SINGULAR VALUES OF LARGE NON-CENTRAL RANDOM MATRICES

WLODEK BRYC AND JACK W. SILVERSTEIN

ABSTRACT. We study largest singular values of large random matrices, each with mean of a fixed rank
K. Our main result is a limit theorem as the number of rows and columns approach infinity, while their
ratio approaches a positive constant. It provides a decomposition of the largest K singular values into
the deterministic rate of growth, random centered fluctuations given as explicit linear combinations of the
entries of the matrix, and a term negligible in probability. We use this representation to establish asymptotic
normality of the largest singular values for random matrices with means that have block structure. We also
deduce asymptotic normality for the largest eigenvalues of a random matrix arising in a model of population
genetics.

1. INTRODUCTION

Finite rank perturbations of random matrices have been studied by numerous authors, starting with [5],
[3]. This paper can be viewed as an extension of work done in [8] which describes the limiting behavior of
the largest singular value, A1, of the M x N random matrix DY) consisting of i.i.d. random variables with
common mean g > 0, and M/N — ¢ as N — oo. Immediate results are obtained using known properties on
the spectral behavior of centered matrices. Indeed, express DY) in the form

(1.1) DWW = ™) 4 p1,1%

where CV) is an M x N matrix containing of i.i.d. mean 0 random variables having variance o2 and finite
fourth moment, and 1, is the k dimensional vector consisting of 1’s (x denotes transpose). When the entries
of CY) come from the first M rows and N columns of a doubly infinite array of random variables, then it is
known ([11]) that the largest singular value of \/LNC converges a.s. to o(1 4 +/c) as N — oo. Noticing that

the sole positive singular value of puly/1% is v/ M N, and using the fact that (see for example [9])
AL =V MN[ < [|C],
(|| - || denoting spectral norm on rectangular matrices) we have that almost surely, for all N
A = uVMN + O(VN).

From just considering the sizes of the largest singular values of CN) and 1 m 17 one can take the view that
Dy is a perturbation of a rank one matrix.

A result in [8] reveals that the difference between A\; and puv M N is smaller than O(v/N). It is shown
that

(1.2) A= \/MN+10—2 Mo ¥ e e+ Lz
| e 2w \VN V) vy T Y

where {Zx} is tight (i.e. stochastically bounded). Notice that the third term converges in distribution to
an N(0,0%) random variable.

This paper generalizes the result in [8] by both increasing the rank of the second term on the right of
(1.1) while maintaining the same singular value dominance of this term over the random one, and relaxing
the assumptions on the entries of C. The goal is to cover the setting that is motivated by applications to
population biology [7], [2], see also Section 3.3.

We use the following notation. We write A € M ;. n to indicate the dimensions of a real matrix A, and
we denote by A* its transpose; [A], s denotes the (r,s) entry of matrix A. I, is the d x d identity matrix.
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2 WLODEK BRYC AND JACK W. SILVERSTEIN

We use the spectral norm [|A[| = supyy.xj=1} | Ax|| and occasionally the Frobenius norm [|A[|r = VtrAA*.
Recall that for an M x N matrix we have

(1.3) [A[l < [|Afle

Vectors are denoted by lower case boldface letters like x and treated as column matrices so that the Euclidean
length is ||x[|? = x*x.

Throughout the paper, we use the same letter C' to denote various positive non-random constants that do
not depend on N. The phrase ”... holds for all N large enough” always means that there exists a non-random
Ny such that ”...” holds for all N > Njg.

We fix K € N and a sequence of integers M = M) such that
(1.4) lim M/N =c¢>0.

N—oc0

As a finite rank perturbation we take a sequence of deterministic rank K matrices B = BW) € My n with

K largest singular values pgN) > péN) >0 > p(lév).

Assumption 1.1. We assume that the limits
(N)

1 Pr

exist and are distinct and strictly positive, v1 > vo > -+ > vx > 0.
Our second set of assumptions deals with randomness.

Assumption 1.2. Let C = C™) be an M x N random matrix with real independent entries [Cli,; = Xi ;.
(The distributions of the entries may differ, and may depend on N.) We assume that E(X; ;) = 0 and that
there exists a constant C' such that

4
(1.6) E(X; ;) <C.

In particular, the variances
of; = B(X};)

are uniformly bounded.
We are interested in the asymptotic behavior of the K largest singular values A\ > Ao > --- > Ag of the
sequence of noncentered random M x N matrices

(1.7) D=D®W =C+B.

Our main result represents each singular value A, as a sum of four terms, which represent the rate of
growth, random centered fluctuation, deterministic shift, and a term negligible in probability. To state this
result we need additional notation.

The rate of growth is determined by the singular values pgN) > pgN) > > p%v) > 0 of the deterministic
perturbation matrix B. The singular value decomposition of B can be written as

(1.8) B = Fdiag(p1,...,pr)V* = FG*,

where F € M« x has orthonormal columns and G = Vdiag(p1,...,pr) € Mnxxk has orthogonal columns
of lengths p1,..., pk.
The random centered fluctuation term for the r-th singular value A, is

Z r,r
(1.9) ZWM) = ¢,
Yr
where Zg is a random centered K x K matrix given by
1
(1.10) Zy = G*C*F.

vVMN

Note that Zg implicitly depends on N.
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The expression for the constant shift depends on the variances of the entries of C. To write the expression
we introduce a diagonal N x N matrix Agr = E(C*C)/M and a diagonal M x M matrix Ag = E(CC*)/N.
The diagonal entries of these matrices are

L M | X
_MZUEJ’ A NZUJ
i1

Jj=1

Let X, = E%N) and Xg = E(SN) be deterministic K x K matrices given by

(1.11) Yr=G'ARG
and
(1.12) Ys =F'AgF

Define

1 Ve 1

1.1 (N =2 b by .
(1.13) i 2 VEMN B \ﬁ’yr s rr
Theorem 1.1. With the above notation, there exist €§N) — 0,...,8%\[) — 0 in probability such that for
1 <r <K we have
(1.14) A= pV) 4 ZN) (V) (V)

Expression (1.14) is less precise than (1.2) (where the negligible term Zy/v M — 0 in probability at
known rate as Z, is stochastically bounded), but it is strong enough to establish asymptotic normality under
appropriate additional conditions. Such applications require additional assumptions and are worked out in
Section 3.

