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1. Introduction

Let (X)) be a sequence of p x p non-random and nonnegative definite Hermitian matrices and let (z;); j~1 be a doubly
infinite array of i.i.d. complex-valued random variables satisfying

E(z11) =0, E(lznl?) = 1, E(lzi]*) < oc.
Write Z, = (Zjj)1<i<p,1<j<n,» Where p = p(n) is related to n such that whenn — oo, p/n — y € (0, +00). Then the matrix
Sy = %Z‘;/ZZ,,Z,T 2;/2 can be considered as the sample covariance matrix of an i.i.d. sample (X1, ..., X;) of p-dimensional

observation vectors X; = Ep] / zuj where u; = (z;j)1<i<p denotes the jth column of Z,. Note that for any nonnegative definite
p x p Hermitian matrix A, A'/? denotes a Hermitian square root and we call the empirical spectral distribution (ESD) F* the

distribution generated by its eigenvalues, that is, FA = 11) ]’.’:1 (Saj, where {o;} are the eigenvalues of A.

We first recall some useful results from random matrix theory. For a thorough presentation of these results, the reader is
referred to [5]. Assume that the ESD H,, of X, (we denote H, = F *r for short) converges weakly to a nonrandom probability
distribution H on [0, 00). It is then well-known that the ESD F5 of S,,, generated by its eigenvalues Ani = 0 = Anp,
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converges to a nonrandom limiting spectral distribution (LSD) F*'f' [15,24], whose Stieltjes transform m(z) = Mpy.H(y IS the
unique solution to

1
m:/m_y_yzm)_de(x) (1.1)

intheset{me C: —]z;y+ym € C*} (the Stieltjes transform of a distribution G is defined as: m¢(z) = f édG(k), Iz # 0).

Eq. (1.1) takes a simpler form when F¥* is replaced by F** = (1 — y)8 + yF¥*, which is the LSD of S, = 1Z¥X,Z,. Its
Stieltjes transform

1—y
m(z) = mpyn(z) = - +ym(z)

has the inverse

1 t
z=2z(m) = —— dH(t). 1.2
(m) +y / T tm (©) (1.2)
We call this m(z) the companion Stieltjes transform of m(z). The so-called null case corresponds to the situation X, = I,, so
H, = H = §; and the LSD & of S,, (&’ = F**1) has an explicit density function:

1
d@ = ——/(by —x)(x —ay), a, <x <b,, (1.3)

27 xy

which is the seminal Marcenko-Pastur law with index y and support [ay, b,], where a, = (1 — ﬂ)z, by =1+ ﬂ)z. In
case of y > 1, the distribution has an additional mass of weight 1 — 1/y at the origin.
In this paper we consider the spiked population model introduced in [12] where the eigenvalues of ¥, are:

Ay ooy A1y ooy Qg ey Qe 1,000, 1. (1.4)
——— — ——
np ng p—M

Here M and the multiplicity numbers (1) are fixed and satisfy n; + --- + n, = M. In other words, all the population
eigenvalues are unit except some fixed number of them (the spikes). The model can be viewed as a finite-rank perturbation
of the null case. Obviously, the LSD of S,, is not affected by this perturbation. However, the asymptotic behavior of the extreme
eigenvalues of S, is significantly different from the null case. The analysis of this new behavior of extreme eigenvalues has
been an active area in the last few years, see e.g.[3,4,23,7,9,17,10] and [8]. In particular, the base component of the population
ESD H,, in the last three references has been extended to a form more general than the simple Dirac mass §; of the null case.
Beyond the sample covariance matrix, there are also in the literature several closely related works on the behavior of the
extreme eigenvalues of a Wigner matrix or general Hermitian matrix perturbated, in multiplicative or additive form, by a
low rank matrix, see [11].

For statistical applications, besides the principal components analysis which is indeed the origin of spiked models [12],
large-dimensional strict factor models are equivalent to a spiked population model and can be analyzed using the above-
mentioned results. Related recent contributions in this area include, among others, Mestre [16] Kritchman and Nadler
[13,14] Onatski [18-20] and Passemier and Yao [22] and they all concern the problem of estimation and testing the number
of factors (or spikes).

