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Abstract. We study largest singular values of large random matrices, each with mean of a fixed rank

K. Our main result is a limit theorem as the number of rows and columns approach infinity, while their
ratio approaches a positive constant. It provides a decomposition of the largest K singular values into

the deterministic rate of growth, random centered fluctuations given as explicit linear combinations of the

entries of the matrix, and a term negligible in probability. We use this representation to establish asymptotic
normality of the largest singular values for random matrices with means that have block structure. We also

deduce asymptotic normality for the largest eigenvalues of a random matrix arising in a model of population

genetics.

1. Introduction

Finite rank perturbations of random matrices have been studied by numerous authors, starting with [5],
[3]. This paper can be viewed as an extension of work done in [8] which describes the limiting behavior of
the largest singular value, λ1, of the M ×N random matrix D(N), consisting of i.i.d. random variables with
common mean µ > 0, and M/N → c as N →∞. Immediate results are obtained using known properties on
the spectral behavior of centered matrices. Indeed, express D(N) in the form

(1.1) D(N) = C(N) + µ1M1∗N

where C(N) is an M ×N matrix containing of i.i.d. mean 0 random variables having variance σ2 and finite
fourth moment, and 1k is the k dimensional vector consisting of 1’s (∗ denotes transpose). When the entries
of C(N) come from the first M rows and N columns of a doubly infinite array of random variables, then it is
known ([11]) that the largest singular value of 1√

N
C converges a.s. to σ(1 +

√
c) as N →∞. Noticing that

the sole positive singular value of µ1M1∗N is µ
√
MN , and using the fact that (see for example [9])

|λ1 − µ
√
MN | ≤ ‖C‖,

(‖ · ‖ denoting spectral norm on rectangular matrices) we have that almost surely, for all N

λ1 = µ
√
MN +O(

√
N).

From just considering the sizes of the largest singular values of C(N) and µ1M1∗N one can take the view that
DN is a perturbation of a rank one matrix.

A result in [8] reveals that the difference between λ1 and µ
√
MN is smaller than O(

√
N). It is shown

that

(1.2) λ1 = µ
√
MN +

1

2

σ2

µ

(√
M

N
+

√
N

M

)
+

1√
MN

1MC(N)1∗N +
1√
M
ZN ,

where {ZN} is tight (i.e. stochastically bounded). Notice that the third term converges in distribution to
an N(0, σ2) random variable.

This paper generalizes the result in [8] by both increasing the rank of the second term on the right of
(1.1) while maintaining the same singular value dominance of this term over the random one, and relaxing
the assumptions on the entries of C. The goal is to cover the setting that is motivated by applications to
population biology [7], [2], see also Section 3.3.

We use the following notation. We write A ∈MM×N to indicate the dimensions of a real matrix A, and
we denote by A∗ its transpose; [A]r,s denotes the (r, s) entry of matrix A. Id is the d × d identity matrix.
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We use the spectral norm ‖A‖ = sup{x:‖x‖=1} ‖Ax‖ and occasionally the Frobenius norm ‖A‖F =
√

trAA∗.
Recall that for an M ×N matrix we have

(1.3) ‖A‖ ≤ ‖A‖F .

Vectors are denoted by lower case boldface letters like x and treated as column matrices so that the Euclidean
length is ‖x‖2 = x∗x.

Throughout the paper, we use the same letter C to denote various positive non-random constants that do
not depend on N . The phrase ”... holds for all N large enough” always means that there exists a non-random
N0 such that ”...” holds for all N > N0.

We fix K ∈ N and a sequence of integers M = M (N) such that

(1.4) lim
N→∞

M/N = c > 0.

As a finite rank perturbation we take a sequence of deterministic rank K matrices B = B(N) ∈MM×N with

K largest singular values ρ
(N)
1 ≥ ρ(N)

2 ≥ · · · ≥ ρ(N)
K .

Assumption 1.1. We assume that the limits

(1.5) γr := lim
N→∞

ρ
(N)
r√
MN

exist and are distinct and strictly positive, γ1 > γ2 > · · · > γK > 0.

Our second set of assumptions deals with randomness.

Assumption 1.2. Let C = C(N) be an M ×N random matrix with real independent entries [C]i,j = Xi,j .
(The distributions of the entries may differ, and may depend on N .) We assume that E(Xi,j) = 0 and that
there exists a constant C such that

(1.6) E(X4
i,j) ≤ C.

In particular, the variances

σ2
i,j = E(X2

i,j)

are uniformly bounded.
We are interested in the asymptotic behavior of the K largest singular values λ1 ≥ λ2 ≥ · · · ≥ λK of the

sequence of noncentered random M ×N matrices

(1.7) D = D(N) = C + B.

Our main result represents each singular value λr as a sum of four terms, which represent the rate of
growth, random centered fluctuation, deterministic shift, and a term negligible in probability. To state this
result we need additional notation.

The rate of growth is determined by the singular values ρ
(N)
1 ≥ ρ(N)

2 ≥ · · · ≥ ρ(N)
K > 0 of the deterministic

perturbation matrix B. The singular value decomposition of B can be written as

(1.8) B = Fdiag(ρ1, . . . , ρk)V∗ = FG∗,

where F ∈MM×K has orthonormal columns and G = Vdiag(ρ1, . . . , ρk) ∈MN×K has orthogonal columns
of lengths ρ1, . . . , ρK .

The random centered fluctuation term for the r-th singular value λr is

(1.9) Z(N)
r =

[Z0]r,r
γr

,

where Z0 is a random centered K ×K matrix given by

(1.10) Z0 =
1√
MN

G∗C∗F.

Note that Z0 implicitly depends on N .
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The expression for the constant shift depends on the variances of the entries of C. To write the expression
we introduce a diagonal N ×N matrix ∆R = E(C∗C)/M and a diagonal M ×M matrix ∆S = E(CC∗)/N .
The diagonal entries of these matrices are

[∆R]j,j =
1

M

M∑
i=1

σ2
i,j , [∆S ]i,i =

1

N

N∑
j=1

σ2
i,j .

Let Σr = Σ
(N)
R and ΣS = Σ

(N)
S be deterministic K ×K matrices given by

(1.11) ΣR = G∗∆RG

and

(1.12) ΣS = F∗∆SF

Define

(1.13) m(N)
r =

1

2

[ √
c

γ3
rMN

ΣR +
1√
cγr

ΣS

]
r,r

.

Theorem 1.1. With the above notation, there exist ε
(N)
1 → 0, . . . , ε

(N)
K → 0 in probability such that for

1 ≤ r ≤ K we have

(1.14) λr = ρ(N)
r + Z(N)

r +m(N)
r + ε(N)

r .

Expression (1.14) is less precise than (1.2) (where the negligible term ZN/
√
M → 0 in probability at

known rate as Zn is stochastically bounded), but it is strong enough to establish asymptotic normality under
appropriate additional conditions. Such applications require additional assumptions and are worked out in
Section 3.

Remark 1.1. In our motivating example in Section 3.3, the natural setting is factorization of finite rank
perturbation as

(1.15) B = F̃G̃∗ =

K∑
s=1

f̃sg̃
∗
s ,

where F̃ ∈ MM×K has orthonormal columns f̃s, but the columns, g̃s, of G̃ ∈ MN×K are not necessarily
orthogonal. These matrices are a natural input for the problem so we would like to maintain their roles and

recast Theorem 1.1 in terms of such matrices. We introduce matrices R̃0 = R̃
(N)
0 ∈MK×K by

(1.16) R̃0 = G̃∗G̃

with eigenvalues ρ2
1 ≥ · · · ≥ ρ2

K and we denote the corresponding orthonormal eigenvectors by ũ1, . . . , ũK .
We claim that (1.9) is

(1.17) Z(N)
r =

1

γr
ũ∗rZ̃0ũr,

with

(1.18) Z̃0 =
1√
MN

G̃∗C∗F̃,

and similarly that (1.13) is

(1.19) m(N)
r =

1

2
√
cγr

ũ∗r

(
c

γ2
rMN

Σ̃R + Σ̃S

)
ũr.

with G̃ and F̃ used in expressions (1.11) and (1.12) which define Σ̃R and Σ̃S .

