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ABSTRACT
Sample eigenvalue based estimators are often used for
estimating the number of high-dimensional signals in
colored noise when an independent estimate ofthe noise
covariance matrix is available. We highlight a funda-
mental asymptotic limit of sample eigenvalue based de-
tection that brings into sharp focus why in the large sys-
tem, relatively large sample size limit, underestimation
of the model order may be unavoidable for weak/closely
spaced signals. We discuss the implication of these re-
sults for the detection of two weak, closely spaced sig-
nals.

1. INTRODUCTION

The observation vector, in many signal processing ap-
plications, can be modelled as a superposition of a fi-
nite number of signals embedded in additive noise. De-
tecting the number of signals present becomes a key is-
sue and is often the starting point for the signal para-
meter estimation problem. When the signals and the
noise are assumed, as we do in this paper, to be sam-
ples of a stationary, ergodic Gaussian vector process,
the sample covariance matrix formed from m observa-
tions has the Wishart distribution [1]. We consider the
class of estimators, inspired by the seminal work ofWax
and Kailath [2], that determine the number of signals
in colored noise from the generalized eigenvalues of the
signal-plus-noise sample covariance matrix and the noise-
only sample covariance matrix pair.

Our main objective is to explain precisely when and
why, in high-dimensional, sample size limited settings
underestimation of the model order is unavoidable. This
is in contrast to works in the literature that use simu-
lations, as in [3], to highlight the chronically reported
symptom of sample (generalized) eigenvalue based es-
timators underestimating the number of signals without
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providing insight into whether a fundamental limit of de-
tection is being encountered.

This paper addresses this issue using the powerful
tools for analyzing large random matrices developed by
Bai and Silverstein [4]. The main contribution of this
paper is the introduction ofthe concept of effective num-
ber of (identifiable) signals which brings into sharp fo-
cus a fundamental limit in the identifiability, under sam-
ple size constraints, of closely spaced/low level signals
using sample (generalized) eigenvalue based detection
techniques. This concept explains why, in the large sys-
tem relatively large sample size limit, if the signal level
is below a threshold that depends on the noise covari-
ance, sample size and the dimensionality of the system,
then reliable sample eigenvalue based detection is not
possible. The fundamental undetectability, due to in-
sufficient samples, of weak/closely spaced signals using
sample (generalized) eigenvalue based schemes due to
insufficient samples is only exacerbated by adding more
sensors since the detectability threshold is raised.

2. PROBLEM FORMULATION

We observe m samples ("snapshots") of possibly sig-
nal bearing n-dimensional snapshot vectors x1, . . . xm
where for each i, xi r-, JV/n(O, R) and xi are mutually
independent. The snapshot vectors are modelled as

xi = Asi +zi fori= 1,...,m, (1)

where zi -AJVn(O, Z), denotes an n-dimensional (real
or complex) Gaussian noise vector where the noise co-
variance E may be known or unknown, si , A/k (0, R,)
denotes a k-dimensional (real or complex) Gaussian sig-
nal vector with covariance R5, and A is a n x k unknown
non-random matrix.

Since the signal and noise vectors are independent
of each other, the covariance matrix of xi can hence be
decomposed as

R =4+E (2)
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where
'L = AR,A', (3)

with ' denoting the conjugate transpose. Assuming that
the matrix A is of full column rank, i.e., the columns
of A are linearly independent, and that the covariance
matrix of the signals R, is nonsingular, it follows that
the rank of T is k. Equivalently, the n- k smallest
eigenvalues ofT are equal to zero.

Consider the matrix,

(4)

whose eigenvalues we denote by A1 > A2 > ... >
A,. Then assuming that the rank of -14, is also k, it
follows that the smallest n- k eigenvalues ofRE are all
equal to 1 so that

Ak+1 = Ak+2 = ... = An = A = 1, (5)

while the remaining k eigenvalues RE of will be strictly
greater than one. Thus, if the true signal-plus-noise co-
variance matrix R and the noise-only covariance matrix
E were known apriori, the number of signals k could be
determined from the multiplicity of the smallest eigen-
value of RE. The problem in practice is that the signal-
plus-noise and the noise covariance matrices R are un-
known so that such a straight-forward algorithm cannot
be used.

Instead, one estimates the signal-plus-covariance ma-
trix using m snapshots as

I m

R =- xix/
i=1

and the noise-only sample covariance matrix

IN
j=l

(6)

3. ASYMPTOTIC IDENTIFIABILITY
CRITERION AND THE EFFECTIVE NUMBER

OF SIGNALS

A central object in the study of large random matrices is
the empirical distribution function (e.d.f.) of the eigen-
values, which for an arbitrary matrix A with n real eigen-
values (counted with multiplicity), is defined as

FA (X)
Number of eigenvalues ofA < x

n (9)

For a broad class of random matrices, the sequence of
e.d.f.'s can be shown to converge in the n -> oc limit
to a non-random distribution function [8]. Of particular
interest is the convergence of the e.d.f. of RS in the
signal-free case, which is described next.