Remark 1.1. In our motivating example in Section 3.3, the natural setting is factorization of finite rank
perturbation as

K
(1.15) B=FG =) f.g,
where F € M Mx Kk has orthonormal columns ?57 but the columns, g, of GeM Nxk are not necessarily

orthogonal. These matrices are a natural input for the problem so we would like to maintain their roles and
recast Theorem 1.1 in terms of such matrices. We introduce matrices Ry = RSN) € Mgxk by

(1.16) Ry = G*G
with eigenvalues p? > --- > p% and we denote the corresponding orthonormal eigenvectors by Uy, ..., Uk.
We claim that (1.9) is
1 _,x -

(1.17) ZWN) = —wZou,,
with

~ 1 -~ ~
(1.18) Zo = ——G*C*F,

and similarly that (1.13) is

1
1.1 (V) = u S+ 3
(1.19) My 2\/5%1‘7“( N S)

with G and F used in | expressions (1.11) and (1.12) which define r and Xg.

Indeed, let G* = Udlag(pT)V be its singular value decomposition. If N is large enough so that the
singular values are distinct, we may assume that uy,...,Ux are the columns of U. Then V is determined
uniquely and B = FUdlag(pT) . Since by assumptlon our singular values are distinct, with proper align-

ment we may assume that G = dlag(pT)V* and then necessarily F = FU in (1.8). So for any A € My
we have

W'G*AFu, = [G*AF),,,
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which we apply three times with A = C*, A = f]R and A = f]s.

2. PROOF OF THEOREM 1.1

Throughout the proof, we assume that all our random variables are defined on a single probability space
(Q, F,P). In the initial parts of the proof we will be working on subsets Qxn C Q such that P(Qy) — 1.

2.1. Singular value criterion. In this section, we fix r € {1,..., K} and let A = \.. For ||C|? < )2,
matrices I — %CC* and Iy — %C*C are invertible, so we consider the following K x K matrices:

(2.1) Z = %G* (Iy — &=C*C) ' C'F,

(2.2) S = F(ly-&CC)'F,

(2.3) R = G (Iy—-C'C) ' G,

(These auxiliary random matrices depend on N and A, and are well defined only on a subset of the probability

space 2. We will see that these matrices are critical for our subsequent analysis.)

Lemma 2.1. If |C||? < A\?/2 then

(2.4) det [Z ~Mx R ] =0.

S Zr — Mg

Proof. The starting point is the singular value decomposition D = UAV*. We choose the r-th columns
u € RM of U and v € RY of V that correspond to the singular value A = ). Then (1.7) gives

K

(2.5) Cv—&—Z(ng)f = Au,
s=1
K

(2.6) Cu+) (ffu)g, = Av.
s=1

where f, € RM is the s-th column of F and g, € RY is the r-th column of G. Multiplying from the left by
C* or C we get

K
C*Cv—i—Z(g:v)C*fs = AC'u,

s=1

K
CC*'u+ ) (ffu)Cg, = ACv.

s=1

Using (2.5) and (2.6) to the expressions on the right, we get

K K

C*Cv+ ) (gv)C'f, = Nv-1) (fug,,
s=1 =
K K

CC'u+) (fu)Cg, = Nu-\)> (giv)f
s=1 s=1
which we rewrite as

K K

Nv—C'Cv = ) (giv)C'f + 1) (fru)e.,
s=1 s=1

K K
Mu—-CC*u = Z .+ > _(fru)Ceg, .
s=1 s=1
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This gives
1 & 1 ¢ L
= Y - #e0) o LY e - $e0) k.
s=1 s=1
LK . K 1
wo= 1D (EY) (T~ $HCCT) it gy Z (£7w) (Tyr = 3GC7) " Ces
s=1
Notice that since u, v are unit vectors, some among the 2K the numbers (ffu), ..., (fiu), (gv),..., (8kV)

must be non-zero. Since for 1 < ¢ < K we have

K
1 1
(giv) = §Z(gzv)g: (In — %C*C) ' C*f, + XZ (Fru)g; (Iy — %C*C) ' g,
1 a 1 1 K ) 1
(Fu) = 1> (8 (I — $=CCY) A—Z w)f; (I — 5CC*) ' Cgs,
s=1 s=1

noting that the entries of Z* can be written as

[Z¥)st = )\fs*(IM +CC*)'Cg,.

we see that the block matrix

1 1
xZ R
1 1rpx
xS 3z
1Z -1k iR : : .
has eigenvalue 1. Thus det 1 1o = 0 which for A > 0 is equivalent to (2.4).
xS 32— Ik

Proposition 2.2 (Singular value criterion). If ||C||? < A\2/4 then S is invertible and
(2.7) det (Mg —Z)S™'(\Ix — Z*) —R) = 0.

Similar equations that involve a K x K determinant appear in other papers on rank-K perturbations of
random matrices, compare [10, Lemma 2.1 and Remark 2.2]. Note however that in our case A enters the
equation in a rather complicated way through Z = Z(\),R = R()\),S = S(\). The dependence of these
matrices on N is also suppressed in our notation.

Proof. Note that if ||C||? < A?/2 then the norms of (I — %CC*)f1 and (Iy — %C*C)f1 are bounded

by 2. Indeed, || (Ins — %cc*)‘1 | < S re o ICCHR|I /A < 370 1/2%. Since (Ta — %cc*)‘1 =TIy +

%CC* (IM — %Cc*)f1 and vectors f, ..., fx are orthonormal, we get F*F = I and
o —1
S—IK—FF (on C(IM— LCcC ) F.
Since ||F|| = 1 we have
(2.8) IS — Ikl < 2|C|1/A%

We see that if [|C||? < A?/4 then ||S — Ix| < 1/2, so the inverse S™1 = 372 (I — S)* exists. For later
reference we also note that

(2.9) 1S7H < 2.

Since
R Z—-MNg| |Z- Mg R « 0 Ig
— Mg S o S AZF — N ’
we see that (2.4) is equivalent to
Zr — Mg S

L P P B
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Noting that A > 0 by assumption, we see that (2.4) holds and gives (2.7), as by Schur’s complement formula

A B] — det Ddet(A — BD™C).

det {C’ D

2.2. Equation for \,.. As was done previously we fix r € {1,..., K}, and write A = A,..
The main step in the proof of Theorem 1.1 is the following expression.
(N)

Proposition 2.3. There ezists a random sequence ¢’ — 0 in probability as N — oo such that
N 2vV M N M
(2.10) A= o) = 5Bk + = Lol + Gy Bk + Y.
A+ pr A+ pr A+ pr )A2

The proof of Proposition 2.3 is technical and lengthy.
2.2.1. Subset Qn. With yx11 : =0, let

— ; 2 2
(2.11) 0= 121&(% Vst1):

Assumption 1.1(iii) says that ¢ > 0.
In the following the powers of N used are sufficient to conclude our arguments. Sharper bounds would
not reduce moment assumption (1.6), which we use for [6] in the proof of Lemma 2.4.