In this note, we analyze the effects caused by the spike eigenvalues on the fluctuations of linear spectral statistics of the
form

1 )4
03 = [ Fwar =), (15)

i=1

where f is a given function. Similarly to the convergence of the ESD’s, the presence of the spikes does not prevent a central
limit theorem for F>* (f); however as we will see, the centering term in the CLT will be modified according to the values of
the spikes. As this term has no explicit form, our main result is an asymptotic expansion presented in Section 2. Section 3
shows how to deal with these integrals appearing in the main theorem by detailing the computation of three frequently used
functions f. To illustrate the importance of such expansions, we present in Section 4 an application for the determination of
the power function for testing the presence of spikes. Section 5 contains the proof of the main result.

2. Centering parameter in the CLT of the LSS from a spiked population model

Fluctuations of linear spectral statistics of form (1.5) are indeed covered by a central limit theory initiated in [6],
which says that the rate [ f(x)dF*"(x) — [ f(x)dF¥~Hn(x) (F/nHn is the finite counterpart of F**#, where y, = p/n, and
H, = F*») approaches zero is essentially 1/p. Define X, (f) = p(F5*(f) — F¥»"n(f)), the main result stated in that paper is
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the following:

Theorem 1 ([6]). Assume that the Z-variables satisfy the condition
1
- > ElZlI(lz| = /i) — 0
ij

for any fixed n > 0 and that the following additional conditions hold:

(a) Foreachn, z; = 215 )i < p,j < nareindependent. Ez;; =0, E|zij|2 =1, max;j, IE|Z,<J,-|4 < 00,p/n — y.

L . L . . )
(b) X, is p x p nonrandom Hermitian nonnegative definite with spectral norm bounded in p, with F %» 5 H a proper c.df.
Let f1, ..., fx be functions analytic on an open region containing the interval

[limn inf A" Loy () (1 — /)%, lim sup A (1 + ﬁ)z] .
n

Then
(i) the random vector
XKn(f)s - Xn(fi)) (2.6)
forms a tight sequence in n.
(ii) If z;j and X, are real and E(zé) = 3, then (2.6) converges weakly to a Gaussian vector (Xg,, . .., X;) with means
; f m(z)3t2dH (t)
TA+tm(z))3
2 =5 [ @ Oz (2.7)
2i f m(z)2t2dH(t)
T(+tm@)?

and covariance function

f(z1)g(22)

Cov(Xr, X, z1)m'(zp)dz,dz 2.8

X5, Xg) = 2712/@1/62 B e o) dndz, (28)
(f,g € {f1, ..., fk}) The contours in (2.7) and (2.8) (two in (2.8), which may be assumed to be non-overlapping) are closed
and are taken in the positive direction in the complex plane, each enclosing the support of F¥"H.,

(iii) If z; is complex with ]E(z,.?) = 0 and ]E(|zij|4) = 2, then (ii) also holds, except the means are zero and the covariance
function is 1/2 times the function given in (2.8).

In particular, the limiting mean function EX; and covariance function Cov(X;, X,) could be calculated from contour
integrals involving parameters m(z) and H, which are both related to the LSD F¥"¥ and the pre-given function f.

For the centering parameter pF¥»!n (f), it depends on a particular distribution F¥nfr which is a finite-horizon proxy for
the LSD of S,,. The difficulty is that F¥» i has no explicit form; it is indeed implicitly defined through m, (z), which solves the
equation:

1 t
z=—— ——dH,(t 2.9
mn+y"/1+tmn \(© 29)
(substitute y, = p/n fory and H,, for H in (1.2)). This distribution depends on the ESD H,, with spike eigenvalues.
More precisely, the ESD H,, of X, under (1.4) is

-M 1<
Ho=2" 50+ 2 3 o, (2.10)
p P
which converges to the Dirac mass §; (corresponding to the null case X, = I,). So anything that is related to the LSD
remains the same, such as the limiting parameters EX; and Cov(X;, Xg). However for the centering term pFYmHn (£ it is
still not enough if we expand F**!n (f) only to the order O(1/p), which will lead to a bias of order O(1). As an example,
let us consider the simplest case that f(x) = x, it is known that FY»%1(f) = 1 (see [6]). Our result shows that F¥»n (f)
=1+ % Zle na; — % + 0(1/n?) (see (3.20)). The difference between these two terms (multiply by p) is

p (P (x) — " (0) = p ( Z”'“l‘) Zn(a' "

which is actually a constant that cannot be neglected.