Indeed, let G̃∗ = Ũdiag(ρr)Ṽ
∗ be its singular value decomposition. If N is large enough so that the

singular values are distinct, we may assume that ũ1, . . . , ũK are the columns of Ũ. Then Ṽ is determined

uniquely and B = F̃Ũdiag(ρr)Ṽ
∗. Since by assumption our singular values are distinct, with proper align-

ment we may assume that G = diag(ρr)Ṽ
∗ and then necessarily F = F̃Ũ in (1.8). So for any A ∈ MN×M

we have
ũ∗rG̃

∗AF̃ũr = [G∗AF]r,r,
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which we apply three times with A = C∗, A = Σ̃R and A = Σ̃S .

2. Proof of Theorem 1.1

Throughout the proof, we assume that all our random variables are defined on a single probability space
(Ω,F ,P). In the initial parts of the proof we will be working on subsets ΩN ⊂ Ω such that P(ΩN )→ 1.

2.1. Singular value criterion. In this section, we fix r ∈ {1, . . . ,K} and let λ = λr. For ‖C‖2 < λ2,
matrices IM − 1

λ2 CC∗ and IN − 1
λ2 C∗C are invertible, so we consider the following K ×K matrices:

Z =
1

λ
G∗
(
IN − 1

λ2 C∗C
)−1

C∗F ,(2.1)

S = F∗
(
IM − 1

λ2 CC∗
)−1

F ,(2.2)

R = G∗
(
IN − 1

λ2 C∗C
)−1

G .(2.3)

(These auxiliary random matrices depend on N and λ, and are well defined only on a subset of the probability
space Ω. We will see that these matrices are critical for our subsequent analysis.)

Lemma 2.1. If ‖C‖2 < λ2/2 then

(2.4) det

[
Z− λIK R

S Z∗ − λIK

]
= 0.

Proof. The starting point is the singular value decomposition D = UΛV∗. We choose the r-th columns
u ∈ RM of U and v ∈ RN of V that correspond to the singular value λ = λr. Then (1.7) gives

Cv +

K∑
s=1

(g∗sv)fs = λu ,(2.5)

C∗u +

K∑
s=1

(f∗su)gs = λv .(2.6)

where fs ∈ RM is the s-th column of F and gr ∈ RN is the r-th column of G. Multiplying from the left by
C∗ or C we get

C∗Cv +

K∑
s=1

(g∗sv)C∗fs = λC∗u,

CC∗u +

K∑
s=1

(f∗su)Cgs = λCv.

Using (2.5) and (2.6) to the expressions on the right, we get

C∗Cv +

K∑
s=1

(g∗sv)C∗fs = λ2v − λ
K∑
s=1

(f∗su)gs ,

CC∗u +

K∑
s=1

(f∗su)Cgs = λ2u− λ
K∑
s=1

(g∗sv)fs .

which we rewrite as

λ2v −C∗Cv =

K∑
s=1

(g∗sv)C∗fs + λ

K∑
s=1

(f∗su)gs ,

λ2u−CC∗u = λ

K∑
s=1

(g∗sv)fs +

K∑
s=1

(f∗su)Cgs .
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This gives

v =
1

λ2

K∑
s=1

(g∗sv)
(
IN − 1

λ2 C∗C
)−1

C∗fs +
1

λ

K∑
s=1

(f∗su)
(
IN − 1

λ2 C∗C
)−1

gs ,

u =
1

λ

K∑
s=1

(g∗sv)
(
IM − 1

λ2 CC∗
)−1

fs +
1

λ2

K∑
s=1

(f∗su)
(
IM − 1

λ2 CC∗
)−1

Cgs .

Notice that since u,v are unit vectors, some among the 2K the numbers (f∗1 u), . . . , (f∗Ku), (g∗1v), . . . , (g∗Kv)
must be non-zero. Since for 1 ≤ t ≤ K we have

(g∗tv) =
1

λ2

K∑
s=1

(g∗sv)g∗t
(
IN − 1

λ2 C∗C
)−1

C∗fs +
1

λ

K∑
s=1

(f∗su)g∗t
(
IN − 1

λ2 C∗C
)−1

gs ,

(f∗t u) =
1

λ

K∑
s=1

(g∗sv)f∗t
(
IM − 1

λ2 CC∗
)−1

fs +
1

λ2

K∑
s=1

(f∗su)f∗t
(
IM − 1

λ2 CC∗
)−1

Cgs ,

noting that the entries of Z∗ can be written as

[Z∗]s,t =
1

λ
f∗s (IM − 1

λ2 CC∗)−1Cgt .

we see that the block matrix  1
λZ 1

λR

1
λS 1

λZ∗


has eigenvalue 1. Thus det

[
1
λZ− IK

1
λR

1
λS 1

λZ∗ − IK

]
= 0 which for λ > 0 is equivalent to (2.4).

�

Proposition 2.2 (Singular value criterion). If ‖C‖2 < λ2/4 then S is invertible and

(2.7) det
(
(λIK − Z)S−1(λIK − Z∗)−R

)
= 0.

Similar equations that involve a K ×K determinant appear in other papers on rank-K perturbations of
random matrices, compare [10, Lemma 2.1 and Remark 2.2]. Note however that in our case λ enters the
equation in a rather complicated way through Z = Z(λ),R = R(λ),S = S(λ). The dependence of these
matrices on N is also suppressed in our notation.

Proof. Note that if ‖C‖2 ≤ λ2/2 then the norms of
(
IM − 1

λ2 CC∗
)−1

and
(
IN − 1

λ2 C∗C
)−1

are bounded

by 2. Indeed, ‖
(
IM − 1

λ2 CC∗
)−1 ‖ ≤

∑∞
k=0 ‖(CC∗)k‖/λ2k ≤

∑∞
k=0 1/2k. Since

(
IM − 1

λ2 CC∗
)−1

= IM +
1
λ2 CC∗

(
IM − 1

λ2 CC∗
)−1

and vectors f1, . . . , fK are orthonormal, we get F∗F = IK and

S− IK =
1

λ2
F∗C∗C

(
IM − 1

λ2 CC∗
)−1

F .

Since ‖F‖ = 1 we have

(2.8) ‖S− IK‖ ≤ 2‖C‖2/λ2.

We see that if ‖C‖2 ≤ λ2/4 then ‖S − IK‖ ≤ 1/2, so the inverse S−1 =
∑∞
k=0(I − S)k exists. For later

reference we also note that

(2.9) ‖S−1‖ ≤ 2.

Since [
R Z− λIK

Z∗ − λIK S

]
=

[
Z− λIK R

S λZ∗ − λIK

]
×
[

0 IK
IK 0

]
,

we see that (2.4) is equivalent to

det

[
R Z− λIK

Z∗ − λIK S

]
= 0.
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Noting that λ > 0 by assumption, we see that (2.4) holds and gives (2.7), as by Schur’s complement formula

det

[
A B
C D

]
= detD det(A−BD−1C).

�

2.2. Equation for λr. As was done previously we fix r ∈ {1, . . . ,K}, and write λ = λr.
The main step in the proof of Theorem 1.1 is the following expression.

Proposition 2.3. There exists a random sequence ε
(N)
c → 0 in probability as N →∞ such that

(2.10) λ− ρ(N)
r =

N

λ+ ρ
(N)
r

[ΣS ]r,r +
2
√
MN

λ+ ρ
(N)
r

[Z0]r,r +
M

(λ+ ρ
(N)
r )λ2

[ΣR]r,r + ε(N)
c .

The proof of Proposition 2.3 is technical and lengthy.

2.2.1. Subset ΩN . With γK+1 := 0, let

(2.11) δ := min
1≤s≤K

(γ2
s − γ2

s+1).

Assumption 1.1(iii) says that δ > 0.
In the following the powers of N used are sufficient to conclude our arguments. Sharper bounds would

not reduce moment assumption (1.6), which we use for [6] in the proof of Lemma 2.4.