Definition 2.1. Let Qn C Q be such that

(2.12) [C|? < N°/*
and

2 .2 5
(2.13) 12}%)([(‘)‘8 YeMN| < GMN.

We assume that N is large enough so that Qy is a non-empty set. In fact, P(Qx) — 1, see Lemma 2.4.
We note that (2.13) implies that cv MN < A\, < CvVMN with ¢ = \/72 —4§/4> \/ﬁ{ —6/4> \/3/2 and
C = /7?24 6/4 < 2v;. For later reference we state these bounds explicitly:

OMN
(2.14) 5— <A <2mVMN.
We also note that inequalities (2.12) and (2.14) imply that
)\2
(2.15) [C|I* < TK

for all N large enough. (That is, for all N > Ny with nonrandom constant Ny.) Thus matrices Z, R, S are
well defined on Qy for large enough N and (2.7) holds.

Lemma 2.4. For1 <r < K we have A\./VMN — =, in probability. Furthermore, P(Qy) — 1 as N — oo.

Proof. From (1.7) we have D — B = C, so by Weil-Mirsky theorem [9, page 204, Theorem 4.11], we have a
bound |\, — pS«N)| < ||C|| for the differences between the K largest singular values of B and D. From [6,
Theorem 2] we see that there is a constant C' that does not depend on N such that E||C|| < C(vV'M ++/N).
Thus
)\r — ps“N)
vVMN

Since p,(ﬂN) /VMN — ~, > 0 this proves the first part of the conclusion.

To prove the second part, we use the fact that continuous functions preserve convergence in probability,
50 A2/(MN) — ~2 in probability for 1 <r < K. Thus

— 0 in probability.

K
P(Qy) < P([C|| > N*®) + Y "P(]A2 = 2MN| > GMN/4)

s=1

K
VM + VN £ P(AZ/(MN) = 2| > 6/4) = 0 as N = .

s=1

<C N5/8
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O

2.2.2. Proof of Proposition 2.3. In view of (2.15), equation (2.7) holds on Q if N is large enough. It implies
that there is a (random) unit vector xM = x € R such that
(Mg —Z)S ' (M, — Z*)x = Rx.
We further choose x with non-negative r-th component. Using diagonal matrix
Ry = G*G = diag(p})

we rewrite this as follows.
(2.16) (MIx —Ro)x= (N(Ix —S )+ AN2ZS™'+87'Z2") - ZS7'Z* + (R —Ry)) x

We now rewrite this equation using the (nonrandom) singular values pgN) > péN) > 2> p( >0 of B

and standard basis e1,...,ex € RE.
Suppressing dependence on r and N in the notation, we insert

x=(ag,...,ax)" :ZozseS

into (2.16) and look at the s-th component. This shows that A = ), satisfies the following system of K
equations

(217) (A% = pas, = Nef(Ix — S7H)x + Xel(ZS™! + S7'Z")x + e (R — Ro)x — e'ZS 'Z"x,

where 1 < s < K. (Recall that this is a system of highly nonlinear equations, as matrices S, Z and R, and
the coefficients «;, ... ak, depend implicitly on \.)

It turns out that for our choice of A = A, random variable «, = a&N) is close to its extreme value 1 while
the other coefficients are asymptotically negligible. Since this only holds on 2 a more precise statement is

as follows.

Lemma 2.5. There exist deterministic constants C' and Ny such that for all N > Ny and w € Qn we have

(2.18) 1-CN 38 <a, <1
and
(2.19) log] < (C/VK —1)N3/® for s #r.

Proof. Since Y a? = 1, inequality (2.18) is a consequence of (2.19). Indeed, a2 =1-Y
and we use elementary inequality /1 — 2 > 1—+/z for 0 < x < 1.

To prove (2.19), we use (2.17). By assumption, p3/(MN) — ~3. Using (2.11), we choose N large enough
so that |p2 —y2MN| < §MN/4. Then, with s # r we get

2 A7—3/4
opr 02> 1-C2N~

N = 3| = [(\ =42 MN) + (3 = 72)MN + (Y2MN — p3)|
> 2~ 92IMN — [\~ 2MN]| ~ |62~ 42MN| 2 (32 ~ 12|~ §/2MN > JMN,
From (2.14) and (2.17) we get
gMN|0fs| <4AVMN|Tg =S~ + 4 VMN|Z| ST + R — Roll + 1Z]*IS7]-

Since Ix —S™1 = S71(S — Ix) using (2.9) we get
1673

1671
-1
IS~ Ll + 52 2] + e 1

We now estimate the norms of the K x K matrices on the right hand side. From (2.8) using (2.12) and
(2.14) we get

(2.20) las| < IR — Rol| +

2||C||? - 8N°/4 8

N1/4M 1
X2 —3MN ¢

(2.21) IS — Ikl <
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Next, we bound [|Z|| using (2.1). Recall that || (Iy — %C”‘C)f1 | < 2 for large enough N. From (1.5)
we have||G|| < 2v/ M N+, for large enough N. Using this, (2.12) and (2.14) we get

2 4V NN 8
(2.22) 1Z|| < |G| Ol < ~S NS < SN/
) ) 75
for large enough N.
Next we note that
1 _
(2.23) R - Rg = 5G"C°C Iy — }:C*C) ‘G,

Thus (2.23) with bounds (2.14), (2.12) and the above bound on ||G|| give us for large enough N
MN~? 2v3
(2:24) IR~ Ryl < o) < PN
Putting these bounds into (2.20) we get

12893 g 12893 o 6473 . 25692 -
o < SHANVAM ANy 2 T NYA N N AL
sl < 52 - 5o T Ty
In view of assumption (1.4), this proves (2.19).
O

The next step is to use Lemma 2.5 to rewrite the r-th equation in (2.17) to identify the ”contributing
terms” and the negligible "remainder” R which is of lower order than A on Qx. We will accomplish this in

several steps, so we will use the subscripts a, b, c, ... for bookkeeping purposes.
Define x(,y by
X(r) = Z s€5.
SFET

We assume that N is large enough so that the conclusion of Lemma 2.5 holds and furthermore that
a; > 1/2. Notice then that

(2.25) x| < CN73/8.
Dividing (2.17) with s = r by «, we get

22— 2 =22 (Ix — S Ve, 4+ 2)eZS e, + e (R — Ro)e, — e ZS ' Z* e, + VMNe™ + RV,
where

1
eM) = —ei(Zo + Z§)x()

r

and
vVMN
RN = \2— - er(Ix — S Hx T)—l—)\—e (ZS™ ' +871'zZ" - 3 ~——(Zo + Z3))x()
1 1
+ o SR —Ro)x() — —eZST'Z x(, .