The following main result gives an asymptotic expansion of this centering term. It is here reminded that, following Baik
and Silverstein [4], for a distant spike a; such that |a; — 1| > ,/y, the corresponding sample eigenvalue is fluctuating around
the value of ¢(a;) = a; + aji’ﬂ ; while for a close spike such that |a; — 1| < ,/y, the corresponding sample eigenvalue tends

to the edge points a, if 1 — \/y < a; < 1and by if 1 <a; <1+ /y.
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Theorem 2. Suppose the population has a spiked structure as stated in (1.4) with k; distant spikes and k — ky close spikes
(arranged in decreasing order). Let f be any analytic function on an open domain including the support of M-P distribution G and
all the ¢(a;), i < ky. We have:

F}’n’Hn(f)
__1 1 Yn M K ma?m
2 elf(_m+ 1+m> (ynm_;(wrann)z> n (211)
1 1 m \w d—an 1 Ynm
Foampf] <_E+ 1+m>;(1+aim)(1+m) (E_m) 4m (2.12)
k1
+ <] - M) G (f) + ! ZnJ(¢(ai)) +0 <l2) . (2.13)
p pi3 n

Here m is short for m,, which is defined in (2.9), G (f) is the integral of f with respect to the Marcenko-Pastur distribution
in (1.3), with index y replaced by y, = p/n.

(i) When 0 < y, < 1, the first ky spike eigenvalues ajs satisfy |a; — 1| > /yn, the remaining k — kq satisfy |a; — 1| < /Vn, C1
is a contour counterclockwise, when restricted to the real axes, encloses the interval |

- f’ 1+m]
(ii) Wheny, > 1, the first k; spike eigenvalues ajs satisfy a; — 1 > /Yy, the remammg k — ki satisfy0 < a; <14+ /Yn, Cr i

a contour clockwise, when restricted to the real axes, encloses the interval [—

7 1+m]
If there are no distant spikes then the second term in (2.13) does not appear.

The proofis given in Section 5.

3. Detailed examples of expansion for some popular functions

In this section, we derive in detail the computation of asymptotic expansions of the centering terms for three popular
functions: f(x) = x, f(x) = x*> and f(x) = log(x) when 0 < y, < 1, which frequently appear as part of some well known
statistics like LRT, empirical moments, etc. Such statistics can be found in Section 4. For general function f(x) = x, the
computation can be done similarly with the help of a symbolic computation software like Mathematica and we provide
the formula with | = 4 in the last subsection for reference. When calculating residues, we should find the poles inside the
integral region, and it should be noticed that when the index i € [k + 1, k], the corresponding ajs satisfy |a; — 1| < /Vn,
which is equivalent to —ali IS [] e 1+f] sopolesofm=—1},{m=——,i=(k;+1,...,k)}and {m = yﬂ%} (pole
of the function log(z)) should be included in @;. Besides, from (i) in Theorem 2 Cqis counterclockwise.

Notice that in all the sections, m = m = m, denotes the Stieltjes transform defined in (2.9).

3.1. Example of F¥nHn (x)

We first calculate (2.11) and (2.12) by considering their residues at m = —1.

1 1 M ko ma®m
2.11) = ——— (_7+ In ) — 3 AT ) g, (3.14)
2mip m 14m yam = (1+ aym)
and its residue at m = —1 equals to

M Soma?

M 3 mid; . (3.15)
p pm0—a

1—apn; 1 m
(212) = — (1= am R dm, (3.16)
Zmp oS (1 +am)(1+m)\m (14 m)?

and its residue at m = —1 equals to

1y 1 9 m\? 1¢ ainiyy
S cn— 2 —an 7( )‘ =23 oy T 3.17
p ;[ : 2( @iy om2\1+aqm m:—1:| p Z[ i+ (1— a,-)z] ( )
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Besides, the residue of (2.11) + (2.12)at m = _al,-‘ i=(k;+1,...,k) canbe calculated as
1 a;
fnj<ai 4 > (3.18)
p a—1
k
M 1< a; 1
(2.13):1——+72n,-(a1+ Yndi >+o<—2>. (3.19)
D b= a—1 n
Combine (3.15) and (3.17)-(3.19), we get:
M 1
Frmbn(x)y =14 — Zna,——+o( 2) (3.20)
j p n

3.2. Example of FYmtn (x?)

We first calculate (2.11) and (2.12) by considering their residues at m = —1.

