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Fundamental Limit of Sample Generalized Eigenvalue
Based Detection of Signals in Noise Using Relatively

Few Signal-Bearing and Noise-Only Samples
Raj Rao Nadakuditi and Jack W. Silverstein

Abstract—The detection problem in statistical signal processing
can be succinctly formulated: given (possibly) signal bearing,

-dimensional signal-plus-noise snapshot vectors (samples) and
statistically independent -dimensional noise-only snapshot

vectors, can one reliably infer the presence of a signal? This
problem arises in the context of applications as diverse as radar,
sonar, wireless communications, bioinformatics, and machine
learning and is the critical first step in the subsequent signal
parameter estimation phase. The signal detection problem can be
naturally posed in terms of the sample generalized eigenvalues.
The sample generalized eigenvalues correspond to the eigenvalues
of the matrix formed by “whitening” the signal-plus-noise sample
covariance matrix with the noise-only sample covariance matrix.
In this paper, we prove a fundamental asymptotic limit of sample
generalized eigenvalue-based detection of signals in arbitrarily
colored noise when there are relatively few signal bearing and
noise-only samples. Specifically, we show why when the (eigen)
signal-to-noise ratio (SNR) is below a critical value, that is a
simple function of , , and , then reliable signal detection, in
an asymptotic sense, is not possible. If, however, the eigen-SNR
is above this critical value then a simple, new random matrix
theory-based algorithm, which we present here, will reliably de-
tect the signal even at SNRs close to the critical value. Numerical
simulations highlight the accuracy of our analytical prediction,
permit us to extend our heuristic definition of the effective number
of identifiable signals in colored noise and display the dramatic
improvement in performance relative to the classical estimator by
Zhao et al. We discuss implications of our result for the detection
of weak and/or closely spaced signals in sensor array processing,
abrupt change detection in sensor networks, and clustering
methodologies in machine learning.

Index Terms—Multivariate F distribution, random matrices,
sample covariance matrix, signal detection, Wishart distribution.

I. INTRODUCTION

T HE observation vector, in many signal processing applica-
tions, can be modeled as a superposition of a finite number

of signals embedded in additive noise. The model order se-
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lection problem of inferring the number of signals present is
the critical first step in the subsequent signal parameter esti-
mation problem. We consider the class of estimators that de-
termine the model order, i.e., the number of signals, in colored
noise from the sample generalized eigenvalues of the signal-
plus-noise sample covariance matrix and the noise-only sample
covariance matrix pair. The sample generalized eigenvalues [1]
precisely correspond to the eigenvalues of the matrix formed
by “whitening” the signal-plus-noise sample covariance matrix
with the noise-only sample covariance matrix (assuming that the
number of noise-only samples is greater than the dimensionality
of the system so that the noise-only sample covariance matrix is
invertible).

Such estimators are used in settings where it is possible to
find a portion of the data that contains only noise fields and
does not contain any signal information. This is a realistic as-
sumption for many practical applications such as evoked neu-
romagnetic experiments [2]–[4], geophysical experiments that
employ a “thumper” or in underwater experiments with a wide-
band acoustic signal transducer where such a portion can be
found in a data portion taken before a stimulus is applied. In
applications such as radar or sonar where the signals of interest
are narrowband and located in a known frequency band, snap-
shot vectors collected at a frequency just outside this band can
be justified as having the same noise covariance characteristics
assuming that we are in the stationary-process-long-observa-
tion-time (SPLOT) regime [5].

Our main objective in this paper is to shed new light on this
age old problem of detecting signal in noise from finite sam-
ples using the sample eigenvalues alone [6]–[8]. We bring into
sharp focus a fundamental statistical limit that explains pre-
cisely when and why, in high-dimensional, sample size limited
settings underestimation of the model order is unavoidable. This
is in contrast to works in the literature that use simulations, as
in [9], to highlight the chronically reported symptom of model
order estimators underestimating the number of signals without
providing insight into whether a fundamental limit of detection
is being encountered.

In recent work [10], we examined this problem in the white
noise scenario. The main contribution of this paper is the exten-
sion of the underlying idea to the arbitrary (or colored) noise
scenario. Extending the result requires us to perform careful
mathematical analysis to extend the results in the literature on
spiked Wishart random matrices [11]–[17] to the setting where
the covariance matrix (corresponding here to the inverse of the
noise-only covariance matrix) is also random. What emerges
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is an appealing generalization of in [10], which allows us to
mathematically justify our analogous definition of the effective
number of identifiable signals in colored noise as the number of
the generalized eigenvalues of the population (true) signal-plus-
noise covariance matrix and noise-only covariance matrix pair
that are greater than a (deterministic) threshold that is a simple
function of the number of signal-plus-noise samples, noise-only
samples and the dimensionality of the system. Analogous to the
white noise case, increasing the dimensionality of the system,
by say adding more sensors, raises the detectability threshold
so that the effective number of identifiable signals might actu-
ally decrease.

