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Abstract— In the last few years, the asymptotic distribu-
tion of the singular values of certain random matrices has
emerged as a key tool in the analysis and design of wireless
communication channels. These channels are characterized
by random matrices that admit various statistical descriptions
depending on the actual application. The goal of this paper
is the investigation and application of random matrix theory
with particular emphasis on the asymptotic theorems on the
distribution of the squared singular values under various
assumption on the joint distribution of the random matrix
entries.

I. INTRODUCTION

Random matrices have fascinated mathematicians and
physicists since they were first introduced in mathe-
matical statistics by Wishart in 1928. After a slow start,
the subject gained prominence when Wigner introduced
the concept of statistical distribution of nuclear energy
levels in 1950. Since then, random matrix theory has
matured into a field with applications in many branches
of physics and mathematics, and nowadays random
matrices find applications in fields as diverse as the
Riemann hypothesis, stochastic differential equations,
statistical physics, chaotic systems, numerical linear al-
gebra, neural networks, etc. Recently random matrices
are also finding an increasing number of applications in
the context of information theory and signal processing,
which include among others: wireless communications
channels, learning and neural networks, capacity of ad
hoc networks, direction of arrival estimation in sensor ar-
rays, etc. The earliest applications to wireless communi-
cation were the pioneering works of Foschini and Telatar
in the mid-90s on characterizing the capacity of multi-
antenna channels. With works like [1], [2], [3] which, ini-
tially, called attention to the effectiveness of asymptotic
random matrix theory in wireless communication theory,
interest in the study of random matrices began and the
singular value densities of random matrices and their
asymptotics, as the matrix size tends to infinity, became
an active research area in information/communication
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theory. In the last few years a considerable body of
results on the fundamental information-theoretic limits
of various wireless communication channels that makes
substantial use of asymptotic random matrix theory, has
emerged in the communications and information theory
literature. An extended survey of the these results and
works can be found in [4].

The aim of this paper is dual: we first review some
of the most interesting existing mathematical results
that are relevant to the analysis of the statistics of
random matrices arising in wireless communications.
The emphasis will be on asymptotic distribution of the
squared singular-values under various assumptions on
the joint distribution of the random matrix coefficients.
Those results are then exploited in order to assess the
fundamental limits of wireless communication channels
in the asymptotic regime where the number of columns
and rows of the channel matrix H goes to infinity while
the aspect ratio of the matrix is kept constant. Specifically
we focus on two performance measures of engineering
interest: Shannon capacity and linear minimum mean-
square error, which are determined by the distribution
of the squared singular values of the channel matrix.

II. WIRELESS COMMUNICATION CHANNELS

A typical wireless communication channel is described
by the usual linear vector memoryless channel:

y = Hx + n (1)

where x is the K-dimensional vector of the signal in-
put, y is the N -dimensional vector of the signal out-
put, and the N -dimensional vector n is the additive
Gaussian noise, whose components are independent
complex Gaussian random variables with zero mean and
independent real and imaginary parts with the same
variance σ2/2 (i.e., circularly distributed). H, in turn, is
the N ×K complex random matrix describing the chan-
nel whose entries admit various statistical descriptions
depending on the actual applications. Fading, wideband,
multiuser and multi-antenna are some of the key features

458

2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications

0-7803-9780-0/06/$20.00 ©2006 IEEE



that characterize wireless channels of contemporary in-
terest. In each of these cases, N , K and H take different
meanings. We will focus particular attention on a few
models that capture various features of interest, each of
them corresponding to a particular H-model:

A. Randomly spread Code Division Multiple Access
(CDMA) channels.

B. Single-user multiantenna systems subject to
frequency-fiat fading.

C. CDMA channels with multiple receiving antennas.

Naturally, random matrices also arise in models that
incorporate more than one of the above features (multi-
user, multiantenna, fading, wideband). Although realis-
tic models do include several (if not all) of the above
features it is conceptually advantageous to start by de-
constructing them into their essential ingredients. In the
next subsections we describe the foregoing three scenar-
ios and show how the distribution of the squared singu-
lar values of certain matrices determine communication
limits in both the coded regime (Shannon capacity) and
the uncoded regime (probability of error).

A. CDMA

An application that is very suitable is code-division
multiple access channel or CDMA channel, ere each user
is assigned a signature vector known at the receiver
which n be seen as an element of an N dimensional
signal space. Based on the nature of this signal space
we can distinguish between

• Direct sequence CDMA used in many current cellu-
lar systems (IS-95, cdma2000, UMTS)

• Multi-Carrier CDMA being considered for Fourth
Generation of cellular systems.