2 k 2
1 1 M n;a;m
1)=——— (_7+ In ) ( —Z'i’z)dm, (3.21)
2xip J ¢, m 14m ynm 4 (1+ am)
and its residue at m = —1 equals to
2M M A aymd® 2y mid
— - y—z( )3 L) oL (3.22)
p n pe (- p = (0—a)
2 1 k 1—a)n; 1 m
= 2§ (—ha )y (L Y (323
2zip S o\ m  14+m/) & A+am(A+m\m  (1+m)?
and its residue at m = —1 equals to
k I k
_ M 2yM 2y nia; : 2y Z‘: an; g Vi@ n13 (3.24)
p p p m@—-1 Y1—a poZH (A-a)
Besides, the residue of (2.11) + (2.12)at m = —ai'_ (i > kq)equals to
1 a \?
—n; (ai+ Yndli ) . (325)
p ai — 1
And
k 2
M 1 a; 1
(2.13) = (1 — ) (1+yn)+72n,~<a,-+ Yndhi ) +o<—z). (3.26)
p P a—1 n

Combine (3.22) and (3.24)-(3.26), we get:

5 K 2 M 1 1
F}’ann X2 [ an — —-M 1 _ — n-a.2 o(—).
(x%) n ; i = + 1+ » + b ; ia; + 2

3.3. Example of F*»!n (log(x))

We first calculate (2.11) and (2.12) by considering their residues at m = —1.

1
_ m—s-—
o1 1 }6 log(*2=1) + log(—25) M_Xk:M
’ 2mipyn m = (1+am)?

1 1 k
-M m— 35— 1 1 m— 35— na?
- log oyt —dm + . % lOg yn—1 2 : i Ynil 2
27ipyn J ¢, m+1 m 2wipyn J ¢, m+41 ~ (1+am)

£ A+B. (3.27)
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M m— ynll
A= - log| ———— ) - dlog(m)
2mipyn m+1
M m- )’nll
= - log(m) - dlog | ————
27ipyn J e, m+1
__M yg log(m)
27ipYn Y e (M+1D(m— -19)

where

and

M
= ———log(1 —yn),
p

ynl_l 1 1
= Z l og n;a; - dm
Zmp — 1+am (14 am)?

1
- n;a;
C = Yol = dm
Zmp ,21:%@1 ( m+41 >1+a,»m

) dlog(1 + a;m)

= l

o (2t
log(1 diog (™

_zmp;felnlog( +am) - dlog ——

_ —1  yn kyg n;log(1 + a;m)
2tip yn =1 e (m+D(m— 519)

1 1&
:on,-log(l—ai)—onilog<
i P

1
-1/’

1
T yn—1 n;a; dm
p P m+1 ) (1+am)?

1
= ijyﬁ dlog e
pl1 1+am m+1

n;

Zﬂip(J/n_l); e (14 am) <m——)(m+1)

_12’{: n; n;
P 5 1—|—yn"—i1 1—a )

dm

Combine (3.27)-(3.31), we get the residue of (2.11)atm = —1:

M g1 - log(1 — a;) — 1
oy log( yn)+p2n10g( a) panog( _1>

i=1 i=1

k

1
_721+ aty Zl—a,

p i=1 yn—1

199

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Then, we consider the part (2.12) in the general formula influenced by the pole m = —1:
1 1 k n;a; n; 1 m
(212) = ——— f/ S L | (. —
2mip m 1+m)& \1+am 1+m m (14 m)?

_ jé m(m+1) dm
- Zmp e Yam—m— 1 1+am 14+m (1—|—m)2

-1
£ — m(E—-F—-G+H
27ipn — 1) & Z ) .
where
ai(m+ 1 a;
E:% im+1) 1 — o7 YnQi !
¢ (1—|—a,m)(m—y“—_1) yn+ai_1

F:yg aiynm? : :zm(ai(yn—l) N a )
e M+ DA +am)(m — ;=) a—1 ynt+a—1

1 .
G=¢ — =2mi,

yn—1
2
m
= ?{ In —dm = 2miy,.
¢ (M4 1)2(m — 1)
Collecting these four terms, we have the residue of (2.12) atm = —1:
a.
- Z ( : ) n;. (3.33)
a; — 1 Ynt+a—1
Then we consider the influence of (2.11) + (2.12) caused by the pole m = _al,-' i=ks+1,...,k which can be calculated
similarly as
n; a;
" jog (ai n y) . (3.34)
p a — 1