Here we slightly simplified the equation noting that since S is symmetric, e*ZS™ e, = eTS 1Z%e,.
Our first task is to derive a deterministic bound for R((ZN) on

Lemma 2.6. There exist non-random constants C and Ny such that on Qn for N > Ny we have
IRV < CNT/8,

Proof. The constant will be given by a complicated expression that will appear at the end of the proof.
Within the proof, C' denotes the constant from Lemma 2.5.

Notice that
VMN
A

7 _ -1

Zy= 15G*C°C(Iy - 5C°C) 7 C'F,

so for large enough N we get

\/W 2’}/1 _
(2.26) |1Z — 3 ZO||< \/ Ny |C|® < 53/2N7/8M.
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Recall (2.9) and recall that N is large enough so that a, > 1/2. Using (2.25) and writing ZS™! =
ZS™Y(S —Ik) + Z we get

MN
RV < 4CAN5S ~ T | +CAN /5|8 ~ T | + 4CAN /52— YN g

+2CN3/8|R — Ry|| + 20N /3| Z] 2

128CH7 7ss  1024C93  y | 256093
< TN M AN -

M2N

+ 64?7% NT/8 4 12860’7% NT/8
(Here we used (2.21), (2.22), then (2.26), (2.24) and (2.22) again.) This concludes the proof.

|
Lemma 2.7. For every n > 0, we have
(2.27) Jim P ({\gm > n} N QN) —0.

Proof. We first verify that each entry of the matrix N—3/3Z,, which is well defined on €, converges in
probability to 0. To do so, we bound the second moment of random variable £ = £*Cg,. Since the entries
of C are independent and centered random variables,

(228) ZZ % 7,] gS <Sup01j||gr||2§CMN'
=1 j=1

Thus, see (1.10), each entry of matrix Zg has bounded second moment, so

(N = N—3/8 max ler(Zo + Zj)es| — 0 in probability.

To end the proof we note that by (2.19), for large enough N we have
P ({ sle )

Using the identity

E((JN)‘ < 2CK({N on Qpy, so

]>n}mQN) <P ({ICn] > 522N Qx) <P (ICn] > &) — 0.

I-S'=(S-1I)—(S-1I)?s7!
to the first term we rewrite (2.2.2) as
(2.29) A2 — (pV)2 = A2e%(S — Ik e, + 2)e’Ze, + €' (R — Ro)e, — e ZZ e, + R\") + VMNeM + RN

with
RN = —\%ei(S — Ix)2S e, + 2)eiZ(Ix — S)S e, — e Z(Ix — S)S ™' Z%e, .

Lemma 2.8. There exist non-random constants C and Ny such that on Qn for N > Ny we have
RNV < CNT/8,
Proof. Using (2.14) and previous norm estimates (2.21) and (2.22), we get
RY| < 2028 — Tic||? + 421 — Lic| + 21| 21| — L]

51297 3/2) -1 4 51297 11/8 12 4 10247 3/2 3 r—1
S(STN M 53/2N M~ 52 ———=N**M~".

This ends the proof. |
Define K x K random matrices

(2.30) R, =G*'C*CG

and

(2.31) S; = F*CC*F.
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Recall that E(R;) = MXg and E(S;) = NXg, see (1.11) and (1.12).

Lemma 2.9. There exist non-random constants C and Ny such that on Qn for N > Ny we have

1
IS = Ti = 3381l < CN—3/2

and
IR — Ry — LRy|| < CNV2

Proof. Notice that
1 1. oy
S—1Ix— )\QS FF (CC*)*(Iy — £ CC*)'F.
For large enough N (so that (2.12) and (2.14) hold), this gives

32

1 2 _
I8~ Tx — 5381l < ICJ1* < S M2N12,

Similarly, since

R-Ro— &R, = FG*(c C)? (Iy - +C'C)'G

for large enough N, we get

2 128+
IR =Ry~ Ry | < max [ GIPC)* < i ar N2

We now rewrite (2.29) as follows.

N — (pM)?

N
ei(S1)e, +2VMNe:Zoe, + —ei(Ri)e, — —5e:ZoZje, + RN + RV + VMNe(M + RV

/\2 e A

where

1 1 MN
RN = e (/\Z(S—IK 1251 +20Z = VMNZo) + (R = Ro — 5 R1) + (5 ZoZj — ZZ*)>e

Lemma 2.10. There exist non-random constants C' and Ny such that on Qn for N > Ny we have
IRV < CNT/8,

Proof. As in the proof of Lemma 2.6, the final constant C' can be read out from the bound at the end of
the proof. In the proof, C is a constant from Lemma 2.9. By the triangle inequality, Lemma 2.9, (2.26) and
(2.22), we have

1
IRV < N2||S — Iy — Sl +200Z — VMNZ|

1 vVMN vVMN
IR = Ro - SRl + 12 = Y520l (121 + Y5 1200)
128 256~ 128
2 -1/2 4 ’71 1/2 A711/8 12 Y1 4 r—1773/2 71 1p73/2
<A4C~y{MN 5372 —— M~ /“N +CN 52 —— M N+ 5372 — M "N
(Here we used the bound ||Zol|| < 271 N%/%, which is derived similarly to (2.22).) O

The following holds on €. (Recall that expressions (2.31), (1.10) and (2.30) are well defined on .)
(N)

Proposition 2.11. There exists a random sequence €, ° — 0 in probability as N — oo such that
1 2vVMN 1
(2.32) A — p(N) = ———e'(Sy)e, + e Zoe,+ ————e(Ry)e, + E(N).

At pM " A+ pt) ()\+p£N)))\
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Proof. Let
(N) )\+;(N) (_ YA e*ZOZSeT + R(N) + R \/ N)) on QN?
€b = i (N) .
A—pr = >\+;5.N) e’ (Sy)e, — ngm e Zoe, — 7()\-}-[)(1\])))\2 e’(Ri)e, otherwise.