1) DS-CDMA Frequency-flat fading: Concerning the
DS-CDMA, we first focus on channels whose response
is flat over the signal bandwidth which implies that the
received signature of each user is just a scaled version
of the transmitted one where the scaling factors are the
independent fading coefficients for each user. Consid-
ering the basic synchronous DS-CDMA [1, Sec. 2.9.2]
with K users and spreading factor N in a frequency-flat
fading environment, in this case, the vector x contains
the symbols transmitted by the K users while the role
of H is played by the product of two matrices, S and
A, where S is a N × K matrix whose columns are the
spreading sequences

S = [ s1 | . . . |sK ] . (2)

and A is a K × K diagonal matrix of complex fading
coefficients. The model thus specializes to

y = SAx + n. (3)

The standard random signature model [1, Sec. 2.3.5]
assumes that the entries of S, are chosen independently
and equiprobably on {− 1√

N
, 1√

N
}1.

The unfaded equal power case is obtained by the
the above model assuming A = AI, where A is the
transmitted amplitude equal for all users.

Let us consider a synchronous DS-CDMA downlink
with K active users employing random spreading codes
and operating over a frequency-selective fading channel.
Then H in (1) particularizes to

H = CSA (4)

where A is a K × K deterministic diagonal matrix
containing the amplitudes of the users and C is an N×N
Toeplitz matrix defined as

(C)i,j =
1

Wc
c

(
i − j

Wc

)
(5)

with c(·) the impulse response of the channel.2

2) Multi-Carrier CDMA: If the channel is not flat over
the signal bandwidth, then the received signature of each
user is not simply a scaled version of the transmitted
one. In this case, we can insert suitable transmit and
receive interfaces and choose the signature space in such
a way that the equivalent channel that encompasses the
actual channel plus the interfaces can be modeled as a
random matrix H given by:

H = G ◦ S

where ◦ denotes the Hadamard (element-wise) product
[5], Sm is the random signature matrix in the frequency
domain, while G is an N × K matrix whose columns
are independent N -dimensional random vectors whose
(�, k)-th element denotes the fading coefficients for the
�-th subcarrier of the k-th user, independent across the
users. Thus the linear model (1) specializes to

y = (G ◦ S)x + n. (6)

In the downlink case where G is given by the outer
product of two vectors G = caT then H = CSA with
C = diag(c) and A = diag(a).

B. Multi-antenna Channels

Let us now consider a single-user channel where the
transmitter has nT antennas and the receiver has nR

antennas. In this case, x contains the symbols transmit-
ted from the nT transmit antennas and y the symbols
received by the nR receive antennas. With frequency-flat

1One motivation for this is the use of ”long sequences” in some
commercial CDMA systems, where the period of the pseudo-random
sequence spans many symbols. Another motivation is to provide
a baseline of comparison for systems that use signature waveform
families with low cross-correlations.

2For contributions on the asymptotic analysis of uplink DS-CDMA
systems in frequency selective fading channels see [4] and references
therein.
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fading, the entries of H represent the fading coefficients
between each transmit and each receive antenna, typ-
ically modelled as zero-mean complex Gaussian. If all
antennas are co-polarized, H is identically distributed
and thus we can factor out their variance g.

Antenna correlation at the transmitter and at the re-
ceiver, that is, between the columns and between the
rows of H, respectively, can be accounted for through
corresponding correlation matrices ΘT and ΘR [6],
[7], [8]. A Ricean term can be incorporated through
an additional deterministic matrix H0 containing unit-
magnitude entries [9], [10], [11]. With proper weighting
of the random and deterministic matrices so that the
entries of H retain their second-order moment of g, the
model particularizes to

y =
√

g
(√

1
K+1Θ

1/2
R HwΘ1/2

T +
√

K
K+1H0

)
x + n (7)

with Hw an iid N(0, 1) matrix and with the Ricean K-
factor quantifying the ratio between the deterministic
(unfaded) and the random (faded) energies [12].

If antennas with different polarizations are used, the
entries of H are no longer identically distributed because
of the different power transfer between co-polarized and
differently polarized antennas. In that case,

H = P ◦
(√

1
K+1Θ

1/2
R HwΘ1/2

T +
√

K
K+1H0

)
(8)

and with P containing the square-root of the second-
order moment of each entry of H, which is given by
the relative polarization of the corresponding antenna
pair. If all antennas are co-polar, then every entry of P
equals g. For an extended survey on contributions on
the asymptotic analysis of multi-antenna channels see
[4], [13] and references therein.

