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Maximizing (17) over P; is equivalent to choosing P; to be equal
to the minimum of (18), divided by N;.

If N; > iforall i, sothat Ny = N, = = Ny > M.e.,
every component is observed at least M + | times), and if the true
covariance matrix is positive definite, then, with probability one,
the P; are strictly positive (so the estimated covariance matrix is
positive definite).

The decoupling of b;, P;, and the ith row of L, for different 7,
facilitates the computation of Cramer-Rao bounds, since it imparts
a block-diagonal structure to the Fisher information matrix.

V. ExaMpPLE: ML ESTIMATES FOR BIVARIATE, ZERO-MEAN
CASE

It is instructive to consider in detail the bivariate case (i.e., M
= 2). We further simplify the problem by assuming that the true
mean is zero (i.€., a = 0). Here we present the exact ML estimates
for the elements of the covariance matrix.

For M = 2, and with the assumption that b = o, it is straight-
forward to obtain the ML estimates for L and P. Then transforming
back to K gives the following exact ML estimates:
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It is apparent that, for Ny > N,, the ML estimates for K, and K3,
are exceedingly complicated. In contrast, the ML estimates for L
and P are relatively simple. Note that the ML estimates for X, and
K, involve all of the observations.

VI. SuMMARY AND CONCLUSIONS

We have obtained the exact maximum likelihood estimates for
the mean vector and the covariance matrix for a class of problems
where not every component of each realization of the random vec-
tor is observed. In contrast to ad hoc estimates, the ML estimate
for the covariance matrix is guaranteed to be positive definite.

It would be reasonable to apply our algorithm to non-Gaussian
data as well as to Gaussian-distributed data. The estimator would
not be maximum-likelihood for non-Gaussian data, but it would
produce consistent estimates. Error norms other than least squares
could be used to estimate the regression coefficients.

Our algorithm is applicable when it is possible to order the com-
ponents of the random vector such that the set of realizations for
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Fig. 2. Structure of data set comprising independent realizations of a bi-
variate random vector; some realizations are missing the first component
and some realizations are missing the second component: there is no simple
expression for the likelihood function in terms of the Cholesky factors.

which the ith component is available is a subset of the set of re-
alizations for which the (i — 1)th component is available, for2 =<
i < M. Such cases appear in practice when multiple sensors are
used sequentially, with each sensor observing a subset of the ob-
jects that were observed by the previous sensor. Our algorithm is
not applicable to the data set shown in Fig. 2 because there is no
simple expression for the likelihood function in terms of the Cho-
lesky factors. Here an iterative ascent algorithm such as EM could
still be used.
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Signal Detection via Spectral Theory of Large
Dimensional Random Matrices

Jack W. Silverstein and Patrick L. Combettes

Abstract—Results on the spectral behavior of random matrices as the
dimension increases are applied to the problem of detecting the num-
ber of sources impinging on an array of sensors. A common strategy
to solve this problem is to estimate the multiplicity of the smallest ei-
genvalue of the spatial covariance matrix R of the sensed data from the
sample covariance matrix R. Existing approaches rely on the closeness
of the noise eigenvalues of R to each other and, therefore, the sample
size has to be quite large when the number of sources is large in order
to obtain a good estimate. The theoretical analysis presented in this
correspondence focuses on the splitting of the spectrum of R into noise
and signal eigenvalues. It is shown that, when the number of sensors
is large, the number of signals can be estimated with a sample size
considerably less than that required by previous approaches.

I. INTRODUCTION

In many signal processing applications, a fundamental problem
is the determination of the number of signals impinging on an array
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of sensors. Common detection methods, such as those based on
information theoretic criteria,' rely on the ergodic theorem. Their
performance strongly depends on the spatial covariance matrix R
of the data process being closely approximated by the sample co-
variance matrix R, requiring the sample size to be quite large. In
applications where the number of signals and, consequently, the
number of sensors, is sizable, the required number of samples may
be prohibitive. The purpose of this correspondence is to bring into
play elements of the spectral theory of random matrices, more spe-
cifically, results on the limiting distribution of the eigenvalues of
random matrices as the dimension increases. The analysis will show
that, when the number of sensors is large, the number of signals
can be estimated with a sample size considerably less than that
required by invoking the ergodic theorem.