By Lemma 2.4 we have P(Qy) — 0, so it is enough to show that given n > 0 we have IP({|€£N)\ > 5niNQy) —
0 as N — oo. Since the event |1 + -+ + &5| > 5n is included in the union of events |1 > 7,..., (] > 7,

in view of Lemmas 2.6, 2.8, 2.10, and Lemma 2.7 (recalling that expressions v M N /(X + ps-N)) and MN/\?
are bounded by a non-random constant on Qy, see (2.14)) we only need to verify that

*z Z*r W/ Z*T
P M>n Ny | <P M>n — 0 as N — oo.
(N) (N)
)\+pr Pr

Since for large enough N, we have p? > §M N, convergence follows from

(2.33) Ee;ZoZje, < E|Zo” < E|Zo|} < K*C,

where C' is a constant from (2.28).
O

Proof of Proposition 2.3. Recall that ES; = N¥Xg and ER; = MXpg. So expression (2.10) differs from
(2.32) only by two terms:

1
w1 S e
and
1
m e, (R; —ERy)e,

Since pr )/\/ N — v, > 0 and by Lemma 2.4 we have A\/vVVMN — =, in probability, to end the proof we
show that +[|S; — ES1|r — 0 and w5|R1 — ERy|r — 0 in probability. To do so, we bound the second
moments of the entries of the matrices. Recalling (2.31), we have

N
f¥(CC* — E(CCY)) ZZ Xiw Xonlfly + DD [61:(X7y, — ol p)lf)i = Ay + By (say).

k=1 1i#j k=1 1i=1

By independence, we have

N N N
ZZ 20202, < OSSN IR PIR)? < ON.

k=1 i#j k=1i=1 j=1
Next,
N M M M
=3 S ELETEX, —07,)? < NC | D [E)E | D EJE < CN.
k=11i=1 i=1 i=1

This shows that (with a different C) we have E | f*(CC* — E(CC*)f,)|> < CN and hence +S1—ESi[|[p =0
in mean square and in probability.
Similarly, recalling (2.30) we have

M N
gr(C C - E C* C ZZ gr % gs i Xk sz:,] + ZZ[gr]z[gs]z(Xlg,z - Oi,i) = Anx + Bn (Say)-
k=1 1i#j k=11=1

Using independence of entries again, we get

M
=Y I lileliok ok, < CM|gs|P g1 < 204 MPN?
k=1 i£j
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for large enough N. Similarly,

N
Z E(X7; —o0i:)? < CM|lg:|*[lgs]|* < 2CHi MPN>.
k=11i=1

This shows that (with a different ') we have E|g*(C*C — E(C*C))g.|*> < CN® and hence =R —

ER,|r — 0 in mean square and in probability.

2.2.3. Conclusion of proof of Theorem 1.1. Theorem 1.1 is essentially a combination of (2.10), and conver-
gence in probability from Lemma 2.4.

Proof of Theorem 1.1. We need to do a couple more approximations to the right hand side of (2.10). Indeed,
we see that

N N7 VMN e

2N 1
A+ p(N) 71
M vVM/N 1 Ve
A+ pM a2 2y, yEMN  2y)MN

To conclude the proof, we note that sequences {[ZJ(SN)]T’T}N7 {[E%N)]T,T/(MN)} are bounded and {[Z((JN)]M}
is stochastically bounded by (2.28).
O

Remark 2.1. Recall (1.15) and (1.16) from Remark 1.1. Examples in Section 3.3 have the additional property
that

(2.34) R = Q.

Under Assumption 1.1, the eigenvalues of Q are v§ > 73 > --- > v% > 0. Denoting by v,. the corresponding
orthonormal eigenvectors, we may assume that the first non-zero component of v,. is positive. After choosing
the appropriate sign, without loss of generality we may assume that the same component of u( )i
negative for all V. Since by assumption eigenspaces of Ro are one-dimensional for large enough N, we
have

is non-

ﬁ(N)—>VT as N — oo.

We claim that in (1.17) and in (1.19) we can replace vectors u, by the correspondlng elgenvectors v, of Q.
Indeed, as in the proof of Theorem 1.1 the entries of the K x K matrices ER/(MN) and g are bounded
as N — oo. Also, we note that each entry £ = f Cg; of matrix Zo is stochastically bounded due to uniform
bound the second moment:

M N
= ZZ 707 ;lgs); <supoi,llg.[|* < CMN.
i=1 j=1 i
(Compare (2.28).) This allows for the replacement of the u, with the v,..

3. ASYMPTOTIC NORMALITY OF SINGULAR VALUES

In this section we apply Theorem 1.1 to deduce asymptotic normality. To reduce technicalities involved,
we begin with the simplest case of mean with rank 1. An example with mean of rank 2 is worked out in
Section 3.2. A more involved application to population biology appears in Section 3.3. We use simulations
to illustrate these results.
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3.1. Rank 1 perturbation. The following is closely related to [8, Theorem 1.3] that was mentioned in the
introduction.

Proposition 3.1. Fiz an infinite sequence {u;} such that the limit v* = limy_00 2 Zjvzl u? exists and
is strictly positive. Consider the case K = 1, and assume that entries of random matric D € My« N are
independent, with the same mean p; in the j-th column, the same variance o2, and uniformly bounded fourth

1/2
moments. For the largest singular value A of D, we have A — v M (Zj 1 ,uj> = Z where Z is normal
with mean —(\f—i— 1/4/¢) and variance o*. (Here = denotes convergence in distribution.)

Proof. In this setting B = fg* with f = M~1/2[1,...,1]*, g = VM|[u1, ..., un]*. We get p? = MZ; 1%,
Y1 =7, ZR = UQMZ;‘Vzl :’-I’?? ES = 027 and

M N
Zy = ZZXJ“J’ so (1.9) gives Z; = ZZ ik
VM i=1 j=1 i=1j=1

Thus, the largest singular value of D can be written as

N 1/2

_ 2 o*(Ve+1/ \[ 1

Jj=1 1=1 j=1

where e(™) — 0 in probability. We have
21 Y
Var(Z;) = N Z,uf — o2
j=1
and the sum of the fourth moments of the terms in Z; is
2
M N
470 va
MQNZ 422 EXJ* ZMJ — 0.
=1 j=1
So Z; is asymptotically normal by Lyapunov’s theorem [1, Theorem 27.3]. ]
3.2. Block matrices. Consider (2M) x (2N) block matrices
_ A1 As
o3 &)

where Aq,..., Ay are independent random M x N matrices. We assume that the entries of A; are indepen-

dent real identically distributed random variables with mean p;, variance 0]2- and with finite fourth moment.
Then B = E(D) = fig} + f2g} is of rank K = 2 with orthonormal

[f']— 1/vM for1<i<M
Y0 for M +1<i<2M
[}z]_ 0 for1<i< M
TV YVM for M+1<i<2M
and with
&l = VM for1<j<N
B VM s for N+1<j<2N

B, = vV M pus for1<j<N
827\ VM g for N4+1<j<2N
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(1 3]
M1 M3
So G =vVM u.1 w3 | and f{o = G*G = [||~§1~||2 55522} — MN { pi + 3 ,Ulﬂg + ﬂgm _
gig2 g2l H1p3 + H2fia M1y + g
M2 [y
LH2 M4

Denote by A1 > Ao the largest singular values of D.

