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Abstract

A derivation of results on the analytic behavior of the limiting spectral distribution of sample covariance

matrices of the “information-plus-noise” type, as studied in Dozier and Silverstein [3], is presented. It is

shown that, away from zero, the limiting distribution possesses a continuous density. The density is analytic

where it is positive and, for the most relevant cases of a in the boundary of its support, exhibits behavior

closely resembling that of
√|x− a| for x near a. A procedure to determine its support is also analyzed.

1. Introduction

For n = 1, 2, . . . and N = N(n) let Cn = 1
N

(Rn + σXn)(Rn + σXn)∗, where Xn = (Xn
ij)

is n × N , Xn
ij ∈ C, identically distributed for all n, i, j, independent across i, j for each n,

E|X1
11 − EX1

11|2 = 1, n
N
→ c > 0 as n → ∞, σ > 0 is constant, and Rn is an n × N random

matrix independent of Xn. For any square matrix A with only real eigenvalues, let FA denote

the empirical distribution function (e.d.f.) of the eigenvalues of A. Assume F
1
N

RnR∗n D−→ H,
a.s., where H is a nonrandom probability distribution function (p.d.f.). Then it is shown in

Dozier and Silverstein [3] that, almost surely, FCn
D−→ F , where F is a nonrandom p.d.f. which

depends on H, c, and σ. The aim of the present paper is to derive analytic properties of F .
The matrix Cn can be thought of as the sample correlation matrix of N samples of the

form R·i + σX·i, where the n × 1 vectors R·i are stationary ergodic with correlation matrix
Sn ≡ ER·1R∗

·1 and the X·i’s represent components of additive noise (variance σ2 unknown) that
corrupt the R·i’s. If the noise is centered (EX11 = 0), and N is sufficiently large, then Cn

provides a reasonable estimate of Sn +σ2I (I denoting the identity matrix), which would reveal
Sn, if Sn were known to be singular. However, if n is large, then the number of samples needed
to provide an adequate approximation of Sn + σ2I is unattainable. As in Dozier and Silverstein
[3], our assumption n

N
→ c > 0 models the situation of sample size and vector dimension being

on the same order of magnitude.
An area in which our results have significance is that of the detection problem in array

signal processing, that is, the problem of observing data collected at n sensors which receive
signals transmitted from an unknown number of sources in a noise-filled environment, and using
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this data to determine the number of sources. The importance of such results to array signal
processing is discussed in Silverstein and Combettes [10], however, in a less general setting. In
that paper certain internal independence assumptions are imposed upon the signal matrix Rn,
specifically, independence across samples is assumed. In this paper, as in Dozier and Silverstein
[3], we require only that, almost surely, the e.d.f. of the eigenvalues of 1

N
RnR

∗
n converges in

distribution to some nonrandom p.d.f. H, thus allowing the detection problem to be studied
under more general settings. Further details on the detection problem are presented in the last
section of this paper along with a discussion of the applicability of results in the theory of large
dimensional random matrices.

The work done in Dozier and Silverstein [3] relies heavily on Stieltjes transforms of measures.
For any p.d.f. G, the Stieltjes transform of G is defined by

mG(z) =

∫
dG(λ)

λ− z
for z ∈ C+ ≡ {z ∈ C : Im z > 0},

and we may retrieve G by the inversion formula

G{[a, b]} =
1

π
lim

η→0+

∫ b

a

Im mG(ξ + iη)dξ,

where a, b are continuity points of G. It is shown in Dozier and Silverstein [3] that m = mF (z),
the Stieltjes transform of the limiting spectral distribution of Cn, satisfies the equation

m =

∫
dH(t)

t
1+σ2cm

− (1 + σ2cm)z + σ2(1− c)
(1.1)

for any z ∈ C+, and it is the unique solution m ∈ C+ for which Im mz ≥ 0. This equation and
the fact that m is a Stieltjes transform reveal much of the behavior of F . A useful property of
Stieltjes transforms is that if G is any p.d.f. whose support is nonnegative, then for any z ∈ C+

Im mG(z)z ≥ 0. (S.1)

Therefore, using (S.1), we have for all t ≥ 0

Im

(
t

1 + σ2cm
− (1 + σ2cm)z + σ2(1− c)

)
≤ −Im z < 0.

Hence, for any z ∈ C+, the integral in (1.1) is well-defined.
We note that it is shown in Silverstein [8] that, almost surely, F

1
N

σ2XnX∗
n converges in distri-

bution to a nonrandom p.d.f. F∗ whose Stieltjes transform m∗ = mF∗(z), for z ∈ C+, satisfies
the equation

m∗ =
1

σ2(1− c− czm∗)− z
=

1

−(1 + σ2cm∗)z + σ2(1− c)
,

which is equation (1.1) with H = 1[0,∞) (1B denoting the indicator function over the set B).
Therefore, by uniqueness of solution (Theorem 4.1 of Dozier and Silverstein [3]), we have m∗ =
mF (for H = 1[0,∞)), and hence F = F∗. This function has an explicit expression (Marčenko
and Pastur [5]), satisfying all properties to be investigated in this paper. Therefore for the rest
of this paper we may assume H 6= 1[0,∞).
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Let C = 1
N

(Rn + σXn)∗(Rn + σXn). The spectra of Cn and Cn differ by |n − N | zero
eigenvalues and is expressed in

FCn =
(
1− n

N

)
1[0,∞) +

n

N
FCn .

Using this and writing 1
n
(R∗

n + σX∗
n)(R∗

n + σX∗
n)∗ = N

n
Cn, it is straightforward to show that if

mF satisfies (1.1) when c ≤ 1, then mF will satisfy (1.1) when c > 1. Therefore, without loss of
generality, we assume, as in Dozier and Silverstein [3], that c ≤ 1.

