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Abstract—A common sparse linear regression formulation is
the `1 regularized least squares, which is also known as least
absolute shrinkage and selection operator (LASSO). Approximate
message passing (AMP) has been proved to asymptotically
achieve the LASSO solution when the regression matrix has
independent and identically distributed (i.i.d.) Gaussian entries
in the sense that the averaged per-coordinate `2 distance between
the AMP iterates and the LASSO solution vanishes as the signal
dimension goes to infinity before the iteration number. However,
in finite dimensional settings, characterization of AMP iterates in
the limit of large iteration number has not been established. In
this work, we propose an AMP variant by including a parameter
that depends on the largest singular value of the regression
matrix. The proposed algorithm can also be considered as a
primal dual hybrid gradient algorithm with adaptive stepsizes.
We show that whenever the AMP variant converges, it converges
to the LASSO solution for arbitrary finite dimensional regression
matrices. Moreover, we show that the AMP variant is locally
stable around the LASSO solution under the condition that the
LASSO solution is unique and that the regression matrix is drawn
from a continuous distribution. Our local stability result implies
that in the special case where the regression matrix is large and
has i.i.d. random entries, the original AMP, which is a special
case of the proposed AMP variant, is locally stable around the
LASSO solution.

I. INTRODUCTION

Least absolute shrinkage and selection operator (LASSO) is
a common formulation for sparse linear regression, which is
defined as the optimization problem:

x∗ ∈ argmin
x∈RN

{F (x) := 1

2
‖y −Ax‖22 + γ‖x‖1}, (1)

where A ∈ Rn×N is the regression matrix, y ∈ Rn is the
data vector, γ > 0 is the regularization parameter, and ‖ · ‖p,
for p = 1, 2, denotes the `p norm. Applications of LASSO
include model selection and image processing, since natural
images are usually sparse in some transform domain. While
numerous standard convex optimization algorithms such as
the class of proximal gradient methods [1]–[3], alternating
direction method of multipliers (ADMM) [4], and primal dual
hybrid gradient (PDHG) [5]–[7] can be used to solve (1),
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it is also of both theoretical and practical interest to study
approximate message passing (AMP) for solving (1), since
AMP was initially introduced by Donoho et al. [8] as a LASSO
solver and it usually enjoys fast empirical convergence when
it converges.

Existing theoretical convergence analysis of standard opti-
mization algorithms and that of AMP are considered in differ-
ent problem settings. Specifically, the quantity of interest to
optimization algorithms is usually limt→∞ ‖xt−x∗‖2, where
xt is the estimate at the tth iteration of an iterative algorithm,
for any fixed and finite n and N . It is usually assumed in the
AMP framework that the data vector y is generated according
to a linear system, y = Ax0 + w, with some underlying
ground-truth x0 and some noise w. Under these assumptions,
the analysis of AMP shows that when A has independent and
identically distributed (i.i.d.) Gaussian entries, the quantity
limN→∞

1
N ‖x

t − x0‖2 with n
N → c ∈ (0,∞) converges

to a deterministic number predicted by a scalar recursion
referred to as state evolution with probability one [9]; this
is later extended to a large deviation result [10]. For the
LASSO problem, Bayati and Montanari [11] have proven
the convergence of AMP iterates to the LASSO solution
x∗ in the sense that limt→∞ limN→∞

1
N ‖x

t − x∗‖22 = 0
with probability one, which has also been extended to a
large deviation result in recent work [12]. However, this large
deviation result only holds for t = O

(
logN

log logN

)
.1 Therefore,

the convergence of AMP for finite N as t → ∞ is still
unknown. In fact, using matrices with i.i.d. Gaussian entries
and following the calibration method proposed in [11] for
choosing the threshold of the soft-thresholding function at
each AMP iteration, we performed 2000 trials of Monte Carlo
simulations with N = 2000, n = 1000, and AMP never
converged to the LASSO solution in terms of `2 error.