Definition 2.1. Let ΩN ⊂ Ω be such that

(2.12) ‖C‖2 ≤ N5/4

and

(2.13) max
1≤s≤K

|λ2
s − γ2

sMN | ≤ δ
4MN.

We assume that N is large enough so that ΩN is a non-empty set. In fact, P(ΩN )→ 1, see Lemma 2.4.

We note that (2.13) implies that c
√
MN ≤ λr ≤ C

√
MN with c =

√
γ2
r − δ/4 ≥

√
γ2
K − δ/4 >

√
δ/2 and

C =
√
γ2
r + δ/4 < 2γ1. For later reference we state these bounds explicitly:

(2.14)

√
δMN

2
≤ λr ≤ 2 γ1

√
MN.

We also note that inequalities (2.12) and (2.14) imply that

(2.15) ‖C‖2 < λ2
K

4

for all N large enough. (That is, for all N > N0 with nonrandom constant N0.) Thus matrices Z, R, S are
well defined on ΩN for large enough N and (2.7) holds.

Lemma 2.4. For 1 ≤ r ≤ K we have λr/
√
MN → γr in probability. Furthermore, P(ΩN )→ 1 as N →∞.

Proof. From (1.7) we have D−B = C, so by Weil-Mirsky theorem [9, page 204, Theorem 4.11], we have a

bound |λr − ρ(N)
r | ≤ ‖C‖ for the differences between the K largest singular values of B and D. From [6,

Theorem 2] we see that there is a constant C that does not depend on N such that E‖C‖ ≤ C(
√
M +

√
N).

Thus
λr − ρ(N)

r√
MN

→ 0 in probability.

Since ρ
(N)
r /
√
MN → γr > 0 this proves the first part of the conclusion.

To prove the second part, we use the fact that continuous functions preserve convergence in probability,
so λ2

r/(MN)→ γ2
r in probability for 1 ≤ r ≤ K. Thus

P(Ω′N ) ≤ P(‖C‖ > N5/8) +

K∑
s=1

P(|λ2
s − γ2

sMN | > δMN/4)

≤ C
√
M +

√
N

N5/8
+

K∑
s=1

P(|λ2
s/(MN)− γ2

s | > δ/4)→ 0 as N →∞.
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�

2.2.2. Proof of Proposition 2.3. In view of (2.15), equation (2.7) holds on ΩN if N is large enough. It implies

that there is a (random) unit vector x
(N)
r = x ∈ RK such that

(λIK − Z)S−1(λIK − Z∗)x = Rx.

We further choose x with non-negative r-th component. Using diagonal matrix

R0 = G∗G = diag(ρ2
r)

we rewrite this as follows.

(2.16) (λ2IK −R0)x =
(
λ2(IK − S−1) + λ(ZS−1 + S−1Z∗)− ZS−1Z∗ + (R−R0)

)
x.

We now rewrite this equation using the (nonrandom) singular values ρ
(N)
1 ≥ ρ

(N)
2 ≥ · · · ≥ ρ

(N)
K > 0 of B

and standard basis e1, . . . , eK ∈ RK .
Suppressing dependence on r and N in the notation, we insert

x = (α1, . . . , αK)∗ =
∑

αses

into (2.16) and look at the s-th component. This shows that λ = λr satisfies the following system of K
equations

(2.17) (λ2 − ρs)αs = λ2e∗s(IK − S−1)x + λe∗s(ZS−1 + S−1Z∗)x + e∗s(R − R0)x − e∗sZS−1Z∗x,

where 1 ≤ s ≤ K. (Recall that this is a system of highly nonlinear equations, as matrices S, Z and R, and
the coefficients α1, . . . αK , depend implicitly on λ.)

It turns out that for our choice of λ = λr random variable αr = α
(N)
r is close to its extreme value 1 while

the other coefficients are asymptotically negligible. Since this only holds on ΩN a more precise statement is
as follows.

Lemma 2.5. There exist deterministic constants C and N0 such that for all N > N0 and ω ∈ ΩN we have

(2.18) 1− CN−3/8 ≤ αr ≤ 1

and

(2.19) |αs| ≤ (C/
√
K − 1)N−3/8 for s 6= r.

Proof. Since
∑
α2
s = 1, inequality (2.18) is a consequence of (2.19). Indeed, α2

r = 1−
∑
s6=r α

2
s ≥ 1−C2N−3/4

and we use elementary inequality
√

1− x ≥ 1−
√
x for 0 ≤ x ≤ 1.

To prove (2.19), we use (2.17). By assumption, ρ2
j/(MN)→ γ2

j . Using (2.11), we choose N large enough

so that |ρ2
s − γ2

sMN | ≤ δMN/4. Then, with s 6= r we get

|λ2 − ρ2
s| = |(λ2 − γ2

rMN) + (γ2
r − γ2

s )MN + (γ2
sMN − ρ2

s)|

≥ |γ2
r − γ2

s |MN − |λ2 − γ2
rMN | − |ρ2

s − γ2
sMN | ≥ (|γ2

r − γ2
s | − δ/2)MN ≥ δ

2
MN.

From (2.14) and (2.17) we get

δ

2
MN |αs| ≤ 4γ2

1MN‖IK − S−1‖+ 4γ1

√
MN‖Z‖ ‖S−1‖+ ‖R−R0‖+ ‖Z‖2‖S−1‖.

Since IK − S−1 = S−1(S− IK) using (2.9) we get

(2.20) |αs| ≤
16γ2

1

δ
‖S− IK‖+

16γ1

δ
√
MN

‖Z‖+
2

δMN
‖R−R0‖+

4

δMN
‖Z‖2.

We now estimate the norms of the K × K matrices on the right hand side. From (2.8) using (2.12) and
(2.14) we get

(2.21) ‖S− IK‖ ≤
2‖C‖2

λ2
≤ 8N5/4

δMN
=

8

δ
N1/4M−1.
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Next, we bound ‖Z‖ using (2.1). Recall that ‖
(
IN − 1

λ2 C∗C
)−1 ‖ ≤ 2 for large enough N . From (1.5)

we have‖G‖ ≤ 2
√
MNγ1, for large enough N . Using this, (2.12) and (2.14) we get

(2.22) ‖Z‖ ≤ ‖G‖ 2

λ
‖C‖ ≤ 4

√
MNγ1

λ
N5/8 ≤ 8γ1√

δ
N5/8

for large enough N .
Next we note that

(2.23) R−R0 =
1

λ2
G∗C∗C

(
IN − 1

λ2 C∗C
)−1

G .

Thus (2.23) with bounds (2.14), (2.12) and the above bound on ‖G‖ give us for large enough N

(2.24) ‖R−R0‖ ≤
8MNγ2

1

λ2
‖C‖2 ≤ 32γ2

1

δ
N5/4.

Putting these bounds into (2.20) we get

|αs| ≤
128γ2

1

δ2
N1/4M−1 +

128γ2
1

δ
√
δ
N1/8M−1/2 +

64γ2
1

δ2
N1/4M−1 +

256γ2
1

δ2
N1/4M−1.

In view of assumption (1.4), this proves (2.19).
�

The next step is to use Lemma 2.5 to rewrite the r-th equation in (2.17) to identify the ”contributing
terms” and the negligible ”remainder” R which is of lower order than λ on ΩN . We will accomplish this in
several steps, so we will use the subscripts a, b, c, . . . for bookkeeping purposes.

Define x(r) by

x(r) =
∑
s6=r

αses.

We assume that N is large enough so that the conclusion of Lemma 2.5 holds and furthermore that
αr ≥ 1/2. Notice then that

(2.25) ‖x(r)‖ ≤ CN−3/8.

Dividing (2.17) with s = r by αr we get

λ2 − ρ2
r = λ2e∗r(IK − S−1)er + 2λe∗rZS−1er + e∗r(R−R0)er − e∗rZS−1Z∗er +

√
MNε(N)

a +R(N)
a ,

where

ε(N)
a =

1

αr
e∗r(Z0 + Z∗0)x(r)

and

R(N)
a = λ2 1

αr
e∗r(IK − S−1)x(r) + λ

1

αr
e∗r(ZS−1 + S−1Z∗ −

√
MN

λ
(Z0 + Z∗0))x(r)

+
1

αr
e∗r(R−R0)x(r) −

1

αr
e∗rZS−1Z∗x(r) .