An additional contribution of this paper is the development
of a simple, new, optimal algorithm for estimating the number
of signals based on the recent work of Johnstone [18] and in-
sights on the behavior of spiked Wishart matrices from the work
of Baik, et al. [11] and El Karoui [14]. Numerical results are
used to illustrate the performance of the estimator around the de-
tectability threshold alluded to earlier. Specifically, we observe
that if the eigen-SNR of a signal is above a critical value then re-
liable detection using the new algorithm is possible. Conversely,
if the eigen-SNR is below the critical value then the algorithm is
unable to distinguish the signal from noise. When we comparing
this new algorithm with the classical (ZKB) algorithm by Zhao
et al. [8] we are able to reliably detect signals that are 8–9 dB
lower than the ZKB algorithm—this is to expected given the dis-
cussion in Johnstone [15, Sec. 2.4] about the inherent biases in
classical small-system-size-large-sample-size asymptotics (that
the ZKB algorithm employs) that the new large-system-size-rel-
atively-large-sample-size asymptotics accounts for (as in [15]).

The paper is organized as follows. We formulate the problem
in Section II and carefully analyze the properties and the phase
transition of the extreme sample (generalized) eigenvalues in
the signal-free and signal-bearing setting in Section III and
Section IV, respectively. Section V discusses the implica-
tions of this phase transition for applications such as array
processing, sensor networks, and machine learning. A new
algorithm for detecting the number of signals is presented in
Section VI. Concluding remarks are offered in Section VII. The
Appendix contains that mathematical proofs.

II. PROBLEM FORMULATION

We observe samples (“snapshots”) of possibly signal
bearing -dimensional snapshot vectors where for
each , the snapshot vector has a (real or complex) multivariate
normal distribution, i.e., and the ’s are
mutually independent. The snapshot vectors are modeled as

for (1)

where , denotes an -dimensional (real or com-
plex) Gaussian noise vector where the noise covariance may
be known or unknown, denotes a -dimen-
sional (real or complex) Gaussian signal vector with covariance

, and is a unknown nonrandom matrix. Since the

signal and noise vectors are independent of each other, the co-
variance matrix of can hence be decomposed a

(2)

where

(3)

with denoting the complex conjugate or real transpose. As-
suming that the matrix is of full column rank, i.e., the columns
of are linearly independent, and that the covariance matrix of
the signals is nonsingular, it follows that the rank of is .
Equivalently, the smallest eigenvalues of are equal to
zero.

If the noise covariance matrix were known a priori and was
nonsingular, a “noise whitening” transformation may be applied
to the snapshot vector to obtain the vector

(4)

which will also be normally distributed with covariance

(5)

Here, is the Hermitian nonnegative definite square root of
. Denote the eigenvalues of by . Re-

calling the formulation of the generalized eigenvalue problem
[1Sec. 8.7], we note that the eigenvalues of are exactly the
generalized eigenvalues of the regular matrix pair . Then,
assuming that the rank of is also , it follows that the
smallest eigenvalues of or, equivalently, the general-
ized eigenvalues of the matrix pair ), are all equal to 1 so
that

(6)

while the remaining eigenvalues of will be strictly greater
than one.

Thus, if the true signal-plus-noise covariance matrix and
the noise-only covariance matrix were known a priori, the
number of signals could be trivially determined from the mul-
tiplicity of the eigenvalues of equalling one.

The problem in practice is that the signal-plus-noise and
the noise covariance matrices are unknown so that such a
straightforward algorithm cannot be used. Instead we have an
estimate of the signal-plus-covariance matrix obtained as

(7)

and an estimate of the noise-only sample covariance matrix ob-
tained as

(8)
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TABLE I
ZKB ALGORITHM [8]

where for are (possibly) signal-bearing snap-
shots and for are independent noise-only snap-
shots. We assume here that the number of noise-only snapshots
exceeds the dimensionality of the system, i.e., , so
that the noise-only sample covariance matrix , which has the
Wishart distribution [19], is non-singular and hence invertible
with probability 1 [20, Ch. 3, p. 97], [21, Ch. 7.7, pp. 272–276].
Following (5), we then form the matrix

(9)

and compute its eigen-decomposition to obtain the eigenvalues
of , which we denote by . We note, once

again, that the eigenvalues of are simply the generalized

eigenvalues of the regular matrix pair . Note that when-
ever , the signal-plus-noise sample covariance matrix
will have rank at most , so that the generalized eigen-
values will equal zero, i.e., .