C. CDMA channels with multiple receiving antennas.

Suppose that we incorporate the features of A. and B.
but with a single transmitter antenna (or equivalently
K represents the number of users times the transmitting
antennas). If we have nR receiving antennas, then we
have a model with NnR observables:

H =

⎡
⎣ SA1

· · ·
SAnR

⎤
⎦ (9)

where

A� = diag{A1,�, . . . ,AK,�}, � = 1, . . . nR (10)

and {Ak,�} indicates the i.i.d. fading coefficients of the
kth user at the �th antenna.

D. Why Asymptotic Random Matrix Theory?

Let us now talk about the role of random matrices and
their singular values in wireless communication through
the derivation of some key performance measures of

wireless channels, which are determined by the distri-
bution of the singular values of the channel matrix.

The empirical cumulative distribution function (c.d.f)
of the eigenvalues (also referred to as the empirical
spectral distribution (ESD)) of an N × N Hermitian
matrix A is defined as

FN
A(x) =

1
N

N∑
i=1

1{λi(A) ≤ x} (11)

where λ1(A), . . . , λN (A) are the eigenvalues of A and
1{·} is the indicator function. If FN

A(·) converges a.s as
N → ∞, then the corresponding limit (asymptotic ESD)
is denoted by FA(·).

The first performance measure that we are going to
consider is the mutal information. If the channel is
known by the receiver, and the input x is Gaussian the
normalized mutual information in (1) conditioned on H
is given by

I(SNR ) =
1
N

I(x;y|H) (12)

=
1
N

log det
(
I + SNR HΦH†) (13)

=
1
N

N∑
i=1

log
(
1 + SNR λi(HΦH†)

)

=
∫ ∞

0

log (1 + SNR x) dFN
HΦH†(x) (14)

with the transmitted signal-to-noise ratio (SNR)

SNR =
NE[||x||2]
KE[||n||2] , (15)

Φ = E[xx†]
E[||x||2] , and finally λi(HΦH†) equal to the ith

squared singular value of HΦ1/2.
If the channel is known at the receiver and its variation

over time is stationary and ergodic, then the expectation
of (12) over the distribution of H is the ergodic mutual
information (normalized to the number of receive anten-
nas or the number of degrees of freedom per symbol in
the CDMA channel). More generally, the distribution of
the random variable (12) determines the outage capacity
(e.g. [14]).

For SNR → ∞, a regime of interest in short-range ap-
plications, the mutual information admits the following
affine expansion

I(SNR ) = S∞ (log SNR + L∞) + o(1) (16)

where the key measures are the high-SNR slope

S∞ = lim
SNR→∞

I(SNR )
log SNR

(17)

which for most channels gives S∞ = min
{

K
N , 1

}
, and

the power offset

L∞ = lim
SNR→∞

log SNR − I(SNR )
S∞

(18)
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which essentially boils down to log det(HH†) or
log det(H†H) depending on whether K > N or K < N .

Another important performance measure for (1) is the
minimum mean-square-error (MMSE) achieved by a linear
receiver, which determines the maximum achievable
output signal-to-interference-and-noise ratio (SINR). For
an i.i.d. input, the arithmetic mean over the users (or
transmit antennas) of the MMSE is given, as a function of
H, by [1]

MMSE(SNR ) =
1
K

min
M∈CK×N

E
[||x − My||2] (19)

=
1
K

tr
{(

I + SNR H†H
)−1
}

(20)

=
1
K

K∑
i=1

1
1 + SNR λi(H†H)

(21)

=
∫ ∞

0

1
1 + SNR x

dFK
H†H(x)

=
N

K

∫ ∞

0

1
1 + SNR x

dFN
HH†(x) − N − K

K

(22)

where the expectation in (19) is over x and n while (22)
follows from

NFN
HH†(x) − Nu(x) = KFK

H†H(x) − Ku(x) (23)

where u(x) is the unit-step function (u(x) = 0, x ≤ 0;
u(x) = 1, x > 0). Note, incidentally, that both per-
formance measures as a function of SNR are coupled
through

d

dSNR
loge det

(
I + SNR HH†) =

K−tr (I+SNR H†H)−1

SNR .

