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Homogeneous and isotropic random�eldX(t), t ∈ R,
on the plane admits the spectral representation

X(t, φ) =
∞
∑
m=
cos(mφ)Ym(rλ)Zm(dλ)

+
∞
∑
m=
sin(mφ)Ym(rλ)Zm(dλ).

�ese spectral decompositions of random �elds form a

power tool for the solution of statistical problems for ran-

dom �elds such as extrapolation, interpolation, �ltering,

and estimation of parameters of the distribution (Yadrenko

; Yaglom a, b).

About the Author
Dr. Mikhail P. Moklyachuk is a Professor of the Depart-

ment of Probability�eory, Statistics and Actuarial Math-

ematics, Kyiv National Taras Shevchenko University,

Ukraine. He is the author and coauthor of more than 

papers and six books, including Robust estimates for func-

tionals of stochastic processes (Kyiv University Press, ).

Professor Moklyachuk has received the Taras Shevchenko

prize (Kyiv University best textbook award, ) for the

textbook Variational Calculus. Extremum Problems. He is

the editor of the Cooperation Unit of Zentralblatt MATH

(Zentralblatt fuer Mathematik/Mathematics Abstracts),

coeditor of Current Index to Statistics, and member of the

editorial board, �eory of Probability and Mathematical

Statistics.

Cross References
7Estimation Problems for Random Fields
7Measure�eory in Probability
7Model-Based Geostatistics
7Random Variable
7Spatial Statistics
7Stochastic Processes

References and Further Reading
Chung KL, Walsh JB () Markov processes, Brownian motion,

and time symmetry, nd ed. Springer, New York, NY

Glimm J, Jaffe A () Quantum physics: a functional integral point

of view. Springer, Berlin/Heidelberg/New York

Kerstan J, Matthes K, Mecke J () Mathematische Lehrbücher und

Monographien. II. Abt. Mathematische Monographien. Band

XXVII. Akademie, Berlin

Malyshev VA, Minlos RA () Stochastic Gibbs fields. The method

of cluster expansions. Nauka, Moskva

Monin AS, Yaglom AM (a) Statistical fluid mechanics: mechan-

ics of turbulence, volume I. Edited and with a preface by Lumley

JL, Dover, Mineola, NY

Monin AS, Yaglom AM (b) Statistical fluid mechanics: mechan-

ics of turbulence, volume II. Edited and with a preface by

Lumley JL, Dover, Mineola, NY

Rozanov YuA () Markov random fields. Springer, New York

Yadrenko MI () Spectral theory of random fields. Translation

Series in Mathematics and Engineering. Optimization Software,

Publications Division, New York; Springer, New York

Yaglom AM (a) Correlation theory of stationary and related

random functions. volume I. Basic results. Springer Series in

Statistics. Springer, New York

Yaglom AM (b) Correlation theory of stationary and related

random functions, volume II. Supplementary notes and refer-

ences. Springer Series in Statistics. Springer, New York

Random Matrix Theory

JackW. Silverstein

Professor

North Carolina State University, Raleigh, NC, USA

Random matrix theory (RMT) originated from the inves-

tigation of energy levels of a large number of particles

in quantum mechanics. Many laws were discovered by

numerical study in mathematical physics. In the late s,

E. P.Wigner formulated the problem in terms of the empir-

ical distribution of a random matrix (Wigner , ),

which began the investigation into the semicircular law of

Gaussian matrices. Since then, RMT has formed an active

branch in modern probability theory.

Basic Concepts
LetA be an n×nmatrix with eigenvalues λ,⋯, λn. If all λjs
are real, then we can construct a -dimensional empirical

distribution function

F
A(x) = 

n

n

∑
j=
I(λj ≤ x),

otherwise, we may construct a -dimensional empirical

distribution function by the real and imaginary parts of λj,

i.e.

F
A(x, y) = 

n

n

∑
j=
I(R(λj) ≤ x;I(λj) ≤ y).

�en, FA is called the empirical spectral distribution (ESD)

ofA.�e main task of RMT is to investigate limiting prop-
erties of FA in the case where A is random and the order
n tends to in�nity. If there is a limit distribution F, then

the limit is called the limiting spectral distribution (LSD) of

the sequence of theA. Interesting problems include �nding
the explicit forms of the LSD if it exists and to investigate

its properties.

�ere are two methods used in determining limiting

properties of FA (Bai ). One is themethod of moments,

using the fact that the moments of FA are the scaled traces
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of powers of A. �e other is using Stieltjes transforms,
de�ned for any distribution function F as

m(z) = ∫


x − z
dF(x),

for z ∈ C.
Contrary to the progress made on the eigenvalues of

large dimensional random matrices, very few results have

been obtained on the limiting properties of the eigenma-

trix (i.e., the matrix of the standardized eigenvectors ofA).
Due to its importance in the application to statistics and

applied areas, investigation on eigenmatrices is becoming

more active.

Limiting Spectral Distributions
. Semicircular LawAWignermatrix is de�ned as aHer-
mitian (symmetric if real) matrixW = (wij)n×n whose
entries above or on the diagonal are independent.�en

the ESD of n−/W tends to the semicircular law with
density

p(x) = 

π

√
 − xI(∣x∣ < ),

if Ewij = , E∣wij∣ =  and for any δ > ,



n
∑
ij

E ∣wij∣ I (∣wij∣ ≥ δ
√
n)→ .