Here we slightly simplified the equation noting that since S is symmetric, e∗rZS−1er = e∗rS
−1Z∗er.

Our first task is to derive a deterministic bound for R(N)
a on ΩN .

Lemma 2.6. There exist non-random constants C and N0 such that on ΩN for N > N0 we have

|R(N)
a | ≤ CN7/8.

Proof. The constant will be given by a complicated expression that will appear at the end of the proof.
Within the proof, C denotes the constant from Lemma 2.5.

Notice that

Z−
√
MN

λ
Z0 =

1

λ3
G∗C∗C

(
IN − 1

λ2 C∗C
)−1

C∗F ,

so for large enough N we get

(2.26) ‖Z−
√
MN

λ
Z0‖ ≤

4

λ3

√
MNγ1‖C‖3 ≤

32γ1

δ3/2
N7/8M−1.
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Recall (2.9) and recall that N is large enough so that αr > 1/2. Using (2.25) and writing ZS−1 =
ZS−1(S− IK) + Z we get

|R(N)
a | ≤ 4Cλ2N−3/8‖S− IK‖+ 8CλN−3/8‖Z‖‖S− IK‖+ 4CλN−3/8‖Z−

√
MN

λ
Z0‖

+ 2CN−3/8‖R−R0‖+ 2CN−3/8‖Z‖2

≤ 128Cγ2
1

δ
N7/8 +

1024Cγ2
1

δ3/2
M−1/2N +

256Cγ2
1

δ3/2
M−1/2N

+
64Cγ2

1

δ
N7/8 +

128Cγ2
1

δ
N7/8.

(Here we used (2.21), (2.22), then (2.26), (2.24) and (2.22) again.) This concludes the proof.
�

Lemma 2.7. For every η > 0, we have

(2.27) lim
N→∞

P
({∣∣∣ε(N)

a

∣∣∣ > η
}
∩ ΩN

)
= 0.

Proof. We first verify that each entry of the matrix N−3/8Z0, which is well defined on Ω, converges in
probability to 0. To do so, we bound the second moment of random variable ξ = f∗rCgs. Since the entries
of C are independent and centered random variables,

(2.28) Eξ2 =

M∑
i=1

N∑
j=1

[fr]
2
iσ

2
i,j [gs]

2
j ≤ sup

i,j
σ2
i,j‖gr‖2 ≤ CMN.

Thus, see (1.10), each entry of matrix Z0 has bounded second moment, so

ζN := N−3/8 max
s
|e∗r(Z0 + Z∗0)es| → 0 in probability.

To end the proof we note that by (2.19), for large enough N we have
∣∣∣ε(N)
a

∣∣∣ ≤ 2CKζN on ΩN , so

P
({∣∣∣ε(N)

a

∣∣∣ > η
}
∩ ΩN

)
≤ P

(
{|ζN | > η

2CK } ∩ ΩN
)
≤ P

(
|ζN | > η

CK

)
→ 0.

�

Using the identity
I− S−1 = (S− I)− (S− I)2S−1

to the first term we rewrite (2.2.2) as

(2.29) λ2 − (ρ(N)
r )2 = λ2e∗r(S− IK)er + 2λe∗rZer + e∗r(R−R0)er − e∗rZZ∗er +R(N)

b +
√
MNε(N)

a +R(N)
a ,

with
R(N)
b = −λ2e∗r(S− IK)2S−1er + 2λe∗rZ(IK − S)S−1er − e∗rZ(IK − S)S−1Z∗er .

Lemma 2.8. There exist non-random constants C and N0 such that on ΩN for N > N0 we have

|R(N)
b | ≤ CN7/8.

Proof. Using (2.14) and previous norm estimates (2.21) and (2.22), we get

|R(N)
b | ≤ 2λ2‖S− IK‖2 + 4λ‖Z‖‖S− IK‖+ 2‖Z‖2‖S− IK‖

≤ 512γ2
1

δ2
N3/2M−1 +

512γ2
1

δ3/2
N11/8M−1/2 +

1024γ2
1

δ2
N3/2M−1.

This ends the proof. �

Define K ×K random matrices

(2.30) R1 = G∗C∗CG

and

(2.31) S1 = F∗CC∗F .
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Recall that E(R1) = MΣR and E(S1) = NΣS , see (1.11) and (1.12).

Lemma 2.9. There exist non-random constants C and N0 such that on ΩN for N > N0 we have

‖S− IK −
1

λ2
S1‖ ≤ CN−3/2

and

‖R−R0 − 1
λ2 R1‖ ≤ CN1/2.

Proof. Notice that

S− IK −
1

λ2
S1 =

1

λ4
F∗(CC∗)2(IM − 1

λ2 CC∗)−1F.

For large enough N (so that (2.12) and (2.14) hold), this gives

‖S− IK −
1

λ2
S1‖ ≤

2

λ4
‖C‖4 ≤ 32

δ2
M−2N1/2.

Similarly, since

R−R0 − 1
λ2 R1 =

1

λ4
G∗(C∗C)2

(
IN − 1

λ2 C∗C
)−1

G

for large enough N , we get

‖R−R0 − 1
λ2 R1‖ ≤ max

r,s

2

λ4
‖G‖2‖C‖4 ≤ 128γ2

1

δ2
M−1N3/2.

�

We now rewrite (2.29) as follows.

λ2 − (ρ(N)
r )2

= e∗r(S1)er + 2
√
MNe∗rZ0er +

1

λ2
e∗r(R1)er −

MN

λ2
e∗rZ0Z

∗
0er +R(N)

c +R(N)
b +

√
MNε(N)

a +R(N)
a ,

where

R(N)
c = e∗r

(
λ2(S− IK −

1

λ2
S1) + 2(λZ−

√
MNZ0) + (R−R0 −

1

λ2
R1) + (

MN

λ2
Z0Z

∗
0 − ZZ∗)

)
er .

Lemma 2.10. There exist non-random constants C and N0 such that on ΩN for N > N0 we have

|R(N)
c | ≤ CN7/8.

Proof. As in the proof of Lemma 2.6, the final constant C can be read out from the bound at the end of
the proof. In the proof, C is a constant from Lemma 2.9. By the triangle inequality, Lemma 2.9, (2.26) and
(2.22), we have

|R(N)
c | ≤ λ2‖S− IK −

1

λ2
S1‖+ 2‖λZ−

√
MNZ0‖

+ ‖R−R0 −
1

λ2
R1‖+ ‖Z−

√
MN

λ
Z0‖(‖Z‖+

√
MN

λ
‖Z0‖)

≤ 4Cγ2
1MN−1/2 +

128γ2
1

δ3/2
M−1/2N11/8 + CN1/2 +

256γ2
1

δ2
M−1N3/2 +

128γ2
1

δ3/2
M−1N3/2.

(Here we used the bound ‖Z0‖ ≤ 2γ1N
5/8, which is derived similarly to (2.22).) �

The following holds on Ω. (Recall that expressions (2.31), (1.10) and (2.30) are well defined on Ω.)

Proposition 2.11. There exists a random sequence ε
(N)
b → 0 in probability as N →∞ such that

(2.32) λ− ρ(N)
r =

1

λ+ ρ
(N)
r

e∗r(S1)er +
2
√
MN

λ+ ρ
(N)
r

e∗rZ0er +
1

(λ+ ρ
(N)
r )λ2

e∗r(R1)er + ε
(N)
b .
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Proof. Let

ε
(N)
b =


1

λ+ρ
(N)
r

(
−MN

λ2 e∗rZ0Z
∗
0er +R(N)

c +R(N)
b +

√
MNε

(N)
a +R(N)

a

)
on ΩN ,

λ− ρ(N)
r − 1

λ+ρ
(N)
r

e∗r(S1)er − 2λ

λ+ρ
(N)
r

e∗rZ0er − 1

(λ+ρ
(N)
r )λ2

e∗r(R1)er otherwise.