In this paper, we are interested in algorithms that infer
the number of signals from the eigenvalues of or

alone. Such algorithms are widely
used in practice and arise naturally from classical multivariate
statistical theory [18] where the matrix is referred to as
the multivariate F matrix [20], [22]. The information-theoretic
approach to model order estimation, first introduced in [6], was
extended to the colored noise setting by Zhao et al. in [8] who
prove large sample consistency of estimator (see Table I). Tam
and Wu [23] performed a rate of convergence analysis of the
ZKB algorithm for different choices of the penalty function but
provide no insight into the performance in the large system,
finite sample setting. A larger, more fundamental question that
remained unanswered is whether there are any fundamental
statistical limits to detection.

Consequently, research has focused refining the performance
of eigenvalue based methods in the finite sample setting. Zhu et
al. [24] improve the performance of their eigenvalue estimator
by assuming a model for the noise covariance matrix. Stoica
and Cedervall [25] improve the performance of their estimator
in two reasonable settings: one, where it is reasonable to assume
that the noise covariance matrix is block diagonal or banded and
two, where the temporal correlation of the noise has a shorter
length than the signals. Other techniques exploit other character-
istics of the signal or noise to effectively reduce the dimension-
ality of the signal subspace and improve model order estimation
given finite samples. See for, e.g. [26], [27] and the references
in [10].

We tackle the statistical limit issue head on in this paper
by employing tools from random matrix theory [28]. What we
find that is that there is a fundamental statistical limit of detec-
tion, which allows one to predict how many samples are “good
enough” [3 p. 846]. Consequently, the phase transition that the
ZKB algorithm encounters (see Fig. 1) is unavoidable but it
turns out that the ZKB algorithm is far from that limit.

III. ANALYZING THE SIGNAL-FREE CASE

We begin our investigation with a careful analysis of the
eigenvalues of sample covariance matrices. Since our analysis
extends beyond the setting where the snapshot vectors are mod-
eled as Gaussian (as in Section II), we shall employ different
notation to avoid any confusion. This allows us to treat the
specific problem in Section II as a special case and to extend
our results for a variety of related generalize eigenvalue based
detection scenarios.

A. Empirical Distribution Function and Its Transform

Let for , be a collection of complex valued
independent and identically distributed (i.i.d.) random variables
with and . For positive integers and

let , , . Assume
for each , is an Hermitian nonnegative definite ma-
trix. The matrix , where is
any Hermitian square root of , can be viewed as a sample co-
variance matrix, formed from samples of the random vector

with denoting the first column of , which has
for its population covariance matrix. When and are both

large and on the same order of magnitude, will not be near
, due to an insufficient number of samples required for such

a large dimensional random vector. However, there exist results
on the eigenvalues of . They are limit theorems as
with and , which provide infor-
mation on the eigenvalues of . One result [29] is on the em-
pirical distribution function (e.d.f.), , of the eigenvalues of

, which throughout the paper, is defined for any Hermitian
matrix as

Number of eigenvalues of
(10)

The limit theorem is expressed in terms of the Stieltjes transform
(s.t.) of the limiting e.d.f. of the ’s, where for any distribu-
tion function (d.f.) its s.t. is defined to be

There exists a one-to-one correspondence between the distribu-
tion functions (d.f.’s) and their s.t.’s ([30]).

The limit theorem allows the to be random, but indepen-
dent of , and assuming as , the convergence of to
a nonrandom proper probability distribution function , i.e.,

. The theorem states that with probability
one, as , , where is nonrandom, with s.t.

, satisfying the equation

(11)
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Fig. 1. Heat map of the log probability of signal detection using the ZKB algo-
rithm described in Table I, for different choices of the penalty function � ,
in (eigen) SNR versus number of sensors to number of signal-plus-noise snap-
shots phase space. We set ��� � �, � � ������ � � 	 
��� ��    � ��
and evaluate ������� � �� over 1000 Monte-Carlo trials and a grid of 50
equally spaced points in the 0 to 20 dB (eigen) SNR range and 50 equally
spaced points in the � � ��� space by setting � � ��� . The values
of the colormap at each of the 50 � 50 faces were interpolated across each
line segment and face to obtain the above plot. The superimposed solid white
line demarcates the theoretically predicted threshold and shows the subopti-
mality of the ZKB algorithm. The new algorithm gets within 0.5 dB of the
threshold (see Fig. 4) and is thus able to reliably detect 8–9 dB weaker signals.
(a) � � �	��

�
�	
� �����	
�; (b) � � �	� �����	
�;

(c) � � �	� ������	 
����.

which is unique in the set .
It is more convenient to work with the e.d.f. of the

matrix , whose eigenvalues differ from
those of by zero eigenvalues. Indeed, with
denoting the limiting e.d.f. of the eigenvalues of , we have,
with denoting the indicator function on the set the exact
relationship

almost surely, implying

(12)

Upon substituting into (11) we find that for
solves the equation

(13)

and is unique in . Thus we have an explicit inverse for
.