. Marcěnko–Pastur Law LetX = (xij)p×n whose entries
are independent random variables with mean zero and

variance . If p/n→ y ∈ (,∞) and for any δ > ,



np
∑
ij

E ∣xij∣ I (∣xij∣ ≥ δ
√
n)→ .

�en the ESD of Sn = 

n
XX∗ (so-called sample covari-

ance matrix) tends to the Marcěnko–Pastur law with

density



πxy

√
(b − x)(x − a)I(a < x < b)

where a = ( −√
y) and b = ( +√

y). Furthermore,
if y > , the LSD has a point mass  − /y at the origin.

. LSD of Products of Random Matrices Let T (p × p)
be a Hermitian matrix with LSD H (a probability dis-

tribution function) and Sn, p/n satisfy the conditions
in item ().�en the ESD of SnT exists and the Stielt-
jes transformm(z) is the unique solution on the upper
complex plane to the equation

m = ∫


t( − y − yzm) − z
dH(t),

where z is complex with positive imaginary part.

Extreme Eigenvalues and Spectrum
Separation
Limits of extreme eigenvalues of large random matrices

is one of the important topics. In many cases, under the

assumption of �nite fourthmoment, the extreme eigenval-

ues almost surely tend to the respective boundaries of the

LSD. For the product SnT, if the support of the LSD is dis-
connected, then, under certain conditions, it is proved that

there are no eigenvalues among the gaps and the numbers

on each side are exactly the same of eigenvalues of T, on
the corresponding sides of the interval which determines

the gap of the LSD (Bai and Silverstein ).

Further deeper investigation into extreme eigenvalues

is the Tracy–Widom Law which says that n/ times the

di�erence of the extreme eigenvalues and the correspond-

ing boundary points tends to the so-called Tracy–Widom

law (Tracy and Widom ).

Convergence Rates of Empirical Spectral
Distributions
Convergence rates of ESDs of large dimensional random

matrices to their corresponding LSDs are important for

application of spectral theory of large dimensional matrix.

Bai inequality is the basic mathematical tool to establish

the convergence rates (Bai a,b).�e currently known

best rates are that O(n−/) for the expected ESDs for
Wigner matrix and for sample covariance matrix, and

Op(n−/) and Oa.s.(n−/+η) for their ESDs.
�e exact rates are still far from known.

CLT of LSS
If λ, . . . , λn are the eigenvalues of the random matrix A
and f is a function de�ned on the space of the eigenval-

ues, then the LSS (linear spectral statistic) for the random

matrix is de�ned by



n

n

∑
k=
f (λk) = ∫ f (x)dFA(x).

To investigate the limiting distribution of the LSS, we

de�ne Xn( f ) = n (∫ f (x)d(FA(x) − F(x))).
Under certain conditions, the normalized LSS, Xn( f ),

is proved to tend to a normal distribution for the Wigner

matrix, the product SnT, as well as for the multivariate
F-matrix, with asymptotic means and variances explicitly

expressed by the Stieltjes transforms of the LSDs (Bai and

Yao ; Bai and Silverstein ; Zheng ).

�ese theorems have been found to have important

applications to multivariate analysis and many other areas.

Limiting Properties of Eigenvectors
Work in this area has been primarily done on the matri-

ces in item () with X containing real entries (Silverstein
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, , ). Write Sn = OΛO∗, its spectral decom-
position. When the entries of X are Gaussian, then Sn is
the standard Wishart matrix, with O Haar-distributed in
the group of p × p orthogonal matrices.�e question is to
compare the distribution ofOwhen the entries ofX are not
Gaussian to Haar measure when p is large.�is has been

pursued when X is made up of iid random variables, by
comparing the distribution of y = O∗x, where x is a unit
p-dimensional vector, to the uniform distribution on the

unit sphere in Rp. A stochastic process is de�ned in terms
of the entries of y, which converges weakly to Brownian
bridge in the Wishart case. A necessary condition for this

process to behave the same way for non Gaussian entries

has been shown to be E (x) = , matching the fourth
moment of a standardized Gaussian (Silverstein ). For

certain choices of x and for symmetrically distributed x,
weak convergence to Brownian bridge has been shown in

Silverstein ().
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Set Partitions
For n ≥ , a partition B of the �nite set [n] = {, . . . ,n} is

● A collection B = {b, . . .} of disjoint non-empty sub-
sets, called blocks, whose union is [n]

● An equivalence relation or Boolean function B∶ [n] ×
[n]→ {, } that is re�exive, symmetric and transitive

● A symmetric Boolean matrix such that Bij =  if i, j
belong to the same block

�ese equivalent representations are not distinguished in

the notation, so B is a set of subsets, a matrix, a Boolean

function, or a subset of [n]×[n], as the context demands. In
practice, a partition is sometimes written in an abbreviated

form, such asB = ∣ for a partition of []. In this notation,
the �ve partitions of [] are

, ∣, ∣, ∣, ∣∣.

�e blocks are unordered, so ∣ is the same partition as
∣ and ∣.
A partition B is a sub-partition of B∗ if each block of

B is a subset of some block of B∗ or, equivalently, if Bij = 
implies B∗ij = .�is relationship is a partial order denoted
byB ≤ B∗, which can be interpreted asB ⊂ B∗ if each parti-
tion is regarded as a subset of [n].�e partition lattice En
is the set of partitions of [n]with this partial order. To each
pair of partitions B,B′ there corresponds a greatest lower

bound B ∧ B′, which is the set intersection or Hadamard
component-wise matrix product. �e least upper bound




