n  d iagonal  mat r ix :  

F ~ ~ 01' r~ 
A =  ~ 0 0 . . .  

/ ~   r~ 0 0 6 0 . . .  

L o o  ...~j 

We see tha t  [[a[Isup=O< 1. Also 

] F(t, (x, M))[[ 2 = []M(y(t) + c~x)[[ 2 + fig I[(Y(t) + ex)(y(t) + c~x)[I 2 

= C]M(y(t) + ~x)II ~ + ~ IIY(0 + ~x II 4 

<= IIMil~uwlly(t)+~xli2 +G21ly(t)+~x[[ 4 
<=([[M l[g + ~re[[y(t) + ~xN2)[[y(t) + ctx[[ 2 . (2.5.5) 

For (xl, M1), (x> M2) we have 

HE(t, (xl,  M 1 ) ) - F ( t ,  (x2, M2))I[ 2 

= [[Ml(y(t) + ex l ) - -  M2(y(t) + ~x2)[12 

+ 0 .2 ][(y(t) + c~xl)(y(t ) + o:x~) T - (y(t) + :~x2)(y(t ) + ztx2) ~ [[~ 

= II (M1 - M2)Oe(t) + c~x2) + eM1 (xx - x2)ll 

+ ~2 II ~(y(t) + eXl)(Xl - x2) r + o~(xl - x2)(y(t) + ~x2) r II 2E 

_-<(llMx -M2il~plly(t)+~x211 + <[M1 II~upllxl -x2 II) 2 
+ a2ct2([[ y(t) + c~X 11[ + [lY(t) + ~x 2 [[)2 [[ x l _ x2 [[ 2 

N4[IM~ - M2[[2e[[y(t)+~x2[[ 2 

+ [-4c~ 2 JIM1 I[ ~ + ~r2cd([[Y(t) + ax 1 ][ + [[y(t) + ctx 2 [D 2] [[x~ - x 2 [I z 

(2.5.6) 
where  we have  used the inequal i ty :  

(a+b) z < 4 ( a  2 +b2) .  (2.5.7) 

(2.5.4) 
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o- 
A s s u m e  I~[ < 1. Let N =  4 ~ "  If Ily(t)ll < N  t > 0 ,  and  ll(x, M)II < N ,  

then  f rom (2.5.5): 

"F(t,(x,M))llz<=(~2+~)4g2=(~+a---f)a2NZ<N2(1 IIA 'l~up) 2 

(2.5.8) 

and f rom (2.5.6): 

[IF(t, (x,, M , ) - F ( t ,  (x2, M2))[I 2 

< 2 - [ [ M 1 - M z I I 2 +  V + [Ix1-x2][ 2 

5 0-2 I[(X1, M 1 ) _  (x2, M2)II2 (2.5.9) 

so the cons tan t  F, in T h e o r e m  1.4 can be ~/~cr< 1-![All ,u p. 

The conditions of Theorem 1.4 are therefore 
satisfied. So, if Ic~l < 1 and the inputs are not greater than 

a 
N -  in norm then a bounded solution, or a 

4172 
T-periodic solution if y(t) is T-periodic will exist. 

It is possible to increase N and still use the theorem. 
However, it can be seen from (2.5.6) that when x 1 = 
x2 = 0, we find an upper bounded for N, namely a. 

Figure 6 has some orbits plotted of (2.1.5) for n =  1, 
when y(t) is periodic with period 4. Each y(t) is not less 
than a. F rom this we feel it is possible to prove the 
existence of periodic solutions for less restricted inputs. 

We can also see that the periodic solution in Fig. 6 
appears to be a limit cycle, that is, solutions approach 
it. There seems to be no theory pertaining to limit 
cycles for discrete systems at the present time. 

2.6. R a n d o m  Input  

Figure 7 contains orbits of solutions for n =  1 in 
which the inputs are y + e ( t )  where the e(t)'s are in- 
dependent and identically distributed random variable 
having mean 0. Some solutions tend to stay trapped in 
an area. This area contains the asymptotically stable 
point of the discrete system with constant input y. 

It appears that the model has some stable proper- 
ties when the inputs fluctuate around some fixed 
vector. The non-linearity of the system, however, 
makes it difficult to analyze. We will investigate 
properties of the model under assumptions that 
linearize (2.1.5). First we state the following theorem: 

Theorem 2.6. Let A be an n x n matrix. Let Y= 
{y(t)}~= 0 be a sequence of independent and identically 
distributed random vectors in R" with distribution 
function F, mean E(y), and covariance matrix cov(y). 
If all eigenvalues of A lie within the unit circle, then 
the solution x(t) to: 

x(t + 1) = Ax( t )  + y(t), x(O) = x o (2.6.1) 
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rrl 

Fig. 6. Some orbits of solutions to (2.1.5) for n =  1, with ~=0.05, ~o =0.9 and y(t) ranging periodically through (0.i, 0.5, 1.2, 1.7) 

rn 

x 
Fig. 7. Orbits of solutions to (2.1.5) for n = l ,  with c~=0.2, 6=0.9,  and y ( t )=O.5+e( t )  where the e(t)'s are independent and normally 

distributed random variables having mean 0 and variance 0.25 

converges in distribution where the limiting distri- 
bution has mean: 

(I - A) -1E(y)  (2.6.2) 

and covariance matrix: 

~, AScov (y ) (Ar )  s . 
s=0  

The theorem can be proven 
functions. 

(2.6.3) 

using characteristic 

At each time t the solution x(t) to (2.6.1) is a random 
vector. The theorem only gives us conditions under 
which the distribution function of x(t) will approach 
some fixed distribution. It is not true that x(t) will 
converge to some random vector almost surely or in 
probability. But the limiting distribution can tell us in 
what regions realizations are likely to approach. 