B. Recovering Eigenvalue Support From the Integral
Transform

Qualitative properties of have been obtained in [30],
most notably the fact that on has a continuous
derivative. The paper [30] also shows how intervals outside the
support of can be determined from the graph of (13) for

.
Let denote the support of the d.f. , its complement,

and define to be (13) with . Intuitively,
on , by definition of the Stieltjes transform, is well
defined and increasing. Therefore, it is invertible on each in-
terval in , its inverse, namely , is also increasing. The
details are herewith stated more formally.

Lemma 3.1 (Theorems 4.1, 4.2 of [30]): If , then
satisfies (1) , (2) , and

(3) . Conversely, if satisfies (1)–(3),
then .

In simple terms is comprised of the range of values
where is increasing.

Another result which will be needed later is the following.
Lemma 3.2 (Theorem 4.3 of [30]): Suppose each

contained in the interval satisfies (1) and (2) of
Lemma 3.1, and for 1, 2. Then

for all .
Since, by definition of the e.d.f in (10), the convergence in

distribution of only addresses how proportions of eigen-
values behave, understanding the possible appearance or non-
appearance of individual eigenvalues in requires further
work.

The extreme eigenvalues when has been answered
by Yin, Bai, and Krishnaiah in [31], and Bai and Yin in [32],
respectively, under the additional assumption ,
the largest eigenvalue and th largest eigenvalue of
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converge a.s. to and , re-
spectively, matching the support, of
on . More on this case will be given later.

For general , restricted to being bounded in spectral norm,
the nonappearance of eigenvalues in has been proven by
Bai and Silverstein in [33]. Moreover, the separation of eigen-
values across intervals in , mirrors exactly the separation
of eigenvalues over corresponding intervals in [34]. The re-
sults are summarized below.

Theorem 3.1 ([33], [34]) Assume additionally
and the are nonrandom and are bounded in spectral norm for
all . Let denote the “limiting” e.d.f. associated with

, in other words, is the d.f. having s.t.
with inverse (13), where are replaced by . This pro-
vides a mechanism for accounting for the finite matrix size be-
havior associated in how and converge to and , re-
spectively.

Assume the following condition:
• Interval with lies in an open interval outside

the support of for all large .
Then no eigenvalue of appears in for all large
For Hermitian non-negative definite matrix , let

denote the th largest eigenvalue of . For notational conve-
nience, define and .

1) If , then , the smallest value in
the support of , is positive, and with probability 1,

as .
2) If , or but is

not contained in , then , and for all
large there is an index for which

and (14)

Then and for all large .
The behavior of the extreme eigenvalues of

leads to the following corollary of Theorem 3.1.
Corollary 3.2: If converges to the largest number

in the support of , then converges a.s. to the largest
number in the support of . If converges to the smallest
number in the support of , then implies

converges a.s. to the smallest number in the
support of .

In Theorem 3.1, Case 1) applies when , whereby
the rank of would be at most , the conclusion asserting,
that with probability 1, for all large, the rank is equal to .
From Lemma 3.1, Case 2) of Theorem 3.1 covers all inter-
vals in on resulting from intervals on
where is increasing. For all large is increasing
on , which, from inspecting the ver-
tical asymptotes of and Lemma 3.1, must be due to the
existence of , satisfying (14).

We now extend Theorem 3.1 to random , independent of
with the aid of Tonelli’s Theorem [35, pp.

234], provided the condition on is strengthened to the
following:

• With probability 1 for all large (nonrandom)
lies in an open interval outside the support of .

Proof: See Appendix. Note the novelty of this Theorem
lies in the fact that we allow to be random unlike other results
in the literature [11]–[17].

Consider now case 2) of Theorem 3.1 in terms of the cor-
responding interval outside the support of and the ’s.
Let , . By Lemma 3.1 and
condition , we have the existence of an such that

, and for all large

(15)
. Let , . Then

by Lemma 3.1 we have the existence of an for which
and for all large. Moreover,

by (15) we have for all large

(16)

Necessarily, and .
Notice the steps can be completely reversed, that is, beginning

with an interval , with , lying in an open interval in
for all large and satisfying (16) for some , will yield
, with , , satisfying

condition . Case 2) applies, since is within the range of
for . If , then we would have

.

C. Behavior of the Eigenvalues in the Signal-Free Case

Let be another collection of i.i.d. random variables (not
necessarily having the same distribution as the ’s), with

, , , and independent of
the ’s.