II. SpECTRAL THEORY OF RANDOM MATRICES

Throughout this correspondence, all the random variables (r.v.’s)
are defined on a probability space (2. . P). The expressions i.d.,
i.i.d., and a.s. stand for identically distributed, independent and
identically distributed, and P-almost surely, respectively. For dis-
tribution functions® (d.f.’s), = denotes weak convergence. -* will
denote the set of positive integers and % the set of positive real
numbers. The transpose of a matrix M is denoted by M7 and its
conjugate transpose by M*. Let M be an m X m random matrix
with real-valued eigenvalues (A;), <;<,. The empirical d.f. of
(A) <; < is the stochastic process*‘

m

(Vo € Q) (Vvx e =) FMx, w) = —1”-1 4;‘ 1- e (A (). ()

We now review the main result, a limit theorem found in [13].

Theorem 1: [13] Let (¥};); ;> be i.i.d. real-valued r.v.’s with
E|Y,, — EY,;|> = 1. For each m in “-*, let Y,, = [¥;],n,» Where
n=n(myand m/n—y > 0asm — +oo,and let T,, be an m X
m symmetric nonnegative definite random matrix independent of
the ¥;’s for which there exists a sequence of positive numbers
(mi)x = 1 such that for each k in - *

+oo
' 1 s
g K dF™(x) = —tr T, = i asm = +o )
0 m
and where the p,’s satisfy Carleman’s sufficiency condition, Z; .,
pa'/* = + oo, for the existence and the uniqueness of the d.f. H

YZ,T Then, a.s.,
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having moments (g )= - Let M,, = (1/m)Y,,

(FM"),. > converges weakly to a nonrandom d.f. F having mo-
ments
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where the inner sum extends over all w-tuples of nonnegative in-

tegers (m,, - - -, m,) such that Zj_, m; = k — w + 1 and L. | im;
= k. Moreover, these moments uniquely determine F.* ¢

'This approach was first proposed in [12] and further studied in [14].
[16], and [17].

By a d.f. we mean a right-continuous nondecreasing function F on -
with lim, _, _  F(x) = 0 and lim, . , o F(x) = 1. The support of F is the
closedset 8 = {xe |[(Vee *)Fx + ¢ > Flx — e)}.

3The indicator function of a set § is denoted by 5.

“Similar results are given in [6] and [11] with varying degrees of as-
sumptions, although in both papers the matrices studied can have complex-
valued entries. However, the proof in [13] can easily be modified to allow
complex-valued entries in Y,, and T,,. giving the same result, provided T,
is Hermitian and we take M,, = (1/n) Y,, Y2 T,..

Although it does not appear likely a general explicit expression
for F in terms of y and arbitrary H can be derived, useful qualitative
information can be found from the different methods used in [6],
[7], and [11] to express transforms of F (transforms of Stieltjes type
in [6] and [11], the characteristic function in [71). Of particular
interest is the fact that the endpoints of the connected components
of the support of F are given by the extrema of the function [6]

+oo

dH(x)

1
f(a)_-;+'\ So a+ 1/x

“4)
We now give new results apropos of the limiting behavior of
F"p s 1

Theorem 2: [10] The limiting d.f. F in Theorem 1 is continuous
on *. Moreover, if H places no mass at O then, a.s., (FMmy, o
converges to F uniformly in . o

Proposition 1: [10] With the same notations and hypotheses as
in Theorem 1, (i) F and v uniquely determine H; (ii) Almost surely,
(F™),,» 1 converges to H weakly; (iii) F = Hasy — 0. o

Statement (iii) has a direct bearing on the problem of estimating
the spectrum of a covariance matrix from observing that of a sam-
ple covariance matrix. Indeed, the matrix (1/n) T2y, YiT)?
(whose eigenvalues are identical to those of M,’) encompasses a
broad class of sample covariance matrices stemming from 7 i.i.d.
samples distributed as an m-dimensional random vector X with EX
= 0 and EXX* = T, (including the Wishart case when X is mul-
tivariate complex Gaussian). In estimating the spectrum of 7, from
the sample covariance matrix, there seems to be no mention in the
literature as to the dependence of n on m, that is, how large the
sample size should be vis-a-vis the vector dimension in order to
estimate the eigenvalues to within a certain degree of accuracy.
Indeed, asymptotic results are expressed only in terms of the sam-
ple size (see, e.g., [1]). The fact that F differs from H fory > 0
while I"a = Hasy — 0, which complements the fact that, for fixed
m, M, = T, as n = +oo, confirms the intuitively apparent state-
ment that, for m large, n should be much larger, in the sense that
m = o(n).