Proposition 3.2. Suppose g1 and g2 are linearly independent and either gigs # 0, or if gig2 = 0 then
llg1]l # l|g2ll. Then there exist constants ¢1 > co such that

(31) ()\1—61\/MN7)\2—C2\/MN)j(21,Z2)’
where (Z1, Z3) is a (noncentered) bivariate normal random variable.
Proof. To use Theorem 1.1, we first verify that Assumption 1.1 holds. We have

L[ pf+ps paps + popia
where Q = — 1 2 .
Q=7 laps + papia 1+ 13

Ry = 4MNQ,

Noting that det(Q) = (pops — u1u4)2 /16, we see that 1 > 5 > 0 provided that det [Zl ZQ} #£0, ie.
3 M4

provided that g; and g5 are linearly independent. The eigenvalues of Q are

1
vf:§(uf+u§+u§+ui+\/((u2+u3)2+(u1*u4)2)((uz7u3)2+(u1+u4)2)),

1
v§=g(u?+u§+u§+ui—\/((uz+u3)2+(u1—u4)2)((u2—u3)2+(m+u4)2)),

so condition 1 > 7o is satisfied except when p; = +p4 and py = Fpus, i.e. except when g, and gy are
orthogonal and of the same length.

We see that pgN) = 27,V M N, which determines the constants ¢, = 2, for (3.1). Next, we determine
the remaining significant terms in (1.14). First, we check that the shifts m™) in (1.14) do not depend on
N. To do so we compute the matrices:

5. _ MN [ pi(of +03) +p3(03+0f)  mps(of +03) + papa(o3 + of)
Yp=—— 3, 2 2, 2 2/ 2, 2 2/ 2 . 2
2 |pps(of + o3) + papa(os + ox) ps(of +o3) + pi(os +og)
and
. 1 o2+ 03 0
ST 9 0 o2+ 03

Indeed, we have

[AR]..{(U%""U?Q,)/Q J<N (02 +02)/2 i<M
3i =

(03 +0%3)/2 M+1<i<2M

d [Aglii =
(@F+02)2 N+1<j<ay dBsh {

To verify normality of the limit, we show that the matrix Zg is asymptotically centered normal, so formula
(1.9) gives a bivariate normal distribution in the limit. Denoting as previously by X; ; the entries of matrix
C =D - ED, (1.18) gives

i M N M 2N 2M N oM 2N
Y > Xigtmay, > Xig omo Y, > Xig+m Y, Y, Xij
B 1 i=1 j—1 i=1 j=N+1 I=M41 =1 i=M+1j=N+1
Z =
0 2vMN M N M 2N oM N oM 2N
psd > Xijtpay, > Xij opz Y, > Xijtp », Y Xij
=1 j—1 i=1 j=N+1 i=M—+1j=1 i=M+1j=N+1

1 |#101C1 + p202C2 p103C3 + p20aCa
2 | n301C1 + paoale  p303(3 + (ha04Cs
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with independent N (0, 1) random variables (i, ..., (4.
In particular, the limit (Z7, Z2) = (ma, me2) + (Z5, Z3) is normal with mean given by (1.19), and centered
bivariate normal random variable

Zf = iv*{zovl, Z; = iV;Z(]VQ.
|
3.2.1. Numerical example and simulations. For a numerical example, suppose 0]2- = 02, uj = p, except
= 0. Thenfyf:“;(?)—l—\/g),’y%: %2(3—\/5) and
oL VP Vil {0.525731]
1= —F= ~
0.850651
Vi | v
o L[ VP VB {—0.850651]
2= —= ~
0.525731
—
'S 2 'S 2 2| 1 1
Yg=0T1, Xp=MNu‘oc 1 2
so with ¢ = M/N, formula (1.19) gives
o — (V5 —1)o%(M + N) i (V5 + 1)o%(M + N)
' 247/ MN T 207/ MN '
We get
7o _ (2v5¢G+ (5+V5) &+ (5+V5) (3 + (54 3V5) 44)0
! 5(1+V5) ’
go (= (5+v5) ¢+ 2V +2v5¢ + (V5 —5) 44)0
5 = .

10

Thus Ay — puy/SMN(3+V/5), Ao — iy /2 M N (3 — V/5) is approximately normal with mean (mq,m») and

covariance matrix o2I,. In particular, if the entries of matrices are independent uninform U(—1, 1) for block
A, and U(0,2) for blocks Ay, Az, Ay, then 02 = 1/3, 4 = 1. So with M = 20, N = 50 we get

1 1
M 516228 + —=Cr, N % 20T3T8 4+ —=G,

V3 V3

with (new) independent normal N(0,1) random variables (1, (5. Figure 1 show the result of simulations for
two sets of choices of M, N.
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8.5 19 19.5 20 205 21 215 22 225 23 194 1945 195 1955 196 1965 197 1975 198

M =20, N =50 M =200, N = 500

198.5 199

FI1GURE 1. Histograms of simulations of 10,000 realizations, overlayed with normal density
of variance 1/3. Top row: Largest singular value; Second row: second singular value. For
small N, additional poorly controlled error arises from (%) — 0 in probability.

3.3. Application to a model in population genetics. Following [2] (see also [7]), we consider an M x N
array D of genetic markers with rows labeled by individuals and columns labeled by polymorphic markers.
The entries [D]; ; are the number of alleles for marker j, individual 4, are assumed independent, and take
values 0, 1,2 with probabilities (1 — p)?,2p(1 — p), p? respectively, where p is the frequency of the j-th allele.
We assume that we have data for M individuals from K subpopulation and that we have M, individuals
from the subpopulation labeled r. For our asymptotic analysis where N — oo we assume (1.4) and that
each subpopulation is sufficiently represented in the data so that

M,/N — ¢, >0,

where of course ¢; + -+ 4+ ¢k = ¢. (Note that our notation for ¢, is slightly different than the notation
in [2].) We assume that allelic frequency for the j-th marker depends on the subpopulation of which the
individual is a member but does not depend on the individual otherwise. Thus with the r-th subpopulation
we associate the vector p, € (0,1)Y of allelic probabilities, where p,.(j) := [p,]; is the value of p for the j-th
marker, 7 =1,2,..., V.