The connection between AMP and standard convex opti-
mization algorithms has enabled the design of AMP vari-
ants that have convergence guarantees for more practical
settings such as the ones with non-Gaussian finite dimen-
sional matrices. Most such results have been developed in
a more general algorithmic framework known as generalized
AMP (GAMP) [13]. In the context of solving optimization
problems, GAMP considers objective functions of the form∑n
i=1 g([Ax]i) +

∑N
i=1 f(xi). Consider now that A is arbi-

trary and finite dimensional. When both g and f are quadratic

1The big O notation O(·) means that there exists an N0 ∈ N and a positive
real number B such that t(N) ≤ B logN

log logN
for all N ≥ N0.



functions, the damped GAMP [14], which defines the current
iterate as a convex combination of the current estimate and
the iterate from the previous iteration, has global convergence
guarantees. When g and f are strictly convex and twice
continuously differentiable, assuming that the derivatives of
the nonlinear functions used in each GAMP iteration are
bounded within the open interval (0, 1), the damped GAMP
with fixed stepsize [14] is proved to be locally stable around
the equilibrium point, and the ADMM-GAMP [15], which
combines an ADMM inner loop within each GAMP iteration,
is guaranteed to achieve global convergence.

The interpretation of AMP as a PDHG algorithm was first
mentioned by Rangan et al. [14], which has inspired the
current work. The differences between our work and the local
stability analysis in [14] are as follows:

1) The objective function of LASSO is non-differentiable,
hence is not covered in [14].

2) Instead of damping the iterates while keeping the step-
sizes fixed as in [14], we do not make changes to the
updates of the iterates but design a stepsize updating
schedule based on AMP.

3) The result in [14] holds only when the stepsize is fixed
over all iterations, which loses the main advantage of
AMP over standard optimization algorithms for fast
convergence, whereas our result allows keeping the
structure of the stepsize updating schedule of AMP. As
we will see in Section IV, numerical results show that
the number of iterations required for our algorithm to
converge to the LASSO solution is orders of magnitude
smaller than widely used optimization algorithms.

The remainder of the paper is organized as follows. Section
II introduces our proposed AMP variant. Section III provides
local stability analysis of our algorithm around its equilibrium
point, which is the LASSO solution. Section IV presents
simulation results that compare our algorithm with AMP and
other widely used optimization algorithms. Finally, Section V
concludes the paper.

II. PROPOSED ALGORITHM

Let g : Rn → R and f : RN → R be defined as

g(u) :=
1

2
‖y − u‖22 and f(x) := γ‖x‖1, (2)

respectively. The idea of the class of PDHG algorithms is to
write the minimization problem infx∈RN {g(Ax) + f(x)} as a
saddle-point problem using the fact that the function g defined
above is convex, closed, and proper, thus g = (g∗)∗ [16],
where g∗ is the convex-conjugate of g defined as

g∗(s) := sup
u∈Rn

{〈s,u〉 − g(u)} . (3)

Plugging g(Ax) = (g∗)∗(Ax) = sups∈Rn {〈Ax, s〉 − g∗(s)}
into the minimization problem, we obtain the saddle-point
problem

inf
x∈RN

sup
s∈Rn

F (s,x), (4)

where
F (s,x) := 〈s,Ax〉 − g∗(s) + f(x). (5)

PDHG solves (4) by alternating between the estimation of
s and x as st+1 = argmaxs∈Rn

{
F (s,xt) + 1

2τt
s
‖s− st‖22

}
and xt+1 = argminx∈RN

{
F (st+1,x) + 1

2τt
x
‖x− xt‖22

}
, re-

spectively, which is equivalent to

st+1 = argmin
s∈Rn

{
g∗(s) +

1

2τ ts
‖s− (st + τ tsAxt)‖22

}
,

xt+1 = argmin
x∈RN

{
f(x) +

1

2τ tx
‖x− (xt − τ txAT st+1)‖22

}
.