As we see in (14) and (22), both fundamental perfor-
mance measures (mutual information and MMSE) are dic-
tated by the distribution of the empirical (squared) sin-
gular value distribution of the random channel matrix.
It is thus of paramount importance, in order to evaluate
these—and other—performance measures, to be able to
express this empirical distribution. Since FN

HH† clearly
depends on the specific realization of H, so do (12) and
(19) above. In terms of engineering insight, however, it
is crucial to obtain expressions for the performance mea-
sures that do not depend on the single matrix realization,
to which end two approaches are possible:

• To study the average behavior3 by taking an expec-
tation of the performance measures over H, which
requires assigning a probabilistic structure to it.

• The second approach is to consider an operative
regime where the performance measures (12) and

3It is worth emphasizing that, in many cases, resorting to the
expected value of the mutual information is motivated by the stronger
consideration that: in problems such as aperiodic DS-CDMA or multi-
antenna with an ergodic channel, it is precisely the expected capacity
that has real operational meaning.

(19) do not depend on the specific choice of signa-
tures.

Asymptotic analysis (in the sense of large dimensional
systems, i.e K, N → ∞ withK

N → β) is where both these
approaches meet. First, the computation of the aver-
age performance measures simplifies as the dimensions
grow to infinity. Second, the asymptotic regime turn
out to be the operative regime where the dependencies
of (12) and (19) on the realization of H disappear.
Specifically, in most of the cases, asymptotic random
matrix theory guarantees that as the dimensions of H
go to infinity but their ratio is kept constant, its em-
pirical singular-value distribution displays the following
properties, which are key to the applicability to wireless
communication problems:

• Insensitivity of the asymptotic eigenvalue distri-
bution to the probability density function of the
random matrix entries.

• An ”ergodic” nature in the sense that—with proba-
bility one—the eigenvalue histogram of any matrix
realization converges almost surely to the asymp-
totic eigenvalue distribution.

• Fast convergence rate of the empirical singular-
value distribution to its asymptotic limit [15], [16],
which implies that that even for small values of the
parameters, the asymptotic results come close to the
finite-parameter results.

All these properties are very attractive in terms of analy-
sis but are also of paramount importance at the design
level (see[4, Sec. 3.1.6] and references therein).

Closely related to the MMSE is the SINR achieved at the
output of a MMSE receiver. Denote by x̂k the estimate of
the kth component of x and by MMSEk the corresponding
MMSE, we have

SINRk =
E[|x̂k|2] − MMSEk

MMSEk

Typically, the estimator sets E[|x̂k|2] = 1 and thus

SINRk =
1 − MMSEk

MMSEk
= SNR h†

k

⎛
⎝I + SNR

∑
j �=k

hjh
†
j

⎞
⎠

−1

hk

with the aid of the matrix inversion lemma. Often it is
convenient to work with the normalized version

SINRk

SNR ‖hk‖2

For K, N → ∞ with K
N → β, both SINR and normalized

SINR can be written as a function of the asymptotic ESD
of HH†.

III. MATHEMATICAL BACKGROUND

In this section, we review a wide range of existing
mathematical results that are very relevant to the analy-
sis of the statistics of random matrices (and of their
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matrix factorizations, such as the singular-value decom-
position) arising in single- and multiuser communication
theory.

For our purposes, it is advantageous to make use
of the η-transform and the Shannon transform, which
were motivated by the application of random matrix
theory to various problems in the information theory
of noisy communication channels [4]. These transforms,
intimately related with each other and with the Stieltjes
transform traditionally used in random matrix theory
[17], characterize the spectrum of a random matrix while
carrying certain engineering intuition.

Definition 1 Given an N × N Hermitian matrix A whose
ESD converges almost surely, its Stieltjes transform is

SA(z) = E

[
1

X − z

]
=
∫

1
λ − z

dFA(λ)

where X denotes a random variable whose distribution is the
asymptotic ESD of A.

Definition 2 Given an N ×N nonnegative definite random
matrix A whose ESD converges almost surely, its η-transform
is

ηA(γ) = E

[
1

1 + γX

]
(24)

while its Shannon transform is defined as

VA(γ) = E[log(1 + γX)] (25)

where X is a nonnegative random variable whose distribution
is the asymptotic ESD of A while γ is a nonnegative real
number.