III. APPLICATION TO SIGNAL DETECTION
A. Description of the Problem and Assumptions

Let p be the number of sensors in the array, g the unknown num-
ber of signals (¢ < p), and [0, 7] the observation interval. At each
time ¢ in [0, 7], the jth signal present in the scene, the additive
noise at the ith sensor, and the received data at the ith sensor are,
respectively, represented by the square-integrable complex-valued
r.v.’s Sj(t), Ni(t), and X;(r). The random vectors S = [S,(n),

BN Sq(f)]r)te[(]jj are i.d. with nonsingular spatial covariance ma-
trix Ry = ES(0)S(0)*. Moreover, it is assumed that the r.v.’s
(N:(0|1 = i < p,t€[0,7]) are i.i.d. with EN(0) = 0 and
E| NO)|* = o2, where ¢ is unknown, and independent from the
r.v.’s (S](t)\l <j<gq, tel0,7]). Let Nty = oW (1) = o[W\(1)
ce Wp(t)]T(so that the W, (r)'s are standardized) and X(r) = [X,(1)
s X,,(r)]T. The data collected by the array of sensors are modeled
as observation of the random vector X(r) = AS(t) + N(), t €
[0, 7], where A is a p X g complex matrix depending on the ge-
ometry of the array and the parameters of the signals, and is as-
sumed to have rank q.

The detection problem is to estimate ¢ from the observation of
n snapshots (X(1;)), <, < » of the data process. Under the above as-

5The reader is reminded that given two matrices A, ., and B, . . where
p = q. the spectrum of AB is that of B4 augmented by p — g zeros.
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sumptions, the random vectors (X(1))e10.) are i.d. with spatial co-
variance matrix R = EX(0) X(0)* = ARsA* + ozlp, where 1, de-
notes the p X p identity matrix. Moreover, the p — g smallest
eigenvalues of R are equal to o 2. These eigenvalues will be referred
to as the noise eigenvalues and the remainder of the spectrum will
be referred to as the signal eigenvalues. In practice, R is not known,
and its spectrum must be inferred from observing that of the sample
covariance matrix R = (1/m) B~ X(1;,) X(t;)*. Loosely speaking,
one must then decide where the observed spectrum splits into noise
and signal eigenvalues.

B. General Analysis

For every ¢ in [0, 7], let us assume that the signal vector is given
by

S = CV(1) with V() = [V|(0), - - -, Vq(t)]T 5)
where C is ¢ X g, nonsingular, and the r.v.’s (V;(1)), <i<, are
i.i.d. with the same d.f. as W,(0).® Let B = AC. Then

Xty = (B ol) {V(t) } ©)
lwn |

Notice that Ry = CC* and R = BB* + ozlp. If we further assume
that the n vectors (S(7))); <, < » are independent, then the n data sam-
ples (X(t)), < ;< Will also be independent and the corresponding
sample covariance matrix R takes on the form R =
(1/n(B ol JVV¥[B al)*, where V = [V;](, 14 xn consists of
i.i.d. standardized entries.

Theorem 3: [10] If W\(0) is standard complex Gaussian,’ the
joint distribution of the eigenvalues of R is the same as the joint
distribution of the eigenvalues of R =(1 /n) Y, Y:(BB* + azlp),
where Y, is any p X n random matrix with i.i.d. standardized com-
plex Gaussian entries. In general, for p and n sufficiently large,
with high probability, the empirical d.f.’s F¥ and F¥ are close to
the d.f. F of Theorem 1 form = p, y = p/n, and H = FE&"+%,

O

The importance of Theorem 3 becomes immediately apparent.
The observations of the empirical d.f. F¥, for suitably large p and
n, will not vary very much from one realization to another, even if
n is not large relative to p. In fact, by Theorem 2, with high prob-
ability, F® will be uniformly close to a d.f. F that depends only on
y and the eigenvalues of BB* + azlp. Hence, a realization of F*
and the ratio p /n can be used to describe, to within a certain degree
of accuracy, FBB*+% which will yield 62 and the ratio y, = q/p
which corresponds to the g positive eigenvalues of BB*.