We further assume that the allelic frequencies are fixed, but arise from some regular mechanism, which
guarantees that for d = 1,2, 3,4 the following limits exist

N

. 1 . . .

Jim E 1pr1 (D)Pra(G) - g () = Ty rgrrgy 1 <11 < oo- <1 <K
]:

This holds if the allelic probabilities p,.(j) for the r-th population arise in ergodic fashion from joint allelic
spectrum ¢(x1,...,2x) [4] with

(3.2) Ty rosery :/ Ty oo Ty (21, .., T )day . dTk.
[0,1]¥

Under the above assumptions, the entries of D are independent Binomial random variables with the same
number of trials 2, but with varying probabilities of success. Using the assumed distribution of the entries
of D we have B = ED = 227{11 €,pr, where €, is the vector indicating the locations of the members
of the r-th subpopulation, i.e. [€,]; = 1 when the i-th individual is a member of the r-th subpopulation.
Assuming the entries of D are independent, we get B = Zf{:l E@ﬁ = FG* with orthonormal vectors
f = €,./v/M, and with g, = 2¢/Mps, so we have (1.15). In this setting, Remark 2.1 applies. In (1.16), we
have [Ro),.s = 4v/M, M,p’p, and Ry/(MN) — Q, where

(33) [Q]r,s = Tr,sy
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so the eigenvalues of f{O are pr ~ % 2MN —i— o(N?). As previously, we assume that the that Q has positive
and distinct eigenvalues v > 73 > --- > 7% > 0 with corresponding eigenvectors v1,..., vy € RX. (Due to
change of notation, matrix (3.3) differs from [2, (2.6)] by a factor of 4.)

To state the result, for 1 <t < K we introduce matrices X; € Mg« x with entries

(3.4) S0 = Yo

Tr,s,t — Trr,s,t,t)-

Proposition 3.3. The K largest singular values of D are approximately normal,

W] [m] T
X —p ma G2
2 2 n
AN | ] ek
where
K K
1 4/c Ct
3.5 r=— o7 (e — —5 ) —ViZv,
(3.5) m Jon ;[V Je(me — mee) + 53 t=z1 o V2V
and (C1,...,Cxk) is centered multivariate normal with the covariance
g XK
]E(C’I“CS) = Z[Vr]t[vs}tvjztvs-
Vs i

Proof. We apply Theorem 1.1 in the form stated as Remarks 1.1 and 2.1. The first step is to note that due
to the form of vectors fk, equation (1.18) gives a matrix Zo with independent columns. Our first task is to
show that Zo is asymptotically normal by verifying that each of its independent columns is asymptotically

normal.
Denote by N} the index set for the k-th subpopulation (i.e., [€]; = 1 if i € Ng). In this notation, the

k-th column of Zg is

v N .

M, Zie/\fk ng:l Xi,jp1(3)

2 | VM Doien, 21 Xijp2(J)

M N My, 5
v N .

Mp Zie/\/k Zj:l Xi jpr(f)

To verify asymptotic normality and find the covariance, we fix t = [t1,...,tx]*. Then the dot product of
t with the k-th column of Zj is

N
Sny= >3 aj(N)X

iEN j=1
with

2 & .
aj(N) = 4%MNM]§ ; \/ﬁrtrpr(])

We first note that by independence

Var(Sy) = ) Za JEXZ;

i€ENE =1

=38 Z brytry ——— ”MT? . an )Prs (3)Pe () (1 — pi (7))

T1,T2= 1

-8 EK: VEriCra

*
c (7TT1,T2J€ - 7r7“177’2,k,k) brytry = 8t 2t
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giving the covariance matrix for the k-column as 8 times (3.4).
Next we note that since E(X;;) = 2py(j)(1 — p(j)), we have

N
> D a(NEXY,

i€ENy j=1

K
32 vV MTlMTzMTBMT4 y
= NM, Z M2 7‘1 T’ths T‘4N Zprl pTz(])prs(j)pm(])pk( )(1*pk(;7)) = O(]-/Nz)

r1,72,73,74=1 Jj=1

By Lyapunov’s theorem Sy is asymptotically normal. Thus the k-th column of ZO is asymptotically normal
with covariance 8 times (3.4). Let Z(()OO) denote the distributional limit of Zg.

From (1.17) with u, replaced by v, as in Remark 2.1, we see that (Z{N), ceey Z%N)) converges in distribution
to the multivariate normal r.v. ((1,...,(x) with covariance

K
E(V:Zéoo)v,.v;‘zgoo)vs): 8 Z[VT]t[vs]tV:Etvs.

E(Cr(s) = e
/s t:1

’I“’YS

Next, we use formula (1.19) to compute the shift. We first compute Xg = E(F*CC*F)/N. As already
noted, C*F € My« has K independent columns, with the k-th column

ZieNk Xi’l

1 Eie/\fk Xi2
v My, :

dien, XiN

So B is a diagonal matrix with
N
[25]rr ZNZ Y1 = pr(§)) = 2(mp — 7pr).
Next, we compute the limit of

C C

~ M2N

~ ~ 1 ~ ~
B(G*C°CG) ~ 75 E(G°C CG).

Since
K N
[E(G*C*CG)], Z Z ilgrpe () = pelG —8\/721\4:52295 3o ()pe(7) (L = pi(4))

we see that

=

Ct(ﬂ—r,s,t - 7Tr7s,t,t)'

(5wl

This shows that
K

MNER — SthEt

t=1
From (1.19) we calculate

K K
1 4cg
My = Z (\E’Y [Vr]g(ﬂ's - WS,S) + 3/2 Z [VT’]tl [VT]tz V Ct1Cta (Wt17t2,5 - 7Tt1¢2,$,$)>
s=1 r

77“ t1,ta=1
which is (3.5). O
Ref. [2] worked with the eigenvalues of the ”sample covariance matrix” (DD*)/(v/M +v/N)?, i.e., with

the normalized squares of singular values A, = A2/(v/M + +/N)2. Proposition 3.3 then gives the following
normal approximation.