First we let Q = 1. Then no learning will occur. If (x(0), M(0))= 
(xo, Mo) then: 

x(t  + 1) = Mo(y( t  ) + ~x(t)) = ccMox(t) + M oy(t) . (2.6.4) 
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If the eigenvalues of a M  0 are within the unit circle, then x(t) con- 
verges in distr ibution with mean:  

( l - -~Mo)  ~ MoE(Y) (2.6.5) 

and covariance matrix:  

~:2~M~o+ l cov(y)(M'~)s+ I . (2.6.6) 
s-o 

We next assume ~ = 0, 0 < 1. We have 

x ( t +  1)=M(t)y(t)  (2.6.7) 
M(t  + 1) = ~M(t) + ~y(t)y(t) r . 

Letting the i 'h column of M(t) to be M~(t) we write 

x(t) = " (2.6.8) 

U~ 
]-y~(t)y(t)] 

Ly,(t;y(t)J 

and get : 

x(t + 1) = ol,~x(t) + y(t). (2,6.10) 

If 0 < 1 then x(0 will converge in distribution with mean:  

1 
(1-01,2)  ~E(y)= - E(y) (2.6.11) 

(7 

and covariance matrix:  

l_  cov / / 
s = o - L Y,,YA 

[ y l y ]  

- c o v l i  I . (2.6.12) 
1 + ~ LY,Y~ 

We conclude then that M(t) converges in distribution with mean 

E(yyr) .  (2.6.13) 

We see from (2.6.12) that  the limiting distribution can be 
centered as close to E(yy r) as desired by making r small enough. 

Finally, we linearize (2.1.5) for 0 < 1, c~ + 0. Let (x, M) 
be the critical point of (2.4.1) where E(y) is substituted 
for y. Defining x'(O, M'(t) as in (2.4.18) the linear terms 
in the resulting equations are the same as those in 
(2.4.19). Therefore, if (x, M) satisfies the conditions for 
asymptotic stability in Theorem 2.4.3 (e>0) or in 
Theorem 2.4.4 (c~<0), then the solutions to the 
linearized equations will converge in distribution with 
mean (x, m). 

It seems reasonable to suggest that the full Eq. 
(2.1.5) behave almost the same way as the linearized 
ones near (x, M). But the non-linearity makes it very 

difficult to make any statement concerning the be- 
havior of the random orbits. We feel, however, that the 
phenomenon observed in Fig. 7 can be understood 
in due time. 

2.7. Remarks 

We conclude from Section 2.4 that with constant 
input the network N, is capable of learning this input 
under the conditions implied by the definition of 
asymptotic stability and by Theorems 2.4.3 and 2.4.4. 
If (x(0), M(0)) is in the appropriate region in R "2 +", the 
matrix M(t) will converge to the second term in (2.4.15), 
which is a multiple of the projection operator (defined 
in Section 2.3) associated with the input. This limiting 
matrix is uniquely determined by the input and the 
amplification factor c~. 

If the inputs are periodic with period T, then, 
under the conditions in Section 2.5, there will exist a 
T-periodic solution to (2.1.5). We predict this is the 
only T-periodic solution and will attract other 
solutions (i.e., is a limit cycle). This implies that the 
network, N, can learn (in the same sense as above) the 
T inputs since the T-periodic solution is uniquely 
determined by the inputs. However, we do not know 
how the solution is related to the inputs. 

We also predict that inputs with small random 
fluctuations will result in a small region in R "2+" where 
most realizations of solutions starting near the region 
will eventually be trapped. This implies that N can 
learn approximately the idealized input, that is, the 
average value of the inputs. 

We have assumed linear processing in discrete time 
intervals of neuronal spiking frequencies. Other recent- 
ly proposed models differ from ours in some important 
assumptions. For example, Grossberg [9, 10] con- 
siders the processing in continuous time of membrane 
potentials. In his formulation the derivative with 
respect to time of the activity in the neurons at time t 
depends nonlinearly on the activity of time t - r .  This 
results in a system of non-linear differential-difference 
equations, which are considerably more complex than 
our equations. 

Processing in discrete time intervals was assumed 
mainly for convenience in computer simulations. We 
agree that in some respects a continuous time model is 
more realistic then a discrete time model. However, it 
is often computationally and conceptually easier to 
formulate the dynamics of processing in the form of an 
integral equation rather than a differential equation. 
Examples of recent related neuronal models using 
integral equations can be seen in Anderson [7] and 
Wilson and Cowan [21]. 
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The inputs y(t) can be considered to be neural 
representations of stimuli from a highly structured 
environment. We intend to use Pattern Analysis to 
model the environment and to view the network as a 
pattern processor. 

One of our goals is to investigate properties of 
several interconnected networks. The understanding 
of one network is of course a prerequisite for the 
investigation of multi-layered models. 

We must conclude that asymptotic analysis of the 
system with constant input will not, unfortunately, aid 
us in a more complete understanding of the learning 
properties of the model. It is clear that if the network 
receives one input long enough, the orbit of the system 
will, at best, approach the critical point associated with 
the input. The memory of all previous inputs will be 
wiped out. We should not deal, then, in long time 
spans. Instead, we should work in lengths in which the 
influence of the forgetting coefficient is not strong 
enough to remove earlier input. 

The next step is to simulate learning experiences. 
Using the norm on R n, a criteria for determining 
whether inputs are stored or not could be proposed. 
Combinations of inputs could be tested, under different 
choices of the parameters. New properties might be 
revealed using this approach which will lead to some 
interesting mathematics. 
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