We form the matrix , ,
with , , and

as .
Let now , whenever the inverse ex-

ists.
From Bai and Yin’s work [32] we know that with proba-

bility 1, for all large, exists with .
Whenever define to be . The matrix

, typically called a multivariate matrix, has
the same eigenvalues as . Its limiting e.d.f. has density on

given by

(17)

where

(18)

(19)
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and is the Dirac delta function. When , there is no
mass at 0, whereas for has mass at 0 [22].

We note that (17) is a probabilistic description of the eigen-

values of in the signal-free case, with ,
and .

IV. ANALYZING THE SIGNAL-BEARING CASE

With these equivalences in mind, we now turn to the signal-
bearing setting.

A. Phase Transition of Spiked Eigenvalues

Suppose now the ’s are altered, where a finite number
of eigenvalues are interspersed between the previously adja-
cent eigenvalues and . It is clear that the limiting

will remain unchanged. However, the graph of on
will now contain vertical asymptotes. If

the graph remains increasing on two intervals for all large,
each one between successive asymptotes, then because of The-
orem 3.1, with probability one, eigenvalues of the new will
appear in for all large.

Theorem 4.1, stated next, shows this will happen when a
“sprinkled”, or “spiked” eigenvalue lies in .

Theorem 4.1: Assume in addition to the assumptions in The-
orem 3.1 on the and :

1) There are positive eigenvalues of all con-
verging uniformly to , a positive number. Denote by

the e.d.f. of the other eigenvalues of .
2) There exists positive contained in an interval

with which is outside the support of
for all large , such that for these

for .
3) .

Suppose are the eigenvalues stated in a).
Then, with probability one

(20)
Proof: See the Appendix.

Note that Theorem 4.1 allows the number of spiked eigen-
values to grow with , provided it remains . Theorem 4.2,
stated next, provides a converse, in the sense that any isolated
eigenvalue of must be due to a spiked eigenvalue, the ab-
sence of which corresponds to case 2) of Theorem 3.1.

Theorem 4.2: Assume, besides the assumptions in Theorem
3.1, there is an eigenvalue of which converges in proba-
bility to a nonrandom positive number, . Let interval

, with , be such that , and let
, ,

(finite by Lemma 3.1). Then , implying 3) of
Theorem 4.1. Let denote the number of eigenvalues of

contained in and let denote the e.d.f. of the other
eigenvalues of . Then and 2) of Theorem 4.1

is true. If remains bounded, then 1) of Theorem 4.1 also holds.
Proof: See the Appendix.

B. Threshold Where Phase Transition Manifests

Theorem 4.1 proves almost sure convergence of the spiked
eigenvalues that lie in .

Consider now lying on either side of the support of .
Let and denote, respectively, the smallest and largest
numbers in the support of Notice that

is decreasing for , and if , is
increasing on . Therefore, if for all large, ,
it is necessary and sufficient to find a for which

in order for (20) to hold.
Similarly, if for all large , then it is necessary

and sufficient to find a for which in order
for (20) to hold. Notice if then for
all and all large.

Let for d.f. with bounded support, denote
the largest number in . If there is a for
which , and if

, then can be used as a threshold for
. Indeed, by the dominated conver-

gence theorem, . Therefore, if ,
conditions 2) and 3) of Theorem 4.1 hold, with , and
any arbitrarily large number.

On the other hand, suppose , where re-
mains bounded, are the eigenvalues of approaching the in-
terval . Then by Theorem 4.2, for any
with probability one, none of can remain in

with for all large.
Also, since the largest eigenvalues of must be

(otherwise, would have additional mass on ),
must all converge a.s. to . Similar re-

sults can be obtained for the interval to the left of . As in
Theorem 3.1 Tonelli’s Theorem can easily be applied to estab-
lish equivalent results when ’s are random and independent
of .

Thus, we have shown that the spiked eigenvalues will separate
from the bulk only if is greater than some threshold which
only depends on the limiting e.d.f. and is the solution of the
equation

C. Finite Signal-Bearing Case

We now apply the above result to the problem in Section II
where we are interested in the effect on spikes on the right side of
the support of the , corresponding to the largest eigenvalues.
Because of the corollary to Theorem 3.1, we know
a.s. as . To compute the threshold we must first compute
the function . We will see that
it is unnecessary to compute the limiting e.d.f. of . It
suffices to know the limiting s.t. of .

Let denote the limiting e.d.f. of . We have
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We use (13) to find

(the sign depending on which branch of the square root is taken).
From the identity in (12) we find that

As mentioned earlier the support of is
. We need for , so we need

for .
Since , exists and is real, which dictates

what sign is taken on . We find that, on this
interval

(21)
and using the fact that the discriminant equals

We therefore find that for

We see that the equation leads to the quadratic equa-
tion in : , where

, giving us

the positive sign in front of the square root being correct due to

Reducing further we find the threshold, , to be

(22)

We now compute the right-hand side of (20). We have for
, the expression in (23), shown in the equation at bottom

of page.
A straightforward (but tedious) calculation will yield
. Using the results from the previous section, we have proved

the following.
Theorem 4.3: Assume in addition to the assumptions in The-

orem 3.1 on the
1) the , possibly random, are independent of the ,

with , a.s. as , being the limiting
e.d.f. of , defined above.