Finally, using the known result that G’ (log(x)) = (1 — yin) log(1 — y,) — 1, which has been calculated in [6], and combine
(3.32)-(3.34) and (2.13), we get

F'rtn (log(x)) = p an log(a;) — 1+ (1 — y) log(1 —y,) +0 ( ! )

i=1 n

3.4. Example of F¥n-Pn (x!)

Consider the general case of f (x) = x!, and combination of (2.11) and (2.12) in Theorem 2 leads to:
k
1 M 1< 1
Pt () = — 7§ g(mydm + (1 - 7) () + =D nf($@) +0 <—2> :
2rip J e, p P = n
where

_ 1 L G (1 —a)n 1 Ynm
s =10 ) X e G )

i=1
I k 2
1 M nasm
() G2 )
m 14m ynm = (1+ aym)

Then the main task is to calculate the residue of g(m) atm = —land m = —1/a;,i = (k1 + 1, ..., k), which can be done
with the help of a symbolic computation software like Mathematica.
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We present the result of | = 4 in the following for reference while skipping calculation details:
Hn (A 13 4, 4 : 3 4 6y\ ¢ 2
Fy"’"(x):on,'ai—l—on,-a,-—l— -+ = Zniai
P ni= noonji=

k 3M M
2 2
7+—+—) E niai—f(2+4y+y)+(1——> T+y»A+5y+y).
n /)4 n p

4. An application to the test of presence of spike eigenvalues

Suppose that {x} follows a p-dimensional Gaussian distribution ¥ (0, ;) and we want to test
Ho:%Xy=1, vs. Hi: X, #1p,,

where I, denotes the p-dimensional identity matrix. This test has been detailed in textbook like [1, Chapter 10]. Given a
sample (X1, ..., X,) from X, the likelihood ratio criterion is

_ max L(I,) (4.35)
maxL(X,)’ ’
Zp
where the likelihood function is
1 1 1<
L(Zp) = (27) 2P| 5| 2"exp [—2 fozplx,} :
i=1
More explicitly,
1
e\ 2pn n
A= <7)2 |nSn|%"e*7“5n7 (4.36)
n

where S, is the sample covariance matrix defined as

n
1 *
Sp = — E XiX; .
n 4
i=1

Further, taking the log function on (4.36) and multiplying by —2/n leads to the statistic: L* = trS,, — log |S,| — p. Denote
T, = n-L* classical theory states that T, converges to the xlz/zp(p +1) distribution under Hy when the value of p is fixed while
letting n — oo. However, this classical approximation was shown incorrect when dealing with large-dimensional data, say,
in the scheme of “p — oo, n — oo, p/n — y € (0, 1)” by Bai et al. [2]. In this scheme, the limiting dimension-to-sample
size ratio y should be kept smaller than 1 to avoid null eigenvalues appearing in the term log |S,,|.

The main reason that classical asymptotic theory fails is that for large p, T, approaches infinity. Therefore, Bai et
al. [2] modify the limit distribution under Hy to cope with large-dimensional data. Since L* = trS, — log|S,| — p =
>0 1 (Ani — log Ay — 1), using the CLT for LSS derived in Bai and Silverstein [6] with the function f (x) = x — logx — 1, Bai
et al. [2] prove that under Hy,

L* — p@™H(f) = Nm(f), v(f)).

where
omtingry = 1— " Liog1 —y). (437)
m(f) = —w, (4.38)
v(f) = —2log(1 —y) — 2y. (4.39)

At a significance level o (usually 0.05), the test will reject Hy when L* — pG'™n(f) > m(f) + @~1(1 — a)+/v(f) where @
is the standard normal cumulative distribution function.

However, the power function of this test remains unknown because the distribution of L* under the general alternative
hypothesis H; is ill-defined. Let us consider this general test as a way to test the null hypothesis Hy above against an
alternative hypothesis of the form:

Hj : X, has the spiked structure (1.4),
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which corresponds to the existence of a low-dimensional structure or signal in the data. In other words, we want to test
the absence against the presence of possible spike eigenvalues in the population covariance matrix. The general asymptotic
expansion in Theorem 2 helps to find the power function of the test.