By Lemma 2.4 we have P(Ω′N )→ 0, so it is enough to show that given η > 0 we have P({|ε(N)
b | > 5η}∩ΩN )→

0 as N → ∞. Since the event |ξ1 + · · · + ξ5| > 5η is included in the union of events |ξ1| > η, . . . , |ξ5| > η,

in view of Lemmas 2.6, 2.8, 2.10, and Lemma 2.7 (recalling that expressions
√
MN/(λ+ ρ

(N)
r ) and MN/λ2

are bounded by a non-random constant on ΩN , see (2.14)) we only need to verify that

P

({
e∗rZ0Z

∗
0er

λ+ ρ
(N)
r

> η

}
∩ ΩN

)
≤ P

(
e∗rZ0Z

∗
0er

ρ
(N)
r

> η

)
→ 0 as N →∞.

Since for large enough N , we have ρ2
r ≥ δMN , convergence follows from

(2.33) Ee∗rZ0Z
∗
0er ≤ E‖Z0‖2 ≤ E‖Z0‖2F ≤ K2C,

where C is a constant from (2.28).
�

Proof of Proposition 2.3. Recall that ES1 = NΣS and ER1 = MΣR. So expression (2.10) differs from
(2.32) only by two terms:

1

λ+ ρ
(N)
r

e∗r(S1 − ES1)er

and
1

(λ+ ρ
(N)
r )λ2

e∗r(R1 − ER1)er.

Since ρ
(N)
r /
√
MN → γr > 0 and by Lemma 2.4 we have λ/

√
MN → γr in probability, to end the proof we

show that 1
N ‖S1 − ES1‖F → 0 and 1

N3 ‖R1 − ER1‖F → 0 in probability. To do so, we bound the second
moments of the entries of the matrices. Recalling (2.31), we have

f∗r (CC∗ − E(CC∗))fs =

N∑
k=1

∑
i6=j

[fr]iXi,kXj,k[fs]j +

N∑
k=1

M∑
i=1

[fr]i(X
2
i,k − σ2

i,k)[fs]i = AN + BN (say).

By independence, we have

E(A2
N ) =

N∑
k=1

∑
i6=j

[fr]
2
i [fs]

2
jσ

2
i,kσ

2
j,k ≤ C

N∑
k=1

N∑
i=1

N∑
j=1

[fr]
2
i [fs]

2
j ≤ CN.

Next,

E(B2
N ) =

N∑
k=1

M∑
i=1

[fr]
2
i [fs]

2
iE(X2

i,k − σ2
i,k)2 ≤ NC

√√√√ M∑
i=1

[fr]4i

√√√√ M∑
i=1

[fs]4i ≤ CN.

This shows that (with a different C) we have E |f∗r (CC∗ − E(CC∗)fs)|2 ≤ CN and hence 1
N ‖S1−ES1‖F → 0

in mean square and in probability.
Similarly, recalling (2.30) we have

g∗r(C
∗C − E(C∗C))gs =

M∑
k=1

∑
i 6=j

[gr]i[gs]jXk,iXk,j +

M∑
k=1

N∑
i=1

[gr]i[gs]i(X
2
k,i − σ2

k,i) = ÃN + B̃N (say).

Using independence of entries again, we get

E(Ã2
N ) =

M∑
k=1

∑
i6=j

[gr]
2
i [gs]

2
jσ

2
k,iσ

2
k,j ≤ CM‖gs‖2‖gr‖2 ≤ 2Cγ4

1M
3N2
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for large enough N . Similarly,

E(B̃2
N ) =

M∑
k=1

N∑
i=1

[gr]
2
i [gs]

2
iE(X2

k,i − σ2
k,i)

2 ≤ CM‖gr‖2‖gs‖2 ≤ 2Cγ4
1M

3N2.

This shows that (with a different C) we have E |g∗r(C∗C− E(C∗C))gs|2 ≤ CN5 and hence 1
N3 ‖R1 −

ER1‖F → 0 in mean square and in probability. �

2.2.3. Conclusion of proof of Theorem 1.1. Theorem 1.1 is essentially a combination of (2.10), and conver-
gence in probability from Lemma 2.4.

Proof of Theorem 1.1. We need to do a couple more approximations to the right hand side of (2.10). Indeed,
we see that

N

λ+ ρ
(N)
r

=
√
N/M

√
MN

λ+ ρ
(N)
r

→
√
c

2γr

2
√
MN

λ+ ρ
(N)
r

→ 1

γ1

M

(λ+ ρ
(N)
r )λ2

∼
√
M/N

2γr

1

γ2
rMN

∼
√
c

2γ3
rMN

To conclude the proof, we note that sequences {[Σ(N)
S ]r,r}N , {[Σ(N)

R ]r,r/(MN)} are bounded and {[Z(N)
0 ]r,r}

is stochastically bounded by (2.28).
�

Remark 2.1. Recall (1.15) and (1.16) from Remark 1.1. Examples in Section 3.3 have the additional property
that

(2.34) 1
MN R̃

(N)
0 → Q.

Under Assumption 1.1, the eigenvalues of Q are γ2
1 > γ2

2 > · · · > γ2
K > 0. Denoting by vr the corresponding

orthonormal eigenvectors, we may assume that the first non-zero component of vr is positive. After choosing

the appropriate sign, without loss of generality we may assume that the same component of ũ
(N)
r is non-

negative for all N . Since by assumption eigenspaces of R̃0 are one-dimensional for large enough N , we
have

ũ(N)
r → vr as N →∞.

We claim that in (1.17) and in (1.19) we can replace vectors ũr by the corresponding eigenvectors vr of Q.

Indeed, as in the proof of Theorem 1.1 the entries of the K ×K matrices Σ̃R/(MN) and Σ̃S are bounded

as N →∞. Also, we note that each entry ξ = f̃∗rCg̃s of matrix Z̃0 is stochastically bounded due to uniform
bound the second moment:

Eξ2 =

M∑
i=1

N∑
j=1

[fr]
2
iσ

2
i,j [gs]

2
j ≤ sup

i,j
σ2
i,j‖gr‖2 ≤ CMN.

(Compare (2.28).) This allows for the replacement of the ũr with the vr.

3. Asymptotic normality of singular values

In this section we apply Theorem 1.1 to deduce asymptotic normality. To reduce technicalities involved,
we begin with the simplest case of mean with rank 1. An example with mean of rank 2 is worked out in
Section 3.2. A more involved application to population biology appears in Section 3.3. We use simulations
to illustrate these results.
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3.1. Rank 1 perturbation. The following is closely related to [8, Theorem 1.3] that was mentioned in the
introduction.

Proposition 3.1. Fix an infinite sequence {µj} such that the limit γ2 = limN→∞
1
N

∑N
j=1 µ

2
j exists and

is strictly positive. Consider the case K = 1, and assume that entries of random matrix D ∈ MM×N are
independent, with the same mean µj in the j-th column, the same variance σ2, and uniformly bounded fourth

moments. For the largest singular value λ of D, we have λ −
√
M
(∑N

j=1 µ
2
j

)1/2

⇒ Z where Z is normal

with mean σ2

2γ (
√
c+ 1/

√
c) and variance σ2. (Here ⇒ denotes convergence in distribution.)

Proof. In this setting B = fg∗ with f = M−1/2[1, . . . , 1]∗, g =
√
M [µ1, . . . , µN ]∗. We get ρ2

1 = M
∑N
j=1 µ

2
j ,

γ1 = γ, ΣR = σ2M
∑N
j=1 µ

2
j , ΣS = σ2, and

Z0 =
1√
MN

M∑
i=1

N∑
j=1

Xi,jµj , so (1.9) gives Z1 =
1√
MNγ

M∑
i=1

N∑
j=1

Xi,jµj .

Thus, the largest singular value of D can be written as

λ =
√
M

 N∑
j=1

µ2
j

1/2

+
σ2(
√
c+ 1/

√
c)

2γ
+

1√
MNγ

M∑
i=1

N∑
j=1

Xi,jµj + ε(N),

where ε(N) → 0 in probability. We have

Var(Z1) =
σ2

γ2

1

N

N∑
j=1

µ2
j → σ2

and the sum of the fourth moments of the terms in Z1 is

1

M2N2γ4

M∑
i=1

N∑
j=1

µ4
jEX

4
i,j ≤

C

M

 1

N

N∑
j=1

µ2
j

2

→ 0.