(6)

In the above, the stepsizes τ tx and τ ts can stay constant for
all iterations or be updated at every iteration. One feature
of PDHG algorithms is that each equilibrium point of the
algorithm is a saddle-point of (4). This can be explained
as follows. Let (x̂, ŝ, τ̂x, τ̂s) be an equilibrium point of the
algorithm (6), then

0 ∈ ∂s
(
g∗(s) +

1

2τ̂s
‖s− (ŝ+ τ̂sAx̂)‖22

)∣∣∣
s=ŝ

,

0 ∈ ∂x
(
f(x) +

1

2τ̂x
‖x− (x̂− τ̂xAT ŝ)‖22

)∣∣∣
x=x̂

,

where ∂u denotes sub-differential with respect to u. The above
implies that Ax̂ ∈ ∂g∗(ŝ) and −AT ŝ ∈ ∂f(x̂), which is the
necessary and sufficient condition for (x̂, ŝ) to be a saddle-
point of (4).

The choice of stepsizes is crucial for the convergence
of an optimization algorithm. AMP can be interpreted as a
special case of PDHG with an adaptive stepsize updating
schedule [14]. Specifically, let

τ ts =
1

τ tx − 1
, τ t+1

x = 1 +
dt

c
τ tx, (7)

where dt = ‖xt+1‖0/N with ‖xt+1‖0 (the `0 quasi-norm)
denoting the number of nonzero coordinates of xt+1. By (2)
and (3), we have g∗(s) = 〈y, s〉+ 1

2‖s‖
2
2. For easy comparison,

we use the same notation for the soft-thresholding function
(proximal operator for the `1-norm) as in [11]. For any θ > 0,
u ∈ RN , define

η (u; θ) := argmin
x∈RN

‖x‖1 +
1

2θ
‖x− u‖22. (8)

Then (6) can be written as

st+1 =
1

τ tx

(
Axt − y

)
+

(
1− 1

τ tx

)
st,

xt+1 = η
(
xt − τ txAT st+1; γτ tx

)
.

(9)

Let zt := −τ txst+1 for all t ≥ 1 and notice from (7) that
(τ tx − 1)/τ t−1x = dt−1/c. Then we can see that (9) matches
the AMP algorithm (see [8] and [11]), but with a different
choice for the threshold of the soft-thresholding function. We
emphasize that the choice of the threshold in [11] does not
guarantee that AMP will converge to the LASSO solution



for finite dimensional problems, whereas the choice in (9)
guarantees that whenever (9) converges, it converges to the
LASSO solution for arbitrary finite dimensional A.

We notice that in many optimization algorithms, the stepsize
usually depends on the largest singular value of A, whereas
the algorithm defined in (6) with τ ts and τ tx being updated
according to (7), which is equivalent to AMP (9), does not
depend on the largest singular value of A. Therefore, in
order to have an algorithm that is more robust than AMP
with arbitrary finite dimensional A while retaining the fast
convergence feature of AMP, we introduce a parameter e to
(7) that depends on the largest singular value of A and still
keep the general structure of the updating schedule in (7).
Specifically, choosing 0 < e < min{1, 4/(σ2

max(A) + 2)},
where σmax(A) is the largest singular value of A, we modify
(7) as

τ ts =
e

τ tx − e
, τ t+1

x = 1 +
dt

c
τ tx. (10)

Note that such a choice of e ensures local stability of our
proposed algorithm; details about the local stability analysis
will be discussed in Section III. Our proposed AMP variant is
(6) with the stepsize updating schedule defined in (10). Similar
to the derivation of (9) from (6) and (7), we can write the
proposed AMP variant as in Algorithm 1.

Algorithm 1 Proposed AMP Variant
Input: A, y, 0 < e < min{1, 4/(σ2

max(A) + 2)}, tmax
Initialization: x0, s0, τ0x

for 0 ≤ t ≤ tmax do

st+1 =
e

τ tx

(
Axt − y

)
+

(
1− e

τ tx

)
st

xt+1 = η
(
xt − τ txAT st+1; γτ tx

)
τ t+1
x = 1 +

dt

c
τ tx with dt = ‖xt+1‖0/N

(11)

end for
Output: xtmax

III. LOCAL STABILITY ANALYSIS

In this section, we study the local stability of Algorithm 1
around its equilibrium point, which is the LASSO solution.
We first discuss conditions under which our analysis is valid,
and then show that Algorithm 1 is locally stable under these
conditions.