— 0.
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Proposition 3.4.

r (N)y2 B

Al _ (P1 )
(VM+VN)?2

(N)
A2 (Pz )2 7’7?,2 Z2

ICZZEATEN IR B

N
(P))?

_AK T (WVM+vVN)2

with recalculated shift

K K
- 2 9 8c Ct 4
My = s D Vali (M = M) + s > Vi,
(1+cl/2)2 & V(1422 &
and with recalculated centered multivariate normal random vector (Z1, ..., Zk) with covariance
K
32c
E(Z.Z,) = ——r- Ve[ Vs ViR vs.
( ) (1+\/E)4 ;[ ]t[ ]t T tVs
Proof.
A r ) ) X At pr X MN
r T = =4 r — Pr .
(VM +V/N)? VMN (VM ++V/N)?
Since
Ar + pr . . VMN Ve
— 27, in probability, and — ,
N2 Y (VM + VN2 (1+V0e)?
see Lemma, 2.4, the result follows. O

3.3.1. Numerical illustration. As an illustration of Theorem 3.3, we re-analyze the example from [2, Section
3.1]. In that example, the subpopulation sample sizes were drawn with proportions ¢; = ¢/6, ca = ¢/3,
cs = ¢/2 where ¢ = M/N varied from case to case. The theoretical population proportions p,(j) at each
location for each subpopulation were selected from the same uniform site frequency spectrum ¥ (z) = /z/2.
Following [2, Section 3.1], for our simulations we selected pi(j), p2(7), ps(j) independently at each location
J, which corresponds to joint allelic spectrum 1 (z,y, 2) = ¥(x)(y)¥(2) = /ryz/8 in (3.2).

In this setting, we can explicitly compute the theoretical matrix of moments (3.2) and matrix Q defined
by (2.34):

2 2v2 2
15 27 93
1/5 1/9 1/9 4 0.133333 0.104757 0.1283
[mrs]l=1 1/9 1/5 1/9 |, Q= —-[Veresmrs] = % % % = | 0.104757 0.266667 0.181444
1/9 1/9 1/5 ¢ 0.1283  0.181444 0.4
2 22 2
9v3  9Vv3 5

(Due to change of notation, this matrix and the eigenvalues are 4 times the corresponding values from [2,
page 37].) The eigenvalues of the above matrix Q are

[vZ,~v2,~2] = [0.586836,0.141985,0.0711794]

and the corresponding eigenvectors are

0.342425 —0.154523 —0.926751
vy = [0.545539| , vo = [—0.770372| , v3 = | 0.33002
0.764939 0.618586 0.179496
In order to apply the formulas, we use (3.2) to compute
1/27T r#£s#t
Trs,t = 4 1/15  if one pair of indexes is repeated

1/7 r=s=t
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and

1/45 r#s#t
1/25 r=s#t
1/21 r#s=t
1/9 r=s=t

Tr,s,t,t =

As an intermediate step towards (3.4), it is convenient to collect the above data into three auxiliary matrices

T2 2 2 7
63 105 105

_ 2
[7Tr51 — Trsil)r,s = 105 75 135

2 2
[777'52 — Trs22|r,s = 105 63 105

— 2 2 2
[7Tr53 — Trs33]r,s = 135 75 105
2 2 2

From (3.4) we get

1 V2 1 _ -
@ 315 10\5f\/§ 0.00529101 0.00448957 0.00549857
1= ﬁ % 135\2/5 = | 0.00448957 0.00888889 0.00604812
1 V2 1 0.00549857 0.00604812 0.0133333
| 105v/3 1353 7 - -
[ 1 V2 1 ) _ _
@ 315 10\5f\/§ 0.00444444 0.00448957 0.00427667
Yo = ﬁ % 135\2/5 = | 0.00448957  0.010582 0.00777616
1 V2 1 0.00427667 0.00777616 0.0133333
| 105v/3 1353 7 - -
[ 1 V2 1] - -
2\;§ 405 10\5/\/5 0.00444444 0.00349189 0.00549857
_ 2 2 2 _
33 = 105 395 10573 = | 0.00349189 0.00888889 0.00777616
1 V2 1 i 0.00549857 0.00777616 0.015873

L 105v3 1053 3 -
Using these expressions and (3.5) with ¢ = M/N = 120/2500, we determine
0.174053 0.353849 0.49976
Ve Ve Ve
We note that the shift is stronger for smaller singular values and is more pronounced for rectangular matrices

with small (or large) c.
Finally, we compute the covariance matrix

[m1,ma, ms] = [0.183948/c+ ,0.323598+/c+ ,0.47449/c+

] = [0.834739, 1.68599, 2.38504].

0.306317 0.0293619 0.0225604
[E¢-Cs] = | 0.0293619 0.233577 —0.00941692
0.0225604 —0.00941692 0.235559

The following figure illustrates that normal approximation works well.
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FIGURE 2. Histograms of three largest singular values with normal curves centered at [p; +
m1, p2 + ma, p3 + ms] = [413.47,208.02, 145.44] with variances 0.3063, 0.2336, 0.2356. Based
on 10,000 runs of simulations after a single randomization to choose vectors p1, p2, ps with
M =120, N = 2500.

Based on simulations reported in Fig. 2, we conclude that normal approximation which uses the singular
values of Ry provides a reasonable fit.

Let us now turn to the question of asymptotic normality for the normalized squares of singular values
A, = \2/(VM ++/N)2. With M = 120, N = 2500 (correcting the misreported values) Ref. [2] reported the
observed values (48.2,11.5,5.8) for Ay, A2, A3 versus the “theoretical estimates” (47.4,11.5,5.7) calculated
as Y2 M N/(v/M ++/N)? in our notation. While the numerical differences are small, Proposition 3.4 restricts
the accuracy of such estimates due to their dependence on the eigenvalues of I~{0 constructed from vectors of
allelic probabilities p,.. Figure 3 illustrates that different selections of such vectors from the same joint allelic
spectrum (3.2) may yield quite different ranges for Ay, Ao, A3. Tt is perhaps worth pointing out that different
choices of allelic probabilities affect only the centering; the variance of normal approximation depends only
on the allelic spectrum.
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FIGURE 3. Two histograms of normalized squared singular values (A1, Ag, Az), based on
10000 simulations, and the theoretical normal curves from Proposition 3.4 drawn in red.
This is M = 120 individuals with N = 2500 markers. Although the numerical differences
between A1, Ao, A3 on the left-hand-side and on the right-hand side are small, the histograms
have practically disjoint supports.
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