So Z1 is asymptotically normal by Lyapunov’s theorem [1, Theorem 27.3]. �

3.2. Block matrices. Consider (2M)× (2N) block matrices

D =

[
A1 A2

A3 A4

]
,

where A1, . . . ,A4 are independent random M ×N matrices. We assume that the entries of Aj are indepen-
dent real identically distributed random variables with mean µj , variance σ2

j and with finite fourth moment.

Then B = E(D) = f̃1g̃
∗
1 + f̃2g̃

∗
2 is of rank K = 2 with orthonormal

[̃f1]i =

{
1/
√
M for 1 ≤ i ≤M

0 for M + 1 ≤ i ≤ 2M

[̃f2]i =

{
0 for 1 ≤ i ≤M
1/
√
M for M + 1 ≤ i ≤ 2M

and with

[g̃1]j =

{√
Mµ1 for 1 ≤ j ≤ N√
Mµ2 for N + 1 ≤ j ≤ 2N

[g̃2]j =

{√
Mµ3 for 1 ≤ j ≤ N√
Mµ4 for N + 1 ≤ j ≤ 2N
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So G̃ =
√
M



µ1 µ3

µ1 µ3

...
µ1 µ3

µ2 µ4

...
µ2 µ4


and R̃0 = G̃∗G̃ =

[
‖g̃1‖2 g̃∗1g̃2

g̃∗1g̃2 ‖g̃2‖2
]

= MN

[
µ2

1 + µ2
2 µ1µ3 + µ2µ4

µ1µ3 + µ2µ4 µ2
3 + µ2

4

]
.

Denote by λ1 ≥ λ2 the largest singular values of D.

Proposition 3.2. Suppose g̃1 and g̃2 are linearly independent and either g̃∗1g̃2 6= 0, or if g̃∗1g̃2 = 0 then
‖g̃1‖ 6= ‖g̃2‖. Then there exist constants c1 > c2 such that

(3.1) (λ1 − c1
√
MN,λ2 − c2

√
MN)⇒ (Z1, Z2),

where (Z1, Z2) is a (noncentered) bivariate normal random variable.

Proof. To use Theorem 1.1, we first verify that Assumption 1.1 holds. We have

R̃0 = 4MNQ, where Q =
1

4

[
µ2

1 + µ2
2 µ1µ3 + µ2µ4

µ1µ3 + µ2µ4 µ2
3 + µ2

4

]
.

Noting that det(Q) = (µ2µ3 − µ1µ4)
2
/16, we see that γ1 ≥ γ2 > 0 provided that det

[
µ1 µ2

µ3 µ4

]
6= 0, i.e.

provided that g̃1 and g̃2 are linearly independent. The eigenvalues of Q are

γ2
1 =

1

8

(
µ2

1 + µ2
2 + µ2

3 + µ2
4 +

√
((µ2 + µ3) 2 + (µ1 − µ4) 2) ((µ2 − µ3) 2 + (µ1 + µ4) 2)

)
,

γ2
2 =

1

8

(
µ2

1 + µ2
2 + µ2

3 + µ2
4 −

√
((µ2 + µ3) 2 + (µ1 − µ4) 2) ((µ2 − µ3) 2 + (µ1 + µ4) 2)

)
,

so condition γ1 > γ2 is satisfied except when µ1 = ±µ4 and µ2 = ∓µ3, i.e. except when g̃1 and g̃2 are
orthogonal and of the same length.

We see that ρ
(N)
r = 2γr

√
MN , which determines the constants cr = 2γr for (3.1). Next, we determine

the remaining significant terms in (1.14). First, we check that the shifts m
(N)
r in (1.14) do not depend on

N . To do so we compute the matrices:

Σ̃R =
MN

2

[
µ2

1(σ2
1 + σ2

3) + µ2
2(σ2

2 + σ2
4) µ1µ3(σ2

1 + σ2
3) + µ2µ4(σ2

2 + σ2
4)

µ1µ3(σ2
1 + σ2

3) + µ2µ4(σ2
2 + σ2

4) µ2
3(σ2

1 + σ2
3) + µ2

4(σ2
2 + σ2

4)

]
and

Σ̃S =
1

2

[
σ2

1 + σ2
2 0

0 σ2
3 + σ2

4

]
.

Indeed, we have

[∆R]j,j =

{
(σ2

1 + σ2
3)/2 j ≤ N

(σ2
2 + σ2

4)/2 N + 1 ≤ j ≤ 2N
and [∆S ]i,i =

{
(σ2

1 + σ2
2)/2 i ≤M

(σ2
3 + σ2

4)/2 M + 1 ≤ i ≤ 2M

To verify normality of the limit, we show that the matrix Z0 is asymptotically centered normal, so formula
(1.9) gives a bivariate normal distribution in the limit. Denoting as previously by Xi,j the entries of matrix
C = D− ED, (1.18) gives

Z̃0 =
1

2
√
MN


µ1

M∑
i=1

N∑
j=1

Xi,j + µ2

M∑
i=1

2N∑
j=N+1

Xi,j µ1

2M∑
i=M+1

N∑
j=1

Xi,j + µ2

2M∑
i=M+1

2N∑
j=N+1

Xi,j

µ3

M∑
i=1

N∑
j=1

Xi,j + µ4

M∑
i=1

2N∑
j=N+1

Xi,j µ3

2M∑
i=M+1

N∑
j=1

Xi,j + µ4

2M∑
i=M+1

2N∑
j=N+1

Xi,j


⇒ 1

2

[
µ1σ1ζ1 + µ2σ2ζ2 µ1σ3ζ3 + µ2σ4ζ4
µ3σ1ζ1 + µ4σ2ζ2 µ3σ3ζ3 + µ4σ4ζ4

]
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with independent N(0, 1) random variables ζ1, . . . , ζ4.
In particular, the limit (Z1, Z2) = (m1,m2) + (Z◦1 , Z

◦
2 ) is normal with mean given by (1.19), and centered

bivariate normal random variable

Z◦1 = 1
2γ1

v∗1Z̃0v1, Z◦2 = 1
2γ2

v∗2Z̃0v2.

�

3.2.1. Numerical example and simulations. For a numerical example, suppose σ2
j = σ2, µj = µ, except

µ1 = 0. Then γ2
1 = µ2

8

(
3 +
√

5
)
, γ2

2 = µ2

8

(
3−
√

5
)

and

v1 =
1√
10


√

5−
√

5√
5 +
√

5

 ≈ [0.525731
0.850651

]

v2 =
1√
10


√

5 +
√

5

−
√

5−
√

5

 ≈ [−0.850651
0.525731

]

Σ̃S = σ2I2, Σ̃R = MNµ2σ2

[
1 1
1 2

]
so with c = M/N , formula (1.19) gives

m1 =
(
√

5− 1)σ2(M +N)

2µ
√
MN

, m2 =
(
√

5 + 1)σ2(M +N)

2µ
√
MN

.

We get

Z◦1 =

(
2
√

5ζ1 +
(
5 +
√

5
)
ζ2 +

(
5 +
√

5
)
ζ3 +

(
5 + 3

√
5
)
ζ4
)

5
(
1 +
√

5
) σ,

Z◦2 =

(
−
(
5 +
√

5
)
ζ1 + 2

√
5ζ2 + 2

√
5ζ3 +

(√
5− 5

)
ζ4
)

10
σ.

Thus λ1 − µ
√

1
2MN(3 +

√
5), λ2 − µ

√
1
2MN(3−

√
5) is approximately normal with mean (m1,m2) and

covariance matrix σ2I2. In particular, if the entries of matrices are independent uninform U(−1, 1) for block
A1 and U(0, 2) for blocks A2,A3,A4, then σ2 = 1/3, µ = 1. So with M = 20, N = 50 we get

λ1 ≈ 51.6228 +
1√
3
ζ1, λ2 ≈ 20.7378 +

1√
3
ζ2

with (new) independent normal N(0,1) random variables ζ1, ζ2. Figure 1 show the result of simulations for
two sets of choices of M,N .
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Figure 1. Histograms of simulations of 10,000 realizations, overlayed with normal density
of variance 1/3. Top row: Largest singular value; Second row: second singular value. For
small N , additional poorly controlled error arises from ε(N) → 0 in probability.