A. Assumptions

When Null(A), the null space of A, contains nonzero
components, the objective function is not strictly convex in
x, hence there may be multiple solutions. Conditions for
the uniqueness of the LASSO solution have been studied by
Tibshirani [17], which states that a sufficient [17, Lemma 2]
and necessary [17, Lemma 6] condition for (1) to admit a
unique solution is that Null(CK(A)) = {0}, where K :=
{i ∈ {1, . . . , N}|x∗i 6= 0} with x∗i the ith coordinate of x∗,

and CK(A) is the submatrix of A formed by deleting the ith

column of A for all i 6∈ K. Notice that the necessary condition
implies that when the LASSO solution is unique, we have that
|K| ≤ min{n,N}; this is a condition that we need to prove
our result. A more explicit sufficient condition for uniqueness
in the almost sure sense is also provided in [17, Lemma
4]: if entries of A are drawn from a continuous probability
distribution on Rn×N , then the LASSO solution is unique with
probability one regardless of the dimension of A.

Note that with η(·) being the soft-thresholding function (8),
the definition of dt can be written as

dt =
∣∣{i ∈ {1, . . . , N} : |[xt − τ txAT st+1]i| > γτ tx}

∣∣ ,
where we can further replace st+1 by e

τt
x
(Axt − y) +(

1− e
τt
x

)
st, so that dt only depends on the iterates at the

tth iteration. Similarly, the update of xt+1 in (11) can also be
written as a function of iterates at the tth iteration only. There-
fore, letting vt ∈ Rn+N+1 be defined as vt := [st;xt; τ tx]
for all t ≥ 0, we have that (11) defines a nonlinear operator
G : Rn+N+1 → Rn+N+1 such that vt+1 = G(vt). Note that
G is differentiable at [st;xt; τ tx] except when there exists an
i ∈ {1, . . . , N}, such that

[xt −AT
(
e(Axt − y) + (τ tx − e)st

)
]i = ±γτ tx,

which has probability zero if A obeys a continuous distribu-
tion.

To summarize, we make the following two assumptions on
components in (1):

1) The matrix A is drawn from a continuous probability
distribution on Rn×N .

2) The regularization parameter γ > 0.

B. Stability around the Equilibrium Point

Having clarified our assumptions, we now prove our main
result, which is the local stability guarantee of Algorithm 1 as
stated in the following proposition.

Proposition 1. Consider the LASSO problem defined in (1)
and suppose that the conditions in Section III-A are satisfied.
Then Algorithm 1 is stable around its equilibrium point with
probability one.

Proof. Suppose that G is differentiable around the equilibrium
point v̂. Then the local stability of G around v̂ is determined
by the largest eigenvalue (in modulus) of the Jacobian matrix
J of G evaluated at v̂. The expression for J is (1− e/τ̂x) In (e/τ̂x)A 0n×1

(e− τ̂x) D̂AT D̂
(
IN − eATA

)
−D̂AT ŝ

01×n 01×N d̂/c

 , (12)

where D̂ is a diagonal matrix defined as D̂ii = I{[x̂]i 6= 0}
with I being the indicator function, In is the n × n identity
matrix, and 0n×m is an n × m matrix with all zero-valued
coordinates. In what follows, we show that with an appropriate
choice of e, the eigenvalue of J with the largest modulus is
within the unit circle of the complex plane.