Much of the information on the spectrum of BB* + azlp can be
directly observed from plotting histograms of the eigenvalues of
R, in particular, the ratio y, of signal eigenvalues. Let G denote
the empirical d.f. of the eigenvalues of BB* + 021,, which are
greater than o2, and let b, and b, denote, respectively, the smallest
and largest of these values. Then, for every x in %, we can write

H(x) = F* 77 = (1 — y) e @) + 31G). (D)

Proposition 2: [10] When y < 1, the smallest interval [x, x,]
containing the support of F satisfies 0 < x, < x, < +0o with
x; T 0% and x, | b, as y | 0. In addition, there exists an o in

°It is worth noting that this general formulation comprises the special
case when S(0) is multivariate complex Gaussian, which is a common as-
sumption in array signal processing.

A r.v. is standardized complex Gaussian if its real and imaginary parts
are i.i.d. with mean zero and variance 1/2.

1—1/6%, —1/b\[ such that
o 2
gla) = Y<(1 -0 <m>

b2 o 2
+ ¥ Sb, H" - /x> dG(x)> <1 (8)

(which can always be found for y sufficiently small) if and only if
the support of F splits into at least two separate components, with
the leftmost interval [x,, x,] being a connected component of the
support containing mass 1 — y, from F. Furthermore, for y suffi-
ciently small, x; ¢ o2 asy | 0and, if [x3, x,] denotes the smallest
interval containing the remaining support of F, then x; T b, as
y { 0. Regardless of the respective location of x, and x; vis-a-vis
0% and b,, the separation between the noise and signal portions of
the spectrum, i.e., x3 — X,, increases as y decreases. Wheny > 1,
F places mass 1 — 1/y at the origin, but the remaining support
will lie to the right of a positive value x,. It is still possible for the
support of F to split further provided (8) holds. In this case the
leftmost interval [x,, x,] will carry mass (1/y) — y,, leaving mass
¥, to the remaining support of F to the right of x,. When y = | the
latter situation applies, except now x; = 0, and there will be no
mass at 0. o ¢

Therefore, if p and n are large enough so that F®is close to F
with high probability, then for y = p/n suitably small, an appro-
priately constructed histogram of the eigenvalues of R will display
clustering on the left separated from the rest of the figure. The
proportion of the number of eigenvalues associated with the his-
togram to the right of the clustering will then be close to ¢ /p, with
high probability.

Although the theory merely guarantees that the proportion of sig-
nal eigenvalues of R is close to that of R, extensive simulation
strongly suggests that the spectrum of R splits into two portions
containing the exact number of noise and signal eigenvalues, and
that the endpoints of these portions agree very closely with the ones
predicted by the theory. This point, which will be illustrated in
Section IV, leads to the possibility of the existence of a much
stronger underlying spectral theory deepening the results of Theo-
rem 1. Results along these lines are known for the extreme eigen-
values when T, = 021, and will be discussed Section III-C.

Intuitively, the above procedure has advantages over other meth-
ods used to estimate g, in particular, those adapted from informa-
tion theoretic criteria [12], [14], [16], [17] which try to exploit the
closeness of the noise eigenvalues of R to each other as well as
their separation from the remaining signal eigenvalues. Usually the
sample size has to be quite large for the smaller eigenvalues to
cluster. On the other hand, only the separation of the two classes
of eigenvalues is needed when viewing the spectrum, so a suitable
n can conceivably be much smaller, sometimes even smaller than
p. In other words, previous methods require R to be near BB* +
021,,, while, for situations where p is sizable, the present analysis
requires n to be large enough so that the support of F separates.

C. Specific Cases
An important case is the one for which no signal is present, that
is, when B = 0, or equivalently, when T,, = ¢°/,,. Then it is known
[4]-16] that, for y < 1, F is continuously differentiable, where
(@ = o’ = Y@+ Ny - )
210 lyx

if 021 — W) < x < o¥(1 + Vy)?