3.3. Application to a model in population genetics. Following [2] (see also [7]), we consider an M×N
array D of genetic markers with rows labeled by individuals and columns labeled by polymorphic markers.
The entries [D]i,j are the number of alleles for marker j, individual i, are assumed independent, and take
values 0, 1, 2 with probabilities (1− p)2, 2p(1− p), p2 respectively, where p is the frequency of the j-th allele.
We assume that we have data for M individuals from K subpopulation and that we have Mr individuals
from the subpopulation labeled r. For our asymptotic analysis where N → ∞ we assume (1.4) and that
each subpopulation is sufficiently represented in the data so that

Mr/N → cr > 0,

where of course c1 + · · · + cK = c. (Note that our notation for cr is slightly different than the notation
in [2].) We assume that allelic frequency for the j-th marker depends on the subpopulation of which the
individual is a member but does not depend on the individual otherwise. Thus with the r-th subpopulation
we associate the vector pr ∈ (0, 1)N of allelic probabilities, where pr(j) := [pr]j is the value of p for the j-th
marker, j = 1, 2, . . . , N .

We further assume that the allelic frequencies are fixed, but arise from some regular mechanism, which
guarantees that for d = 1, 2, 3, 4 the following limits exist

lim
N→∞

1

N

N∑
j=1

pr1(j)pr2(j) . . . prd(j) = πr1,r2,...,rd , 1 ≤ r1 ≤ · · · ≤ rd ≤ K.

This holds if the allelic probabilities pr(j) for the r-th population arise in ergodic fashion from joint allelic
spectrum ϕ(x1, . . . , xK) [4] with

(3.2) πr1,r2,...,rd =

∫
[0,1]K

xr1 . . . xrdϕ(x1, . . . , xK)dx1 . . . dxK .

Under the above assumptions, the entries of D are independent Binomial random variables with the same
number of trials 2, but with varying probabilities of success. Using the assumed distribution of the entries

of D we have B = ED = 2
∑K
r=1 ẽrp

∗
r , where ẽr is the vector indicating the locations of the members

of the r-th subpopulation, i.e. [ẽr]i = 1 when the i-th individual is a member of the r-th subpopulation.

Assuming the entries of D are independent, we get B =
∑K
r=1 f̃rg̃

∗
r = F̃G̃∗ with orthonormal vectors

f̃r = ẽr/
√
Mr and with g̃s = 2

√
Msps, so we have (1.15). In this setting, Remark 2.1 applies. In (1.16), we

have [R̃0]r,s = 4
√
MrMsp

∗
rps and R̃0/(MN)→ Q, where

(3.3) [Q]r,s := 4

√
crcs
c

πr,s,



SINGULAR VALUES OF RANDOM MATRICES 17

so the eigenvalues of R̃0 are ρ2
r ∼ γ2

rMN + o(N2). As previously, we assume that the that Q has positive
and distinct eigenvalues γ2

1 > γ2
2 > · · · > γ2

K > 0 with corresponding eigenvectors v1, . . . ,vk ∈ RK . (Due to
change of notation, matrix (3.3) differs from [2, (2.6)] by a factor of 4.)

To state the result, for 1 ≤ t ≤ K we introduce matrices Σt ∈MK×K with entries

(3.4) [Σt]r,s =

√
crcs
c

(πr,s,t − πr,s,t,t).

Proposition 3.3. The K largest singular values of D are approximately normal,
λ

(N)
1 − ρ(N)

1

λ
(N)
2 − ρ(N)

2
...

λ
(N)
K − ρ(N)

K

⇒

m1

m2

...
mK

+


ζ1
ζ2
...
ζK


where

(3.5) mr =
1√
cγr

K∑
t=1

[vr]
2
t (πt − πt,t) +

4
√
c

γ3
r

K∑
t=1

ct
c

v∗rΣtvr

and (ζ1, . . . , ζK) is centered multivariate normal with the covariance

E(ζrζs) =
8

γrγs

K∑
t=1

[vr]t[vs]tv
∗
rΣtvs.

Proof. We apply Theorem 1.1 in the form stated as Remarks 1.1 and 2.1. The first step is to note that due

to the form of vectors f̃k, equation (1.18) gives a matrix Z̃0 with independent columns. Our first task is to

show that Z̃0 is asymptotically normal by verifying that each of its independent columns is asymptotically
normal.

Denote by Nk the index set for the k-th subpopulation (i.e., [ẽk]i = 1 if i ∈ Nk). In this notation, the

k-th column of Z̃0 is

2√
MNMk


√
M1

∑
i∈Nk

∑N
j=1Xi,jp1(j)√

M2

∑
i∈Nk

∑N
j=1Xi,jp2(j)

...√
MK

∑
i∈Nk

∑N
j=1Xi,jpK(j)

 .
To verify asymptotic normality and find the covariance, we fix t = [t1, . . . , tK ]∗. Then the dot product of

t with the k-th column of Z̃0 is

SN =
∑
i∈Nk

N∑
j=1

aj(N)Xi,j

with

aj(N) =
2√

MNMk

K∑
r=1

√
Mrtrpr(j).

We first note that by independence

Var(SN ) =
∑
i∈Nk

N∑
j=1

a2
j (N)EX2

i,j

= 8

K∑
r1,r2=1

tr1tr2

√
Mr1Mr2

M

1

N

N∑
j=1

pr1(j)pr2(j)pk(j)(1− pk(j))

→ 8

K∑
r1,r2=1

√
cr1cr2
c

(πr1,r2,k − πr1,r2,k,k) tr1tr2 = 8t∗Σkt
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giving the covariance matrix for the k-column as 8 times (3.4).
Next we note that since E(X4

i,j) = 2pk(j)(1− pk(j)), we have

∑
i∈Nk

N∑
j=1

a4
j (N)EX4

i,j

=
32

NMk

K∑
r1,r2,r3,r4=1

√
Mr1Mr2Mr3Mr4

M2
tr1tr2tr3tr4

1

N

N∑
j=1

pr1(j)pr2(j)pr3(j)pr4(j)pk(j)(1−pk(j)) = O(1/N2)→ 0.

By Lyapunov’s theorem SN is asymptotically normal. Thus the k-th column of Z̃0 is asymptotically normal

with covariance 8 times (3.4). Let Z
(∞)
0 denote the distributional limit of Z̃0.

From (1.17) with ũr replaced by vr as in Remark 2.1, we see that (Z
(N)
1 , . . . , Z

(N)
K ) converges in distribution

to the multivariate normal r.v. (ζ1, . . . , ζK) with covariance

E(ζrζs) =
1

γrγs
E
(
v∗rZ

(∞)
0 vrv

∗
sZ

(∞)
0 vs

)
=

8

γrγs

K∑
t=1

[vr]t[vs]tv
∗
rΣtvs.

Next, we use formula (1.19) to compute the shift. We first compute Σ̃S = E(F̃∗CC∗F̃)/N . As already

noted, C∗F̃ ∈MN×K has K independent columns, with the k-th column

1√
Mk


∑
i∈Nk

Xi,1∑
i∈Nk

Xi,2

...∑
i∈Nk

Xi,N

 .
So Σ̃S is a diagonal matrix with

[Σ̃S ]rr =
2

N

N∑
j=1

pr(j)(1− pr(j))→ 2(πr − πrr).

Next, we compute the limit of

c

MN
Σ̃R =

c

M2N
E(G̃∗C∗CG̃) ∼ 1

MN2
E(G̃∗C∗CG̃).