Let α = 1 − e/τ̂x and let |A| denote the determinant of a
matrix A. Then

|J−λI| (a)=
(
d̂/c− λ

)∣∣∣∣ (α− λ) In (e/τ̂x)A

(e− τ̂x) D̂AT D̂− λIN − eD̂ATA

∣∣∣∣
(b)
=
(
d̂/c− λ

)∣∣∣∣(α− λ) In (e/τ̂x)A

0N×n D̂− λIN + λe/(α− λ)D̂ATA

∣∣∣∣
=
(
d̂/c− λ

)
(α− λ)n−N

·
∣∣∣(α− λ)D̂− (α− λ)λIN + λeD̂ATA

∣∣∣ , (13)

where step (a) follows by expanding the last row of J− λI,
and step (b) follows by subtracting e−τ̂x

α−λ D̂AT times the first
row from the second row and noticing that

e+
e

τ̂x

e− τ̂x
α− λ

= e

(
1 +

1

α− λ

(
e

τ̂x
− 1

))
= e

(
1− α

α− λ

)
=
−λe
α− λ

.

To calculate
∣∣∣(α− λ)D̂− (α− λ)λIN + λeD̂ATA

∣∣∣, we
first introduce some notation. For a matrix B ∈ RN×N and
index set K ⊂ {1, 2, ..., N}, let [B]K ∈ R|K|×|K| denote
the submatrix of B obtained by eliminating the ith row and
ith column of B for all i 6∈ K. Moreover, let RK(B) (resp.
CK(B)) denote the submatrix of B formed by deleting the ith

row (resp. column) of B for all i 6∈ K.
Now letting B = (α−λ)D̂− (α−λ)λIN +λeD̂ATA, we

have

R{i}(B) =

{
−λ(α− λ)eTi , if i ∈ Kc

(1− λ)(α− λ)eTi + eλR{i}(A
TA), if i ∈ K

,

where all but the ith coordinates of ei ∈ RN are zero and the
ith coordinate is 1, and K = {i ∈ {1, ..., N}|D̂ii = 1}. By
expanding the ith row of B for all i 6∈ K, we have

|B|=(−λ(α−λ))N(1−d̂)∣∣(α− λ)(1− λ)INd̂ + λe[ATA]K
∣∣ .

Plugging the above into (13), we have

|J− λI| =
(
d̂/c− λ

)
(α− λ)n−N (−λ(α− λ))N(1−d̂)

·
∣∣(α− λ)(1− λ)INd̂ + λe[ATA]K

∣∣
= (−1)N(1−d̂)

(
d̂/c− λ

)
λN(1−d̂)(α− λ)n−Nd̂

·
∣∣(α− λ)(1− λ)INd̂ + λe[ATA]K

∣∣ . (14)

Let H = [ATA]K , we now need to solve for λ in the
following equation:∣∣(α− λ)(1− λ)INd̂ + λeH

∣∣ = 0. (15)

First, we check that λ = 0 is not a solution to (15). Plugging
λ = 0 into (15), we have∣∣(α− λ)(1− λ)INd̂ + λeH

∣∣ = |αINd̂| = (1− e/τ̂x)Nd̂ > 0,

where the last inequality holds because e ∈ (0, 1] and τ̂x > 1,
hence 1− e/τ̂x > 0. Now that λ 6= 0, we divide both sides of
(15) by (eλ)Nd̂:∣∣∣∣ (α− λ)(1− λ)λe

INd̂ +H

∣∣∣∣ = 0. (16)

Therefore, λ is a solution to (15) if and only if − (α−λ)(1−λ)
λe

is an eigenvalue of H. Let sp(H) denote the spectrum (i.e.,
set of eigenvalues) of H, and define

m := min
λ∈sp(H)

λ, and M := max
λ∈sp(H)

λ. (17)

Note that H = [ATA]K = (CK(A))TCK(A). By condition
of the uniqueness of LASSO solution, we have that CK(A)

is non-singular, hence m > 0. Let u = − (α−λ)(1−λ)
λe , then

λ2 + (eu− α− 1)λ+ α = 0. (18)

Let b := eu − α − 1, and we solve (18) for λ. When |b| <
2
√
α, we have complex roots λ = 1

2 (−b± i
√
4α− b2), hence

|λ| = 1
2 (
√
b2 + 4α− b2) =

√
α < 1. When |b| ≥ 2

√
α, we

have real roots. Define

h1(b) :=
1

2
(−b+

√
b2 − 4α),

h2(b) :=
1

2
(−b−

√
b2 − 4α).