Theorem 1. Let RS denote the matrix in (8) formed
from m (complex Gaussian) noise-only snapshots andN
independent noise-only (complex Gaussian) snapshots.
Then the e.df FRz (x) -> FRZ (x) almost surely for
every x, as m, n(m) - oc, m, N(m) -* oc and cm
n/m -* c> 0 andc= n/N - c1 < 1 where

dFW(x) = max (O, I- > (x)

+ 2((C a±2+ CX) '[a_,a+](x)dx (10)

where

a -- C
C

+ C + 1+ cl 2 +/C +C1 Clc (11)

(7) '[[a,b] (x) = 1 when a < x < b and zero otherwise, and
d(x) is the Dirac deltafunction.

where xi for i 1,... m are (possibly) signal-bearing
snapshots and zj for j 1. N are noise-only snap-
shots. We then form the matrix

RS = -1R (8)

and perform inference on the eigenvalues of RS. There
are many techniques (e.g., [5, 6, 7] in the literature for
inferring the number of signals from the eigenvalues of
RS. There is no mathematically rigorous explanation
in the signal processing literature of why, when m =

O(n), and m = O(N) which is increasingly the case in
many state-of-the-art sonar and radar array processing
systems, underestimation of the model order is unavoid-
able. We fill this void in this paper using results from
large random matrix theory [4].

Proof This result was proved in [9]. When cl -> 0 we
recover the famous Marcenko-Pastur density [10]. D

The following result exposes when the "signal" eigen-
values are asymptotically distinguishable from the "noise"
eigenvalues.

Theorem 2. Let RS denote the matrix in (8) formed
from m (complex Gaussian) signal-plus-noise snapshots
andN independent (complex Gaussian) noise-only snap-
shots. Denote the eigenvalues ofRE by A1 > A2 >
**> Ak > Ak+1 = ... An = 1. Let Ij denote the
j-th largest eigenvalue ofRS. Then as n, m(n) -> oo,
n,N(n) -> oc and cm = n/n -> c > 0 and c =
n/N -> c < 1 we have
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[AjI -c-c-

-c C+ C+I-
C+ 2

Cl Aj Aj + +Vc12Aj2 2cl Aj2 2cl Aj +Aj2 _2A +1I

+ cl + 2 +/c+ cl clc Aj <T(C,Cl)
+I 2 cl

for j = 1, .... k and the convergence is almost surely
and the threshold T(C, cj) is given by

T(C, Cj) =

(cj2 + C,VC,cl _-VC,Ca1 _1) C- C12 -2ci,c

((Cl -1) C C) (C _1)2

with powers or2 and 7S2 located at 01 and 02, respec-
tively. The signal-plus-noise covariance matrix is given
by

R =72JV /+ (7s2 + E (16)

c.Cl where E is the noise-only covariance matrix. The matrix
RE defined in (4) can be decomposed as

(12) RE = E1R = (72JE-1V1Vu + E-1r2v2' +I

and
aC,CI C+= C+ cl-C C

Proof This follows from applying the techniques in
Note that when c1 -> 0 we have

T(C,0) = 1 + C,

which recovers the results in [11, 12, 13].

so we that we can readily note that RE has the n- 2
(13) smallest eigenvalues A3 = ... = A, 1 and the two

I[I11]. largest eigenvalues respectively, where u1 := E-1/2V,
and U2 := -1/2V2 . Applying the result in Proposition
2 allows us to express the effective number of signals as

(14)

D-

This motivates our definition of the effective number
of identifiable signals which is equal to

keff (R, E) #Eigenvalues ofE1R> T (,'N)
(15)

The theorems above suggest that when the effective
number of signals is less than the true number of signals
then model order underestimation is (asymptotically) un-
avoidable. Figure 1 shows the eigen-SNR thresholdT(C, Cj)
needed for reliable detection for different values as a
function of c for different values of cl. Such an analyt-
ical prediction was not possible before the results pre-
sented in this paper. Note the fundamental limit of de-
tection in the situation when the noise-only covariance
matrix is known apriori (solid line) and increase in the
threshold eigen-SNR needed as the number of snapshots
available to estimate the noise-only covariance matrix
decreases.

4. ARRAY PROCESSING IMPLICATIONS

Suppose there are two uncorrelated (hence, independent)
signals so that R, = diag(r 21, (72) In (1) let A
[vlv2]. In a sensor array processing application, we
think of v, _ v(01) and v2 v2(02) as encoding
the array manifold vectors for a source and an interferer

2

keff 1

0

if T
n n) < A2

if A2 <T N) < A (18)

if Ai<T()m:N

Equation (18) captures the tradeoffbetween the iden-
tifiability of two closely spaced signals, the dimension-
ality of the system, the number of available snapshots
and the cosine of the angle between the vectors v, and
v2. Note that since the effective number of signals de-
pends on the structure of the noise covariance matrix
(via the eigenvalues of RE), different assumed noise co-
variance structures (AR(1) versus white noise, for exam-
ple) will impact the signal level SNR needed for reliable
detection in different ways.
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Fig. 1. Plot of the minimum (generalized) Eigen-SNR required (given by (12)) to be able to asymptotically discrimi-
nate between the "signal" and "noise" eigenvalue of the matrix RS constructed as in (8) as a function of the ratio of
the number of sensors to snapshots for different values of c1 rNumber of sensors/Number of noise-only snapshots.
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