Fx) =

0  otherwise ()]
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TABLE 1
OBSERVED SPECTRA

y=1 y=1/5 y=1/30 y=0

£, £, £, £, £, £, £, L4 £, £, £3 £, £

N 0.00 0.00 0.00 0.00 0.54 0.52 0.48 0.50 0.82 0.82 0.81 0.82 1

N, 0.00 0.01 0.01 0.01 0.60 0.56 0.55 0.57 0.84 0.84 0.84 0.86 1

Mo 0.31 0.33 0.32 0.32 0.94 0.93 0.94 0.90 1.02 1.02 1.01 1.01 1

i 0.43 0.40 0.37 0.41 1.01 0.98 1.00 0.97 1.04 1.04 1.03 1.03 1

A2 0.45 0.47 0.48 0.49 1.09 1.03 1.06 1.02 1.06 1.04 1.06 1.06 1

A3 0.57 0.57 0.50 0.60 1.12 1.06 1.13 1.11 1.08 1.07 1.09 1.08 1

N 0.67 0.64 0.64 0.74 1.18 1.12 1.24 1.16 1.10 1.11 1.11 1.10 1

Nis 0.86 0.87 0.83 1.05 1.36 1.27 1.31 1.32 1.16 1.13 1.13 1.14 1
N 1.38 1.64 1.40 1.90 4.35 4.78 4.37 4.84 5.32 5.09 5.23 5.27 5.34
A 2.59 2.72 2.41 2.81 5.26 6.05 6.31 6.13 5.97 6.34 6.08 6.10 6.20
Nig 5.61 5.21 4.74 4.97 17.4 17.5 18.1 18.5 20.5 20.6 20.1 19.4 21.4
P TS 7.98 7.64 8.22 7.37 19.4 20.1 18.7 20.4 22.0 22.1 21.7 21.3 23.1
N2 11.4 9.87 10.8 9.67 22.9 25.1 21.3 22.3 24.8 25.3 26.0 25.5 25.7
N2 14.8 13.3 11.9 11.7 36.7 40.2 39.6 39.8 48.6 48.8 49.6 47.7 49.2
Ao 1159 1074 1137 1065 902 856 887 875 764 807 818 766 756
Aso 1470 1309 1233 1390 1063 985 1004 1064 944 978 929 947 932

and for y > 1, F has derivative (9) on ** and mass 1 — 1/y at 0.
Furthermore, the largest eigenvalue of M,, converges a.s. (respec-
tively, in probability) to o%(1 + \/;)2 as m = +o if and only if
EY;, = O and E| ¥, |* < +oo (respectively, x*P {w € Q| |Y;,(w)|
= x} = 0asx — +oo] [2], [3], [9], [15]. The a.s. convergence

. of the smallest eigenvalue of M,,, to 0%(1 — v/y)’ wheny < 1 has
thus far been shown only for Y, standardized Gaussian [8] (it is
remarked here that the results on the extreme eigenvalues have been
verified for Y|, real valued, but, again, the proofs can be extended
to the complex case).

The above results can be used to investigate the possibility of no
signals arriving at the sensors. Certainly, the existence of at least
one signal would be in doubt if the number of samples was quite
large but histograms indicate only one connected component away
from 0. But, for any y, comparisons can be made between histo-
grams of the eigenvalues, (9), and F’ when B # 0, to infer whether
or not signals are present, provided the latter densities exist and
appear different enough from (9) to make a distinction. For this
reason it is mentioned briefly here the case when G places mass at
one value, b > ¢7. Except for the situation of only one signal, this
case is not typically found in practice. However, the d.f. F can be
completely determined and its properties strongly suggest the
smoothness and appearance of F for general G. Only the case y <
1 will be outlined, the remaining cases for y following as above.
From the analysis in [7] it can be shown that F is continuously
differentiable with derivative of the form

P30+ x P! = (p3x) = xVpax))'

X

ifp, =20 (10)

F'(x) =

0 otherwise.