More precisely, under the alternative Hy and for f (x) = x —log x — 1 used in the statistic L*, the centering term FYmoHn ()
can be found to be

1< M 1 1 1
14— nia; — ——on,»loga,-— 1——)log(l—y)+0{ =), (4.40)
P = pr pi3 Yn n
thanks to the expansion found in Section 3:
k

1 M 1
Yn,Hn — — S — — J—
F (x)—1+p E n;a; p+o(n2>

i=1

and

1¢ 1 1
FrHn(logx) = — Zni loga; — 1+ <1 — —) log(1 —yn) + 0 (—2> )
p i=1 Yn n
Therefore we have obtained that under H7,

* —pr”'Hn(f) = N(m(f), v(f)),

where this time, the value of the centering term F¥»!n(f) is given in (4.40) while the values of m(f) and v(f) remain the
same as in (4.38) and (4.39). It follows that the asymptotic power function of the test is

i=1
V—2log(1—y) —2y

In the particular case where the spiked model has only one simple close spike, i.e. k = 1, k; = 0, n; = 1, the above power
function becomes

Zk:ni(ai —1—loga)
,B(a)=1—q§<<1>](1—a)— )

(4.41)

ﬁ(a):1—q><q>—1(1—a)— G —1-lga )

V—2log(1—y) —2y

which is exactly the formula (5.6) found in [21]. Note that these authors have found this formula using sophisticated tools
of asymptotic contiguity and Le Cam’s first and third lemmas, our derivation is in a sense much more direct.

5. Proof of Theorem 2

Proof. We divide the proof into three parts according to whether0 <y, < 1,y, > lory, = 1.

Caseof 0 <y, < 1:

Recall that G (f) = ff(x)dG”" (x) when no spike exists, where G’ is the M-P distribution with index y,. And by the

Cauchy integral formula, it can be expressed as — ﬁ 9§ " f(z)m(z)dz, where the integral contour y; is chosen to be positively

oriented, enclosing the support of G and its limit @. Due to the restriction that 0 < y, < 1, we choose y; such that the
origin {z = 0} is not enclosed inside.

Using the relationship between m(z) and m(z): m(z) = y,m(z) — 1*% we can rewrite

1 1
()= —— ¢ fOm@)dz = —775 & (
Tl Vl

m(z 1-—
2ri ), .

y

n

—Ei. f@)m(z)dz. (5.42)
p2niJ ,,

Besides, for z € supp(G"), m(z) satisfies the equation (with dH,,(t) replaced by &, in (2.9)):

1
2= —— 4 I
m 1+4+m

(5.43)

If we solve this Eq. (5.43), then the solution m(z) will involve the square root of some function of z. So, if we are trying to deal
with the integral with respect to z in Eq. (5.42), it will be more intricate. For this reason, we choose to change the variable
from z to m in Eq. (5.42), making it much easier to compute.
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z(m)

\ \
=1/(1=yyx) =1/(1+¥n)

m

Fig. 1. The graph of the transform z(m) = 7% + ﬂ“m when0 <y, < 1.

We present the mapping (5.43) when 0 < y, < 1 in Fig. 1, restricting z and m to the real domain. From [25], we
know that the z’s such that z’(m) > 0 are not in the support of G’". Therefore, we shall focus on the increasing intervals,
where z — m(z) is a one-to-one analytic map on C*, which admits a unique extension to C \ supp(G’*). Moreover, when
z runs along the contour y1 clockwise, which encloses [ay,, by, ], m(z) will run along the contour, which we denote as C;,
enclosing the interval [1 T T f] (according to Fig. 1, it could be understood in this way: if we draw two horizontal
lines, one is above z(m) = by, and the other is below z(m) = a,,, then these two horizontal lines will intersect with the
red curve (the increasing parts) And we project the two points of intersection to the m-axes, which will enclose the interval
[ yn ' TT f]) On these contours, we have by taking derivatives on both sides of (5.43) with respect to z, combining with
Eq. (5.42):

Yn __Ei Yn _ Yn
=" e1f< T4+m )m()(m2 <1+m>2>dm' G4y

The point on y; intersecting the real line to the left of ay, (right of by, ) maps to a point to the left of ;—— «F (right of 1+f)

Since the imaginary part of m(z) is the same sign as the imaginary part of z, we see that C; is also oriented counterclockwise.
Besides, m = —1 is the pole contained in Cy.
When the spiked structure (1.4) exists, by Eq. (2.9), this time the companion Stieltjes transformm = m,, of F¥m-Hn satisfies