(19)

Notice that

h′1(b) =
1

2

(
−1 + b√

b2 − 4α

){
> 0, if b > 2

√
α

< 0, if b ≤ −2
√
α
,

h′2(b) =
1

2

(
−1− b√

b2 − 4α

){
< 0, if b ≥ 2

√
α

> 0, if b < −2
√
α
.

(20)

Also notice that h1(b) ↑ 0 as b ↑ ∞, and h2(b) ↓ 0 as b ↓ −∞.
The graph of h1 and h2 as a function of b, respectively, is
shown in Fig. 1. It can be seen that

max(|h1(b)|, |h2(b)|) =

{
h1(b), if b ≤ −2

√
α

−h2(b), if b ≥ 2
√
α

.

First consider b ≤ −2
√
α. Recall that b = eu − α − 1 >

em−α−1 > −α−1, since e > 0 and m > 0. Notice from (19)
and (20) that h1(−α−1) = 1, h1(−2

√
α) =

√
α < 1, and that

h1(b) is monotone decreasing when b ≤ −2
√
α. Therefore, we

have that |h1(b)| < 1, when b ≤ −2
√
α.

Next consider b ≥ 2
√
α. Notice that h2(1 + α) = −1 and

that h2(b) is monotone decreasing when b ≥ 2
√
α. Therefore,

in order to have |h2(b)| < 1, we need b = eu − α − 1 <
1 + α,∀u ∈ sp(H). This condition is satisfied if we let
e < 2(1+α)

M . Recall that α = 1 − e/τ̂x. By (11), we have
1/τ̂x = 1− d̂/c. Combining the analysis on h1 and h2 given
above, it follows that the condition on the parameter e for all
eigenvalues of J to be within the unit circle of the complex
plane is

0 < e < min

{
1,

4

M + 2(1− d̂/c)

}
. (21)
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Fig. 1: Graph of h1 and h2 as a function of b, where a specific
e is chosen for demonstration purposes.

The upper-bound for e in (21) is tight. However, it depends
on the equilibrium point. It is desirable to have a condition on
e that does not depend on knowledge about the equilibrium
point, so that an appropriate value for e can be chosen before
running the algorithm (11). Notice that H = [ATA]K is
a principal submatrix of the symmetric matrix ATA. The
interlacing property of eigenvalues implies that M ≤ L :=
maxλ∈sp(ATA) λ. Moreover, the condition for the uniqueness
of the LASSO solution implies that d̂/c ∈ [0, 1]. Therefore,
local stability is guaranteed if

0 < e ≤ min{1, 4/(L+ 2)}. (22)

C. Random Matrices with i.i.d. Entries

In the special case where the matrix A ∈ Rn×N is the
upper left corner of a doubly infinite array2 of i.i.d. zero-
mean random variables with finite fourth moment and is
normalized such that the variance is 1/n, the asymptotic
largest singular value of CK(A) ∈ Rn×Nd̂, where Nd̂ < n, is

1+

√
Nd̂/n = 1+

√
d̂/c with probability one [18]. It follows

that the denominator of the upper-bound in (21) is

M+2(1−d̂/c)=1+d̂/c+2

√
d̂/c+2−2d̂/c = 3+2

√
d̂/c−d̂/c.

Let x = d̂/c, hence x ∈ [0, 1]. Define f(x) = 2
√
x − x

and notice that f is monotone increasing on [0, 1]. Therefore,
f(x) < f(1) = 1, which implies that M + 2(1 − d̂/c) ≤ 4.
That is, local stability for large zero-mean random matrices
with variance 1/n is guaranteed by setting e = 1, which,
as mentioned before, makes Algorithm 1 coincide with the
original AMP (9), as seen in [8] and [11].