2) Almost surely, there are (remaining finite for each re-
alization) eigenvalues of converging to nonrandom

, as . Denote by the e.d.f.
of the other eigenvalues of .

3) With defined to be the largest number in the sup-
port of , with probability one,
the threshold defined in (22).

Suppose are the eigenvalues stated in 2) of
Theorem 4.1. Then, with the function defined in (23), with
probability one

and
if

if . (24)

Note: From Theorem 4.1, when the result
can allow . Recall that we had ,

(23)
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, and
is the number of signals. In Theorem 4.3, we have, from

[11], [12] that

so that solving gives us an expression for the threshold
that the “signal” eigenvalue of must exceed to be

detectable. This expression is

(25)

Note that the generality of Theorem 4.1 allows us to analyze
the setting where is obtained from noise-only snapshots that
are temporally correlated with some covariance. Of course, in
that setting, we would not get such clean analytical expressions.

V. DISCUSSION

We have seen that if there are signals than the “signal”
eigenvalues of will have almost sure limit that
is different from the almost sure limit of the largest eigenvalue
in noise-only setting if and only if . This is the
reason why, in the large-system-relatively-large-sample-size
limit, model order underestimation when using sample eigen-
value-only-based detection is unavoidable. This motivates
our heuristic definition of the effective number of identifiable
signals as follows:

of (26)

Fig. 2 shows the eigen-SNR threshold needed
for reliable detection for different values as a function of for
different values of . Note the fundamental limit of detection
in the situation when the noise-only covariance matrix is known
a priori (solid line) and increase in the threshold eigen-SNR
needed as the number of snapshots available to estimate the
noise-only covariance matrix decreases.

A. Implications for Array Processing

Suppose there are two uncorrelated (hence, independent) sig-
nals so that . In (1), let . In
a sensor array processing application, we think of
and as encoding the array manifold vectors for a
source and an interferer with powers and , located at
and , respectively. The signal-plus-noise covariance matrix is
given by

(27)

where is the noise-only covariance matrix. The matrix
defined in (5) can be decomposed as

so we that we can readily note that has the smallest
eigenvalues and the two largest eigenvalues
can be computed explicitly.

What emerges as a result of extending this computation as
in [36] is the ability to succinctly, yet precisely, describe the

Fig. 2. Plot of the minimum (generalized) Eigen-SNR required [equal
to ���� � � � � where ���� � � is given by (25)] to be able to asymp-
totically discriminate between the “signal” and “noise” eigenvalue of
the matrix � constructed as in (9) as a function of the ratio of the
number of sensors to snapshots for different values of ��� , where
� � Number of sensors/Number of noise-only snapshots. The gap be-
tween the dashed line and the bottom-most solid line and the bottom-most line
represents the SNR loss due to noise covariance matrix estimation.

tradeoff between the identifiability of two closely spaced sig-
nals, the dimensionality of the system, the number of available
snapshots and the cosine of the angle between the vectors
and . Note that since the effective number of signals depends
on the structure of the theoretical signal and noise covariance
matrices (via the eigenvalues of ), different assumed noise
covariance structures (AR(1) versus white noise, for example)
will impact the signal level SNR needed for reliable detection
in different ways.

B. Other Applications

There is interest in detecting abrupt change in a system based
on stochastic observations of the system using a network of sen-
sors. When the observations made at various sensors can be
modeled as Gauss–Markov random field (GMRF), as in [37],
[38], then the conditional independence property of GMRFs
[39] is a useful assumption. The assumption states that condi-
tioned on a particular hypothesis, the observations at sensors
are independent. This assumption results in the precision ma-
trix, i.e., the inverse of the covariance matrix, having a sparse
structure with many entries identically equal to zero.

Our results might be used to provide insight into the
types of systemic changes, reflected in the structure of the
signal-plus-noise covariance matrix, that are undetectable using
sample generalized eigenvalue-based estimators. Specifically,
the fact that the inverse of the noise-only covariance matrix will
have a sparse structure means that one can experiment with
different (assumed) conditional independence structures and
determine how “abrupt” the system change would have to be in
order to be reliably detected using finite samples.