1 p=M yu Yo am

7= __ A , 5.45
m p 1+m p = T+am ( )
1 p—M vy, Vi an
dz = - — —1—— |dm
m? p (A+m? p & (A+am)?
Repeating the same computation as before, we get:
ponin ) = ———% f@m@)dz
p 2mi
n 1 1 k 1—a)n
L f<_f+ Yo Jﬁz%)m
p2niJ e m 1+m p = A+m1+am)
1 Yn Yn [ 1 az i|>
[ —— I 4 n; — 5.46
(mz (1+m? " p ; Ta+m? 1+ am)? (49)

where y is a positive oriented contour of z that encloses the support of F** and its limit F°. From [4], we know that under the
spiked structure (1.4), the support of F consists of the support of M-P distribution: [ay,, by, 1 plus small intervals enclosing

the points ¢ (a;) = a; + y"a'l (i=1,..., k). Therefore, the contour y can be expressed as y; @(@i] Ya;) (Ve is denoted




204 Q. Wang et al. / Journal of Multivariate Analysis 130 (2014) 194-207

as the contour that encloses the point of ¢(a;)). Moreover, C is the image of y under the mapping (5.45), which can also
be divided into C; plus Gy, (i = 1, ..., k), with G, enclosing —ali and all the contours are non-overlapping and positively
oriented.

The term
Yn d (1 —apn;
< (1+m)(1+ am)

1+'

st [ 1 q ]
p A+m? 1+ am)?
is also of order O(%). This gives rise to:

n 1

1
FYmHn - - d
D= ef< 1+m><m (1+m)2> =
1 1 n\ 1 ;
(Y yf . G mdm
p2mi J ¢ m 1+m/ p I+m? (4 am)?
n 1 1 Yo\ Yn (1 —apn 1 Ynill 1
n 1 _! oy VW (2 B Vumt+o(—=). (547
o 2w @f< ntT+m >p 1(1+m)<1+mm><m (1+m)2> mr <n2> (547

Then, we replace € appearing in Eq. (5.47) by ¢, @(@ﬁl C,,;) as mentioned above, and thus we can calculate the value

of (5.47) separately by calculating the integrals on the contour ¢; and each G, (i = 1, ..., kq). If there are no distant spikes
then we will have just € = C;.

The first term in Eq. (5.47) is equal to

- -

n 1 1 Yn 1 ynm
= f(-—=+ —— "= )dm (5.48)
p2rni ) ¢ m 1+m/\m (1+m?
for the reason that the only poles: m = 0 and m = —1 are not enclosed in the contours C, (i =1, ..., kq).
Next, we consider these integrals on Gy, (i = 1, ..., kq).

The second term of Eq. (5.47) with the contour being C,, is equal to
n 1 1 k 1 a?
=P -+ Bt an - —— |mdm
p2mi Cq; 1+m/ p = A+m? 1+ am)?

n 1 a;mm
- poem f<—* ) 2

i=1

l+m

1
= f dm
27ip J e, (m+ ;i)z

_ i@ — o (a— 2%
—p[f@(a,)) f(¢<al>>(a, (01_1)2)],

and the third term of Eq. (5.47) with the contour being ¢, is equal to
I
LU _1+ Yn ynz‘: (1—a)n; T m
p2miJ ¢, 1+m (1+m)(1 + a;m) (l—i—m)2
—1 f/<_1+ Yn ) nigl— a;) (l_ yamm )dm
" 27ip m o 14+m/ (m+ Ha(m+1) \m  (1+m)?

= “nf@(a)(a— 22).
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Combining these two terms, we get the influence of the distant spikes, that is, the integral on the contours | J,_; k; Cap»
which equals to:
l(]
- Z nf (¢ (). (5.49)

So in the remaining part, we only need to consider the integral along the contour ¢;. Consider the second term of (5.47)
with the contour being C1:

_Ei f _l In i — a"z mdm
p2mi [ ¢, 1+m (1+m)2 (I+am)? |~ —

i=1
1

= "o f(—*
Tip I

1/ Mm M 1M k. ma?m
> %—f)+ -3 o
Yo \(1 +m) m Yam 1+ am)
M _n f f + d
=—— —— — — )dm
p 2rwip J ¢, 1+ +m)2 m/) —

1 k n;a:m
~ 2nip e1f(_ )(m Z]<1+a,m>2)dm' (550)

Combining Eqs. (5.44) and (5.48)-(5.50), we get:
k 2
Fyan(f)__L f _l_,_ In M _ZM dm
2rip m  1+4+m/\my, < (1+am)?
k
T 1‘ Fl-— Z —a)n; 1 Ynim dm
27ip J ¢, 1—|—m P (1—|—m)(1+am) 1+ m)?