Since

[E(G̃∗C∗CG̃)]rs = 2

K∑
t=1

Mt

N∑
j=1

[gs]j [gr]jpt(j)(1− pt(j)) = 8
√
MrMs

K∑
t=1

Mt

N∑
j=1

ps(j)pr(j)pt(j)(1− pt(j))

we see that [ c

MN
Σ̃R

]
rs
→

8
√
crcs
c

K∑
t=1

ct(πr,s,t − πr,s,t,t).

This shows that

c

MN
Σ̃R → 8

K∑
t=1

ctΣt.

From (1.19) we calculate

mr =

K∑
s=1

(
1√
cγr

[vr]
2
s(πs − πs,s) +

4cs
c3/2γ3

r

K∑
t1,t2=1

[vr]t1 [vr]t2
√
ct1ct2(πt1,t2,s − πt1,t2,s,s)

)
which is (3.5). �

Ref. [2] worked with the eigenvalues of the ”sample covariance matrix” (DD∗)/(
√
M +

√
N)2, i.e., with

the normalized squares of singular values Λr = λ2
r/(
√
M +

√
N)2. Proposition 3.3 then gives the following

normal approximation.
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Proposition 3.4. 

Λ1 − (ρ
(N)
1 )2

(
√
M+
√
N)2

Λ2 − (ρ
(N)
2 )2

(
√
M+
√
N)2

...

ΛK −
(ρ

(N)
K )2

(
√
M+
√
N)2


⇒


m̃1

m̃2

...
m̃K

+


Z1

Z2

...
ZK



with recalculated shift

m̃r =
2

(1 + c1/2)2

K∑
t=1

[vr]
2
t (πt − πt,t) +

8c

γ2
r (1 + c1/2)2

K∑
t=1

ct
c

v∗rΣtvr

and with recalculated centered multivariate normal random vector (Z1, . . . , ZK) with covariance

E(ZrZs) =
32c

(1 +
√
c)4

K∑
t=1

[vr]t[vs]tv
∗
rΣtvs.

Proof.

Λr −
ρ2
r

(
√
M +

√
N)2

= (λr − ρr)×
λr + ρr√
MN

×
√
MN

(
√
M +

√
N)2

.

Since
λr + ρr√
MN

→ 2γr in probability, and

√
MN

(
√
M +

√
N)2

→
√
c

(1 +
√
c)2

,

see Lemma 2.4, the result follows. �

3.3.1. Numerical illustration. As an illustration of Theorem 3.3, we re-analyze the example from [2, Section
3.1]. In that example, the subpopulation sample sizes were drawn with proportions c1 = c/6, c2 = c/3,
c3 = c/2 where c = M/N varied from case to case. The theoretical population proportions pr(j) at each
location for each subpopulation were selected from the same uniform site frequency spectrum ψ(x) =

√
x/2.

Following [2, Section 3.1], for our simulations we selected p1(j), p2(j), p3(j) independently at each location
j, which corresponds to joint allelic spectrum ψ(x, y, z) = ψ(x)ψ(y)ψ(z) =

√
xyz/8 in (3.2).

In this setting, we can explicitly compute the theoretical matrix of moments (3.2) and matrix Q defined
by (2.34):

[πr,s] =

 1/5 1/9 1/9
1/9 1/5 1/9
1/9 1/9 1/5

 , Q =
4

c
[
√
crcs πr,s] =



2
15

2
√

2
27

2
9
√

3

2
√

2
27

4
15

2
√

2
9
√

3

2
9
√

3
2
√

2
9
√

3
2
5

 =

 0.133333 0.104757 0.1283
0.104757 0.266667 0.181444
0.1283 0.181444 0.4



(Due to change of notation, this matrix and the eigenvalues are 4 times the corresponding values from [2,
page 37].) The eigenvalues of the above matrix Q are

[γ2
1 , γ

2
2 , γ

2
3 ] = [0.586836, 0.141985, 0.0711794]

and the corresponding eigenvectors are

v1 =

0.342425
0.545539
0.764939

 , v2 =

−0.154523
−0.770372
0.618586

 , v3 =

−0.926751
0.33002
0.179496

 .
In order to apply the formulas, we use (3.2) to compute

πr,s,t =


1/27 r 6= s 6= t

1/15 if one pair of indexes is repeated

1/7 r = s = t
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and

πr,s,t,t =


1/45 r 6= s 6= t

1/25 r = s 6= t

1/21 r 6= s = t

1/9 r = s = t

As an intermediate step towards (3.4), it is convenient to collect the above data into three auxiliary matrices

[πrs1 − πrs11]r,s =


2
63

2
105

2
105

2
105

2
75

2
135

2
105

2
135

2
75



[πrs2 − πrs22]r,s =


2
75

2
105

2
135

2
105

2
63

2
105

2
135

2
105

2
75



[πrs3 − πrs33]r,s =


2
75

2
135

2
105

2
135

2
75

2
105

2
105

2
105

2
63


From (3.4) we get

Σ1 =


1

189

√
2

315
1

105
√

3√
2

315
2

225

√
2

135
√

3
1

105
√

3

√
2

135
√

3
1
75

 =

 0.00529101 0.00448957 0.00549857
0.00448957 0.00888889 0.00604812
0.00549857 0.00604812 0.0133333



Σ2 =


1

189

√
2

315
1

105
√

3√
2

315
2

225

√
2

135
√

3
1

105
√

3

√
2

135
√

3
1
75

 =

 0.00444444 0.00448957 0.00427667
0.00448957 0.010582 0.00777616
0.00427667 0.00777616 0.0133333



Σ3 =


1

225

√
2

405
1

105
√

3√
2

405
2

225

√
2

105
√

3
1

105
√

3

√
2

105
√

3
1
63

 =

 0.00444444 0.00349189 0.00549857
0.00349189 0.00888889 0.00777616
0.00549857 0.00777616 0.015873


Using these expressions and (3.5) with c = M/N = 120/2500, we determine

[m1,m2,m3] = [0.183948
√
c+

0.174053√
c

, 0.323598
√
c+

0.353849√
c

, 0.47449
√
c+

0.49976√
c

] = [0.834739, 1.68599, 2.38504].

We note that the shift is stronger for smaller singular values and is more pronounced for rectangular matrices
with small (or large) c.

Finally, we compute the covariance matrix

[Eζrζs] =

 0.306317 0.0293619 0.0225604
0.0293619 0.233577 −0.00941692
0.0225604 −0.00941692 0.235559

 .
The following figure illustrates that normal approximation works well.
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Figure 2. Histograms of three largest singular values with normal curves centered at [ρ1 +
m1, ρ2 +m2, ρ3 +m3] = [413.47, 208.02, 145.44] with variances 0.3063, 0.2336, 0.2356. Based
on 10,000 runs of simulations after a single randomization to choose vectors p1,p2,p3 with
M = 120, N = 2500.

Based on simulations reported in Fig. 2, we conclude that normal approximation which uses the singular

values of R̃0 provides a reasonable fit.
Let us now turn to the question of asymptotic normality for the normalized squares of singular values

Λr = λ2
r/(
√
M +

√
N)2. With M = 120, N = 2500 (correcting the misreported values) Ref. [2] reported the

observed values (48.2, 11.5, 5.8) for Λ1,Λ2,Λ3 versus the “theoretical estimates” (47.4, 11.5, 5.7) calculated

as γ2
rMN/(

√
M +

√
N)2 in our notation. While the numerical differences are small, Proposition 3.4 restricts

the accuracy of such estimates due to their dependence on the eigenvalues of R̃0 constructed from vectors of
allelic probabilities pr. Figure 3 illustrates that different selections of such vectors from the same joint allelic
spectrum (3.2) may yield quite different ranges for Λ1,Λ2,Λ3. It is perhaps worth pointing out that different
choices of allelic probabilities affect only the centering; the variance of normal approximation depends only
on the allelic spectrum.
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Figure 3. Two histograms of normalized squared singular values (Λ1,Λ2,Λ3), based on
10000 simulations, and the theoretical normal curves from Proposition 3.4 drawn in red.
This is M = 120 individuals with N = 2500 markers. Although the numerical differences
between Λ1,Λ2,Λ3 on the left-hand-side and on the right-hand side are small, the histograms
have practically disjoint supports.
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