Spectral methods are popular in machine learning applica-
tions such as unsupervised learning, image segmentation, and
information retrieval [40]. Generalized eigenvalue-based tech-
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niques for clustering have been investigated in [41], [42]. Our re-
sults might provide insight when spectral clustering algorithms
are likely to fail. In particular, we note that the results of The-
orem 4.3 hold even in situations where the data is not Gaussian
(see Theorem 4.3) as is commonly assumed in machine learning
applications.

VI. AN IMPROVED ALGORITHM FOR RELIABLE

DETECTION OF SIGNALS IN NOISE

Fig. 1 shows the suboptimality of the ZKB algorithm in the
high-dimensional, relatively small sample size setting relative
to the fundamental limit of sample eigenvalue-based detection.
This is not surprising because the ZKB algorithm was derived
in [8] using large-sample-size asymptotics that did not account
for the dimensionality of the underlying system. In modern par-
lance, they used small , large asymptotics. Much of the re-
cent explosion in activity at the interface of multivariate statis-
tics, statistical signal processing and random matrices has to do
with the fact that we are now able to make incredibly precise
computations in the large , large asymptotic regime [15,
Sec. 2.4]. Consequently, the shortcomings of algorithms like the
ZKB algorithm that are hard-wired based on the small , large

asymptotics can be largely overcome by deriving new algo-
rithms based on the large , large asymptotics.

For the problem at hand, it is an open problem to fully char-
acterize the fluctuations of the eigenvalues of the matrix for
the spiked setting. We do, however, have a precise description
due to Johnstone [18] for the signal-free setting, i.e., when
where we know that the distribution of the largest eigenvalue of

, on appropriate centering and scaling, can be approximated
to order by the (real or complex) Tracy–Widom dis-
tribution [43]–[45].

In the spiked Wishart setting, corresponding to the signal
bearing eigenvalues of , Baik et al. [11] and El Karoui [14]
showed that after appropriate centering and scaling, the distri-
bution of the signal eigenvalues of above the detectability
threshold will obey a Gaussian law with fluctuations on the order

whereas the signal eigenvalues below the detectability
threshold will obey the Tracy–Widom law as in the signal-free
case with fluctuations on the order .

Specifically, we have that for eigenvalues above threshold we
get Gaussian fluctuations about in (23), so that

for some . When below threshold we have that

for some explicitly computable . Thus, for every
, we can sequentially test the null hypothesis that

there are “ signals present” against the alternative hypothesis
that there are “at least signals present” on by com-
puting the test statistic

Fig. 3. Distribution of the test statistic for the algorithms in Table II under the
null and alternative hypothesis when � � � � �. Consequently, we have
������ � � � � 	 as � � �.

and accepting the null hypothesis whenever
for some significance level . Consequently, the first

value of for which the “ signals present”
hypothesis is accepted will be our estimate of the number of
signals.

To see why we expect this algorithm to be asymptotically
reliable, consider the setting where so that
corresponds to a signal eigenvalue that is above the threshold.
Hence, we have

so that since

so that for any fixed threshold (that does not depend on ),
the probability that the test statistic exceeds is

as . Thus, the alternative hypothesis that there are
at least “ signals present” will be accepted with
exceedingly high probability. This situation is depicted in Fig. 3.

When , then will be distributed like the largest
signal-free eigenvalue. Hence, we have

so that

Consequently, as , the null hypothesis that there are
“ signals present” will be accepted with probability

, for some significance level , as desired.
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TABLE II
NEW SIGNAL DETECTION ALGORITHMS. (a) NOISE COVARIANCE ESTIMATED. (b) NOISE COVARIANCE KNOWN

Fig. 4. Heat map of the log probability of signal detection using Algorithm 1
in Section VI, with the significance level � set at 0.01, in (eigen) SNR versus
number of sensors to number of signal-plus-noise snapshots phase space. In this
example, we set � � ���, � � ��� and w.l.o.g. ��� � �, � � �	
��� �
����� � � � � � � and evaluated ������� � � over 1000 Monte-Carlo trials
and a grid of 100 equally spaced points in the �5 to 15 dB (eigen) SNR range
and 100 equally spaced points in the � � ��	 space by setting 	 � ��� .
The values of the colormap at each of the 100 � 1000 faces were interpolated
across each line segment and face to obtain the above plot. In the dark zone
(upper half of the plot) a signal can be reliably detected whereas in the lighter
zone (lower half of the plot) the signal is statistically indistinguishable from
noise as evidenced from the probability of detection being close to the signif-
icance level. The superimposed solid black line demarcates the theoretically
predicted threshold while the superimposed solid red line is the theoretically
predicted threshold in the setting where the noise covariance matrix is perfectly
known. The gap between the two lines thus represents the SNR loss due to noise
covariance matrix estimation.