Here, p; and py are, respectively, third and fourth degree polyno-
mials depending continuously on y, y,, 62, b, and the leading coef-
ficient of p, is negative. The latter polynomial has either two real
roots, 0 < x; < x4, so that F has support on [x,, x4], or four real

roots, 0 < x; < x; < x3 < x4, which is the above-mentioned case
where the support of F splits into two intervals, [x;, x;] and
[x3, x4], with F(x,) — F(x;) = 1 — y,. Using (8), it is straightfor-
ward to show F splits if and only if

. (' + @*a = '
) * - 02)2

< 1. (11

When the left side of (11) is equal to 1, then p, still has four real
roots, but x, = x;. When (11) holds, F’ is unimodal on each of the
intervals, with infinite slopes at each endpoint. If thereisay < 1,
say y,, for which the left side of (11) is equal to 1, then, since the
graph of F’ varies continuously with y, as y increases from 0, the
separate curves eventually join (at y = y,) and the single curve will
display two relative maxima, at least for y near y,. Thus, although
v may not be small enough to split F’, it may still be possible to
infer the number of signal eigenvalues from the shape of a histo-
gram.

IV. SimuLAaTION RESULTS

Our analysis applies to cases where p is large. Simulations have
supported its applicability for values of p as low as 30. In the sim-
ulation presented here, a linear array with p = 50 sensors receives
noisy signals from ¢ = 35 narrow-band far-field sources. The sen-
sors are assumed to be omnidirectional with unity gain and uniform
spacing A /2, where X is the signal wavelength. The noise is zero
mean, white, complex Gaussian, with power ¢ = 1. The source
signals are partially correlated with angles of arrivals uniformly
spaced between —70° and 70° and power selected at random from
a uniform distribution so as to yield signal-to-noise ratios ranging
from 0 to 10 dB. The signal vector is multivariate complex Gauss-
ian and obtained according to (5), where C is a randomly generated
banded matrix.

The spectrum £ of R = BB* + I, where B = AC, was com-
puted in order to obtain an explicit expression for the functions f
of (4) and g of (8). Newton’s method was used to find the minimum
of g(+) over |—1/¢?%, —1/b,[ and, whence, it was found that the
largest value of y for which the splitting of the spectrum occurs
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Fig. 1. Graph of f.

TABLE I
THEORETICAL BOUNDS FOR NOISE AND SIGNAL SPECTRUM SUPPORTS

y=1 y=1/5 y=1/30 y=0
X 0.000 0.4642 0.789 1.000
X, 1.124 1.369 1.184 1.000
X3 1.167 3.970 5.785 5.342
X4 1586 1137 995.4 931.6

(i.e., (8) holds) is § = 1.058. Then, with the above configuration,
three experiments were performed with the following number of
samples n: 50, 250, and 1500 (which corresponds to values of y of
1, 1/5, and 1/30, respectively). In each experiment, several re-
alizations (£;); of the spectrum of the sample covariance matrix
R were observed, the eigenvalues being arranged in nondecreasing
order. Results indicating the variations of the observed spectra are
shown in Table I. Even fory = 1, the p — g = 15 smallest cigen-
values are seen to cluster to the left of most of the observed spectra.
This confinement delimitates exactly the noise portion of the spec-
trum and, thereby, detects the exact number of signals. As men-
tioned in Section II, for a given value of v, the theoretical end
points x,, x,, and x3, x4, of the supports of the noise and signal
portions of the spectrum can be determined from the location of
the relative extrema of f in (4) (Fig. 1 shows a typical graph of f
when separation occurs, as is the case here). Newton’s method was
used to this end and gave the results shown in Table II. In agree-
ment with Proposition 2, it is seen that, as y decreases, the sepa-
ration x; — X, increases while the endpoints converge towards the
theoretical values.

V. CONCLUSIONS

This correspondence provides a theoretical analysis of the split-
ting of the spectrum of the sample covariance matrix between a
connected noise component and a remaining signal component in
situations where the number of sources is sizable. As far as the
detection problem is concerned, the eigenvalues of the spatial co-
variance matrix R need not be estimated with a high degree of pre-
cision; only the accurate splitting of the spectrum is required. While
conventional detection methods require that the sample size be im-
practicably large in order to closely approximate the spatial co-
variance matrix, the present analysis shows that the observed spec-

trum will split with high probability with a number of samples com-
parable to the number of sensors.