From the definition 0<ηX(γ)≤ 1. ηA(γ) can be regarded
as a generating function for the asymptotic moments of
A [4]. As it turns out, the Shannon and η-transforms are
intimately related with each other and with the Stieltjes
transform though the following relationships:

γ

log e

d

dγ
VA(γ) = 1 − 1

γ
SA

(
− 1

γ

)
= 1 − ηA(γ)

Assume that, as K, N → ∞ with K
N → β, the ESD

of HH† in (1) converges almost surely to a nonrandom
limit. Based on the above definitions we immediately
recognize from (14) and (22) that for an i.i.d. Gaussian
input x, as K, N → ∞ with K

N → β the normalized
mutual information and the MMSE of (1) are related to η-
and Shannon transform of HH† by:

I(SNR ) → VHH†(SNR ) (26)

MMSE(SNR ) → ηH†H(SNR ) = 1 − 1 − ηHH†(SNR )
β

(27)

where (27) follows from (23).
In the following, we give some of the more represen-

tative results on the η- and Shannon transform (and thus

on the fundamental limits: normalized mutual informa-
tion, MMSE, etc.) of the various random (channel) matrices
that arise in the analysis of the wireless communications
models described in Section II.

Theorem 1 [2] If the entries of H are zero-mean i.i.d. with
variance 1

N , as K, N → ∞ with K
N → β, the ESD of HH†

converges a.s. to the Marc̆enko-Pastur law whose density
function is

f̃β(x) = (1 − β)+ δ(x) +

√
(x − a)+(b − x)+

2πx
(28)

while the η- and Shannon transforms are

ηHH†(γ) = 1 − F(γ, β)
4 γ

(29)

and

VHH†(γ) =βlog
(
1 + γ − F (γ, β)

4

)

+ N log
(

1 + γβ − F (γ, β)
4

)

−N log e

4 γ
F (γ, β) (30)

with

F(x, z)=
(√

x(1 +
√

z)2 + 1 −
√

x(1 −√
z)2 + 1

)2

Theorem 2 [18], [19] Let S be an N × K matrix whose
entries are i.i.d. complex random variables with zero-mean
and variance 1

N . Let T be a K × K real diagonal random
matrix whose empirical eigenvalue distribution converges al-
most surely to the distribution of a random variable T. Let
W0 be an N × N Hermitian complex random matrix with
empirical eigenvalue distribution converging almost surely to
a nonrandom distribution whose Stieltjes transform is S0. If
H, T, and W0 are independent, the empirical eigenvalue
distribution of

W = W0 + STS† (31)

converges, as K, N → ∞ with K
N → β, almost surely to

a nonrandom limiting distribution whose Stieltjes transform,
S(·), satisfies z ∈ C+

S(z) = S0

(
z − β E

[
T

1 + TS(z)

])
(32)

Using the η-transform, we reformulate the following
results from [20] in terms of the η-transform.

Theorem 3 [4] Let S be an N ×K complex random matrix
whose entries are i.i.d. with variance 1

N . Let T be a K × K
nonnegative definite random matrix, whose ESD converges
almost surely to a nonrandom distribution. The ESD of STS†
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converges a.s., as K, N → ∞ with K
N → β, to a distribution

whose η-transform satisfies

β =
1 − η

1 − ηT(γη)
(33)

where we have compactly abbreviated ηSTS†(γ) = η. The
corresponding Shannon transform is

VSTS†(γ) = βVT(ηγ) + log
1
η

+ (η − 1) log e (34)

Theorem 4 [21] Define H = CSA where S is an N × K
matrix whose entries are i.i.d. complex random variables with
variance 1

N . Let C and A be, respectively, N ×N and K×K
random matrices such that the asymptotic spectra of D =
CC† and T = AA† converge almost surely to a nonrandom
limit. If C, A and S are independent, as K, N → ∞ with
K
N → β, the Stieltjes transform of HH† for each z ∈ C+

satisfies

SHH†(z) = E

⎡
⎣ 1

β D E

[
T

1+�(z)T

]
− z

⎤
⎦ (35)

where �(z) satisfies

�(z) = E

⎡
⎣ D

β D E

[
T

1+�(z) T

]
− z

⎤
⎦ (36)

with D and T independent random variables whose distribu-
tions are the asymptotic spectra of D and T respectively.

The following result finds the η- and the Shannon
transform of HH† in terms of the η- and Shannon
transforms of D and T.