Table II summarizes an algorithm for estimating the number
of signals based on this idea. Johnstone suggests using a logit
transformation in [18] to and derives the centering and scaling
coefficients, listed in Table IV, associated with this transforma-
tion that results in the optimal rate of convergence. For the sake
of completeness, we also include an extension to the setting
where is known a priori, in which case the correction terms
that result in an optimal rate of convergence for the complex
and real setting were derived by El Karoui [14] and Ma [46],
respectively. In the setting where is estimated, we found the
analogous correction terms for the centering and rescaling coef-
ficients that achieve the optimal rate of convergence by numer-
ical simulations. Theoretically supporting these choices remains

TABLE III
PERCENTILES OF THE TRACY–WIDOM REAL AND COMPLEX DISTRIBUTION

an open problem. Fig. 4 illustrates the performance of our algo-
rithm and demonstrates its ability to reliably detect the presence
of the signal around the derived fundamental statistical limit.

VII. CONCLUSION

Fig. 4 captures the fundamental statistical limit encountered
when attempting to discriminate signal from noise using finite
samples. Simply put, a signal whose eigen-SNR is below the de-
tectability threshold cannot be reliably detected while a signal
above the threshold can be. In settings such as wireless com-
munications and biomedical signal processing where the signal
power is controllable, our results provide a prescription for how
strong it needs to be so that it can be detected. If the signal level
is barely above the threshold, simply adding more sensors might
actually degrade the performance because of the increased di-
mensionality of the system. If, however, either due to clever
signal design or physics-based modeling, we are able to re-
duce (or identify) the dimensionality of the subspace spanned by
signal, then according to Fig. 4 the detectability threshold will
also be lowered. With VLSI advances making sensors easier and
cheaper to deploy, our results demonstrate exactly why the re-
sulting gains in systemic performance will more than offset the
effort we will have to invest in developing increasingly more so-
phisticated dimensionality reduction techniques. Understanding

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 26,2010 at 07:32:36 UTC from IEEE Xplore.  Restrictions apply. 



478 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 3, JUNE 2010

the fundamental statistical limits of techniques for signal detec-
tion in the setting where the noise-only sample covariance ma-
trix is singular remains an important open problem.

APPENDIX

PROOFS AND COMPUTATIONS

A. Proof of Extension of Theorem 3.1 for Random

Indeed, let denote the probability space generating ,
the probability space generating . Let their

respective measures be denoted by , , the product measure
on by . Consider, for example in case 2), we define

and for all large . Let
be an element of the event defined in . Then by Theorem
3.1 for all contained in a subset of having
probability 1.

Therefore, by Tonelli’s theorem we have

B. Proof of Theorem 4.1

For , we have

By considering continuity points of in we see that
is constant on this interval, and consequently, this interval is

also contained in .
Because of 2) we have for

[recall (15), (16)].
By Lemma 3.2 we therefore have for

all . Thus, we can find
and , such that and for all large

for all .
It follows that for any positive sufficiently small, there exist

positive with , such that, for all large, both
, and :

• 1) are contained in , and
• 2) for all contained in these two

intervals.
Therefore, by Lemma 3.1, for all large,

and
lie outside the support of

. Let ,
, ,

and . Then for all large

(28)

and

(29)

It follows then that , each lie in an open in-
terval in for all large. Moreover .
Therefore, case 2) of Theorem 3.1 applies and we have

and for all large

Therefore, considering a countable collection of ’s converging
to zero, we conclude that, with probability 1

C. Proof of Theorem 4.2

Proof: By Lemma 3.1, , and for a suitable
positive , is increasing on ,
which does not contain 0. Therefore, . If

, that is, case 1) of Theorem 3.1 holds,
then , since is the almost sure limit of so
cannot be smaller than it, and necessarily . There-
fore, , so that . It must be the case that
only eigenvalues of lie in , since otherwise

would not be outside the support of . We have then
as , so from the dominated convergence

theorem we have for
all , implying for all large

for all .
Therefore 2) is true.

We assume now that is bounded. Suppose 1) does not hold.
Then we could find a subsequence of the natural numbers
for which of the eigenvalues converge to a ,
the remaining , if positive, eigenvalues remaining a positive
distance from . Replace with which matches
the original sequence when and for , has
eigenvalues equal to , with the remaining , again, if pos-
itive, eigenvalues of at least away from . Then we have
by Theorem 3.1, (20), with replaced by , holding for of
the eigenvalues of . Thus, on ,
we have the almost sure convergence of eigenvalues of
to which, because is an in-
creasing function, does not equal . This con-
tradicts the assumption of convergence in probability to eigen-
values to only one number, namely . Therefore 1) holds.
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TABLE IV
PARAMETERS FOR NEW SIGNAL DETECTION ALGORITHMS IN TABLE II. (a) ALGORITHM 1. (b) ALGORITHM 2
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