This work should suggest to the engineering community that by
simply observing the spectrum of a large dimensional sample co-
variance matrix, highly relevant information can be extracted when
the sample size is not exceedingly large. In the context of large
dimensional array processing, its practical significance is that de-
tection can be achieved when the sample size is only on the same
order of magnitude as the number of sensors.
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A Reverse Formulation of the RISE Algorithm
D. Mitchell Wilkes

Abstract—The recently developed recursive/iterative self-adjoint ei-
genspace (RISE) d position algorithm recursively computes the
complete eigenspace decomposition of successively larger Hermitian
matrices. However, some practical applications also require that the
decomposition of successively smaller matrices be computed. A modi-
fication to the RISE algorithm is presented that makes it possible to
run this algorithm backward on successively smaller Hermitian ma-
trices. This important modification increases the number of practical
applications of this algorithm.

I. INTRODUCTION

Recently, there has been an increasing amount of research in the
area of recursive eigenspace decomposition. Beex and Fargues [1],
[2] produced the numerically stable recursive/iterative Toeplitz ei-
genspace (RITE) decomposition. Wilkes and Hayes [3] and Mor-
gera and Noor [4] then developed eigenvalue recursions for Toe-
plitz matrices, and although these algorithms were relatively
efficient, they were also numerically ill behaved. Fargues and Beex
extended RITE to colored noise problems (e.g., estimation of the
direction of arrival of incident planes waves on equispaced linear
arrays in the presence of colored noise) by developing the C-RITE
algorithm [5]. C-RITE recursively computes the generalized eigen-
values and eigenvectors of successively larger Hermitian Toeplitz
pencils. All of the techniques mentioned above are restricted to
Hermitian Toeplitz matrices. This restriction was overcome by
Wilkes via the recursive/iterative self-adjoint eigenspace (RISE)
decomposition [6], which recursively finds the complete eigen-
space decomposition of successively larger Hermitian matrices.
Beex et al. then solved the generalized eigenspace decomposition
for Hermitian pencils via the C-RISE algorithm [7].

RISE (as well as all of the other algorithms above) is limited to
finding the eigenspace decomposition of successively larger ma-
trices, with two possible ways in which the matrix may grow. The
first way is the one described in [6] where a column and a row are
added on the right and bottom of the matrix, respectively. That is,
if the complete eigenspace decomposition of the n X n matrix R,
is known, RISE allows the efficient decomposition of R, ., given
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by

R, r
R, = |: } (1)
r* ry.

where * indicates the conjugate transpose operation. Similarly, R,
may be allowed to grow by adding a row on the top and a column

on the left.
{:‘0 R, jl ( )
n+1 :

This case is easily derived along the lines of the method given in
[6]. Thus a sequence of successively larger R,’s may be allowed to
evolve via any combination of these techniques, i.e., it is not nec-
essary to restrict the growth to only one of the above two methods
in this sequence. As a result, there are potentially many subma-
trices of any R, for which the eigenspace decomposition is not
known.

If it were possible to formulate a reverse version of RISE (so that
the decomposition of successively smaller matrices may be found),
it would be possible to find the decomposition of any of the Her-
mitian submatrices. Such a reverse formulation of RISE is pre-
sented in this letter. One application of this algorithm would be in
the modeling of recursive input/output data (i.e., ARX modeling)
using SVD or eigenspace-based techniques as in [8]. The observed
input data, x(n), and output data, y(n), is assumed to obey a dif-
ference equation of the form

4 q
Yoy = = 2 ayn = K + 2 byx(n = m). @)

A combination of forward and reverse (or growing and shrinking)
versions of RISE would enable the efficient estimation and com-
parison of the a; and b,, parameters for many different values of p
and g. Other applications include direction of arrival (DOA) esti-
mation for large sensor arrays where the size and shape of a sub-
array is allowed to evolve, and beamspace formulations of the DOA
problem where the number of beams used is allowed to grow (to
improve detection performance) and shrink (to focus in on specific
signals) [9].

For completeness, it is noteworthy to observe that the mathe-
matics used in both the forward and reverse formulations of RISE
are similar to those used in the rank-one update of eigenvalues [10]
and eigenvalue perturbation analysis [11].

II. REVERSE FORMULATION OF RISE

It is assumed that the eigenspace decomposition of an (n + 1)
X (n + 1) Hermitian matrix, R, , ;, is known. That is, R, , | may
be decomposed as

Rii1 = Un+lAn+IU:+I 4

where the eigenvalues of A, , | are ordered in the standard nonin-
creasing fashion, pu; = p; = -+ 2 p, 4,

13 O

u
Avir = L )

O Bn+1
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