Theorem 5 [13] Let H be an N × K matrix as defined in
Theorem 4. The Shannon transform of HH† is given by:

VHH†(γ) = VD(βγd) + βVT(γt) − β
γdγt

γ
log e (37)

where
γdγt

γ
= 1 − ηT(γt) β

γdγt

γ
= 1 − ηD(βγd) (38)

while the η-transform of HH† can be obtained as

ηHH†(γ) = ηD(β γd(γ)) (39)

where γd(γ) is the solution to (38).
The asymptotic fraction of zero eigenvalues of HH† equals

lim
γ→∞ ηHH†(γ) = 1 − min {β P[T 	= 0], P[D 	= 0]}

It is easy to verify that:

�

(
− 1

γ

)
= γt(γ). (40)

Moreover, given a linear memoryless vector channel as
in (1) with the channel matrix H defined as in Theorem
4, it has been proved in [4] and [13] that:

SINRk

SNR ‖hk‖2
→ γt(SNR )

SNR E[D]
. (41)

Theorem 6 [13], [22] Let H be an N ×K matrix defined as
in Theorem 4. Defining

β′ = β
P[T 	= 0]
P[D 	= 0]

,

lim
γ→∞

(
log(γ β) − VHH†(γ)

min {β P[T 	= 0], P[D 	= 0]}
)

= L∞ (42)

with

L∞ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−E

[
log P[T�=0]D′

αβ′e

]
− β′VT′(α) β′ > 1

−E

[
log T′D′

e

]
β′ = 1

−E

[
logΓ∞T′

e

]
− 1

β′ VD′
(

P[T�=0]
Γ∞

)
β′ < 1

(43)

with α and Γ∞, respectively, solutions to

ηT′(α) = 1 − 1
β′ , ηD′

(
P[T 	= 0]

Γ∞

)
= 1 − β′. (44)

and with D′ and T′ the restrictions of D and T to the events
D 	= 0 and T 	= 0.

Theorem 7 [23] Let Hw be an N × K matrix with i.i.d.
entries with variance 1

N and H0 and N × K deterministic
random matrix such that the asymptotic spectra of M =
H0H

†
0 converge almost surely to a nonrandom limit. Define

H as the N × K random matrix

H = Hw +
√

KH0, (45)

then the ESD of HH† converges, as K, N → ∞ with K
N → β,

almost surely to a nonrandom limit whose Stieltjes transform
satisfies for each z ∈ C+

S(z) = E

[
1

KM
1+S(z) − z(1 + S(z)) + (β − 1)

]
(46)

with K > 0 a nonrandom positive value and M a random
variable whose distribution is the asymptotic spectrum of M.
S(z) is the only solution in the set {S(z) ∈ C+ : zS(z) ∈
C+}.

Analytic properties of the limiting ESD’s in Theorems
3 and 7, can be found in [24] and [23], among them
being the existence of continuous densities. In [25], com-
parisons between individual eigenvalues of the random
matrix STS† as in Theorem 3 and the matrix T are
explored, enabling the solution of the detection problem
in array signal processing [26], that is, determining the
number of sources emitting signals through a noise filled
environment, impinging on a collection of sensors.
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on the capacity of multi-antenna channels,” BIEEE Trans. on
Information Theory), vol. 51, no. 7, pp. 2491–2509, July 2005.

[14] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels:
Information-theoretic and communications aspects,” IEEE Trans.
on Information Theory, vol. 44, no. 6, pp. 2619–2692, Oct. 1998.

[15] Z. D. Bai, “Convergence rate of expected spectral distributions
of large random matrices. Part I: Wigner matrices,” Annals of
Probability, vol. 21, no. 2, pp. 625–648, 1993.

[16] F. Hiai and D. Petz, “Asymptotic freeness almost everywhere for
random matrices,” Acta Sci. Math. Szeged, vol. 66, pp. 801–826,
2000.

[17] T. J. Stieltjes, “Recherches sur les fractions continues,” Annales
de la Faculte des Sciences de Toulouse, vol. 8 (9), no. A (J), pp. 1–47
(1–122), 1894 (1895).

[18] V. A. Marc̆enko and L. A. Pastur, “Distributions of eigenvalues
for some sets of random matrices,” Math. USSR-Sbornik, vol. 1,
pp. 457–483, 1967.

[19] J. W. Silverstein and Z. D. Bai, “On the empirical distribution of
eigenvalues of a class of large dimensional random matrices,” J.
of Multivariate Analysis, vol. 54, pp. 175–192, 1995.

[20] J. W. Silverstein, “Strong convergence of the empirical distribution
of eigenvalues of large dimensional random matrices,” J. of
Multivariate Analysis, vol. 55, pp. 331–339, 1995.

[21] J. W. Silverstein, “The limiting spectral distribution on a gener-
alized class of large dimensional sample covariance matrices,” in
preparation, 2006.

[22] A. Lozano, A. M. Tulino, and S. Verdú, “High-SNR power offset
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