2That is, we have an array {Xij}, i = 1, 2, . . . ; j = 1, 2, . . . and A =
(Xij), i = 1, 2, . . . , n; j = 1, 2, . . . , N .

IV. NUMERICAL DEMONSTRATION

To demonstrate the efficiency of the proposed AMP variant,
we compare it with the original AMP that uses the calibration
method proposed in [11], a PDHG algorithm with a fixed
stepsize that guarantees convergence (see [7]), and a popular
convex optimization algorithm, fast iterative shrinkage and
thresholding algorithm (FISTA) [3]. Because our proposed
algorithm is inspired by AMP and depends on a parameter
e, we will refer to it as “eAMP” and we choose e according
to (22). In addition, we also include results for eAMP with
e = 1, which we recall is of the same form as the standard
AMP but the threshold for the thresholding function at each
iteration is different from that in [11].

In all the simulations, the problem dimension is set to
be N = 2000, n = 1000. The data vector y is obtained
by y = Ax0 + w, where entries of w are independent
realizations of a Gaussian distribution with mean zero and
variance σ2

w and entries of x0 are independent realizations of
a Bernoulli(0.1)-Uniform[-1,1] distribution (i.e., X0 = BU
with B ∼ Bernoulli(0.1) and U ∼ Uniform[−1, 1]). The
value of σ2

w is chosen such that 10 log10
(
‖Ax0‖22
nσ2

w

)
= 25 (i.e.,

the signal-to-noise ratio is 25dB). All tested algorithms are
initialized with an all-zero vector. Since FISTA and PDHG
have theoretical convergence guarantees, we present their
results only for comparison of empirical convergence speed,
hence we sometimes stop these two algorithms early when the
convergence speed comparison is clear.

For the first set of simulations, we use matrices A whose
entries are independent realizations of a zero-mean Gaussian
distribution, which is the case studied in [11] in the limit
as N,n → ∞. The simulation results are shown in Fig.
2a. We notice that while AMP seems to have converged,
it does not converge to the LASSO solution x∗, whereas
eAMP with both choices of e has converged to the LASSO
solution. Moreover, the empirical convergence speed (in terms
of number of iterations) of eAMP is much faster than that of
FISTA or PDHG.

For the second set of simulations, we use matrices A whose
rows are independent realizations of a zero-mean multivariate
Gaussian distribution, where diagonal entries of the covariance
matrix have value 1/n and off-diagonal entries have value
0.01/n. The simulation results are shown in Fig. 2b. In this
case, AMP and eAMP with the inappropriate choice of e = 1
have diverged, whereas eAMP with e chosen according to (22)
has converged to the LASSO solution and requires far fewer
iterations than FISTA and PDHG.

While our analysis in Section III only guarantees local
stability for eAMP, the encouraging simulation results suggest
that a global convergence result might be possible; we leave
the global convergence analysis for future work.

V. CONCLUSION

In this paper, we proposed an AMP variant (Algorithm
1) for solving the LASSO problem (1). Unlike the work in
[11] that analyzes the limiting behavior of AMP iterates as
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(a) Entries of the matrix A are drawn independently from a
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(b) Rows of the matrix A are drawn independently from a zero-
mean multivariate Gaussian distribution.

Fig. 2: Comparison of different algorithms for solving the
LASSO problem (1).

the iteration number goes to infinity for infinite dimensional
problems, we focused on more practical finite dimensional
problems. Specifically, for any finite dimensional matrix A,
whenever our algorithm converges, it converges to the LASSO
solution. We emphasize that this is not the case for AMP with
finite dimensional A even when A has i.i.d. Gaussian entries,
as we have seen in Fig. 2a. The proposed algorithm contains
a parameter e that depends on the largest singular value of
the matrix A. In Proposition 1, we provided conditions on
e under which the algorithm is locally stable around the
LASSO solution with probability one when entries of A
are drawn from a continuous distribution. Finally, simulation
results showed that the number of iterations required for our
algorithm to converge is orders of magnitude smaller than that
of widely used optimization algorithms such as FISTA [3] and
PDHG [7].
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