M & n; 1
1——)cn “f@p@)+0o(=).
+( p) (f>+§l_:1 @@ + (nz)

Case of y, > 1:

We also present the mapping (5.43) when y, > 1in Fig. 2.

When y, > 1 there will be mass 1 — 1/y, at zero. Assume first that f is analytic on an open interval containing 0 and b,
and let y; be a contour covering [ay,, b, ]. Then we have in place of (5.42),

1 1
G (f) = (1 - y—)f(O) -— ¢ f@m@dz

2ni J

1 1
(1= )ro- 5
Yn 21iyn J o,

This time the m value corresponding to a,,, namely

] ‘\}7 is positive, and so when changing variables the new contour C
covers [¢,, dy] where ¢, < 0is slightly to the right of - i~ f and d, > 0is slightly to the left of ;—— f This interval includes
the origin and not —1, and is oriented in a clockwise direction. We present these two contours y; and €; in Fig. 3.

We have in place of (5.44),

_ l B 1 _l Yn L _ Y
Gy, () = (1 —yn>f(0) iy, ﬁg( m 1+m)m<m2 (1+m)2>dm

Extend €, to the following contour. On the right side on the real line continue € to a number large number r, then go on
a circle @(r) with radius r in a counterclockwise direction until it returns to the point r — i0, then go left till it hits C;. This
new contour covers pole —1 and not the origin, see Fig. 4. On C(r) we have using the dominated convergence theorem

1 1 1 ,
: f f(——+ L )m(——y—")dm (with m = re'")
2iyn J o) m  1+m m?  (1+m)?

_ 1! /an(_1+ Yo )(1 Yaim® )d9—>1_y"f(0) @sr — 00)
~ 2nyn Jo 1+m (14 m)? Yn '

3
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Im(z)
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g :
g 3
~ s
mﬁ Ju A
I I I
=1/(1+4ya) 1/(ya=1) =1/(1=¥n)
m
Fig. 2. The graph of the transform z(m) = —i + fi‘m wheny, > 1.
Contour of z when y, > 1 Contour of m when y,, > 1
+
jait )
g
= * * * *
B 1 -1 0 -1
T vin =V
Re(z) Re(m)

Im(m)

Fig. 3. Contours of zand m wheny, > 1.

Contour of m when y, > 1

C(r)

Re(m)

Fig. 4. The new contour of m wheny, > 1.
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Therefore
n 1 1 Yn 1 Yn
G = -+ m|{—— ——)dm 5.51
n () p 2mi e1f< m 1+m)*(m2 (1+m)2> - 53D
where € just covers [—1, ——].

) ]+m
When there are spikes the only distant ones are those for which a; > ,/y, + 1. We will get after the change of variable to

m a contour which covers now [c},, d;,] where ¢], < 0is to the right of the largest of —% among the distant spikes (to the right

_‘1 . . . . _‘1
of T if there are no distant spikes), and d;, > 0is to the left of =

as we did before and get the same limit on the circle when there are no spikes. Therefore we get exactly (5.46) where now

the contour € contains —1 and the largest of —% among the distant spikes (contain 5 +i}y7 if there are no distant spikes).
1

Next, we can follow the same proof as for the case 0 < y, < 1, by slitting the contour € into ¢ = ¢, EB(EB{";1 Cq;), where

now C; just contains the interval [—1, ﬁ] and the contours C,, contain the influence of k; distant spikes a; > 1+ /yn:

—% (i=1,...,ky) respectively. We thus obtain the same formula as in the case 0 < y,, < 1. Therefore Theorem 1 follows
—1
1+/Yn

and oriented clockwise. We can extend the contour

where G contains just [—1,
the case of 0 < y, < 1).
Case of y, = 1:

For y, = 1 we have m(z) = m(z), and the contour defining G;(f) must contain the interval [0, 4]. The contour in m
contains [c,, d,] where —% < ¢y, < 0,d, > 0and again is oriented in the clockwise direction. Extending again this contour
we find the limit of the integral on the circle is zero for both G (f) and F'n(f), and we get again Theorem 1 where €7 is a

contour containing [—1, —%], and not the origin.
The proof of the theorem is complete. O

], and none of the —% among the distant spikes (—% are enclosed in the contour Cq, as
1 1
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