We see from equation (1.1) that if c ↓ 0, we get for any z ∈ C+

mF (z) −→
∫

dH(t)

(t + σ2)− z
,

which is the Stieltjes transform of the p.d.f. of a random variable Y +σ2, where Y has distribution
H. In terms of the aforementioned application to array signal processing, the condition c ↓ 0
corresponds to the situation when the number of samples, N , is significantly larger than the
number of sensors, n, and, if Xn is centered, we get by the strong law of large numbers that
Cn → Sn + σ2I, in probability, which coincides with our result on mF as c ↓ 0.

Many of the results that were proved in Silverstein and Choi [9] for the limiting spectral
distribution of matrices of the form 1

N
X∗

nTnXn, with Tn n× n Hermitian, will be shown to hold
for F , although the methods used here differ at times from the ones used in that paper. Two
theorems from Silverstein and Choi [9] that will be needed are the following.

Theorem 1.1 [Theorem 2.1 of Silverstein and Choi [9]]. Let F be a p.d.f. and x ∈ R. Suppose
Im mF (x) ≡ limz∈C+→x Im mF (z) exists. Then F is differentiable at x, and its derivative is
1
π
Im mF (x).

Theorem 1.2 [Theorem 2.2 of Silverstein and Choi [9]]. Let X be an open and bounded subset
of Rn, let Y be an open and bounded subset of Rm, and let f : X → Y be a function, continuous
on X. If, for all x0 ∈ ∂X, limx∈X→x0 f(x) = f(x0), then f is continuous on all of X.

Our analysis is organized into three sections following the introduction. In section 2 we show
that F has a density away from zero, and the density is analytic where it is positive. Section 3
provides a procedure for determining the support of F , and section 4 contains an analysis of the
behavior of the density near certain points on the boundary of its support. In particular, it is
shown that near these boundary points the density is similar to a square root function. Finally,
the last section contains an example with specific choices for H, c, and σ and a discussion of the
detection problem in array signal processing. For the example given, the graph of the density is
shown along with a histogram and scatterplot of eigenvalues resulting from a simulation of the
matrix Cn.

For notational convenience we will often write equation (1.1) in terms of the variable b =
1 + σ2cm in which case we have the equation

b = 1 + σ2c

∫
dH(t)

t
b
− bz + σ2(1− c)

. (1.1′)
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Therefore, when we say that such a b satisfies (1.1′), the meaning is understood to be that the
corresponding variable m satisfies (1.1). At times we will also write bF = 1 + σ2cmF to make a
reference to the Stieltjes transform mF .

2. Existence of a Density

In this section we establish the following result.

Theorem 2.1. For all x ∈ R − {0}, limz∈C+→x mF (z) ≡ m(x) exists. The function m is
continuous on R − {0} (Theorem 1.2), and F has a continuous derivative f on R − {0} given
by f(x) = 1

π
Im m(x) (Theorem 1.1). Furthermore, if Im m(x) > 0 (f(x) > 0) for x 6= 0, then

m(x) is a solution to (1.1) for z = x, and the density f is analytic about x.

As indicated in the theorem, once existence of m is verified, we immediately have continuity
of m and existence of the density f by Theorems 1.1 and 1.2. To prove the existence of m and
the analyticity of f , we rely on a series of lemmas which will be stated and proved throughout
this section.

We begin our analysis by establishing some useful definitions and inequalities that were
originally presented in section 4 of Dozier and Silverstein [3].

Let z = z1 + iz2 ∈ C+, and let m = mF (z) and b = b1 + ib2 = 1+σ2cm. Define the functions
g(b) and G(b) by

g(b) =

∫ σ2c t
|b|2 dH(t)∣∣ t

b
− bz + σ2(1− c)

∣∣2
G(b) =

∫
σ2cdH(t)∣∣ t

b
− bz + σ2(1− c)

∣∣2 .

Note that G(b) > 0, and since H 6= 1[0,∞), we have g(b) > 0. Using these functions, we get from
(1.1′) the following two equations

b1 = 1 + b1g(b) + (σ2(1− c)−Re bz)G(b) (2.1)

b2 = b2g(b) + (Im bz)G(b). (2.2)

Writing Im bz = b1z2 + b2z1, (2.2) implies

b1 = b2
1− g(b)− z1G(b)

z2G(b)
. (2.3)

Since (2.1) can be written as

b1(1− g(b) + z1G(b)) = 1 + σ2(1− c)G(b) + b2z2G(b)

we replace b1 using (2.3) and get

b2((1− g(b))2 − |z|2G2(b)) = (1 + σ2(1− c)G(b))z2G(b) > 0

(recall c ≤ 1).
Therefore,

(1− g(b))2 − |z|2G2(b) > 0. (2.4)
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Since G(b) > 0 and Im bz = z2 + σ2cIm mz > 0, we have by, (2.2), that g(b) < 1 and hence
(2.4) implies

0 < |z|G(b) < 1− g(b). (2.5)

We now prove the following lemma.

Lemma 2.1. Let z = z1 + iz2 ∈ C+, m = mF (z), and b = b1 + ib2 = 1 + σ2cm. Then we have
the following three results:

(a) b1 > 0,

(b) |m| <
(

1

σ2c|z|
) 1

2

,

(c) If limzn→x b ≡ b = b1 + ib2 exists for {zn} ⊂ C+ and x ∈ R− {0}, then b1 > 0.

Proof. For simplicity of notation we suppress the subscript n in the proof of (c). First, to prove
(a), suppose 1− g(b)− z1G(b) ≤ 0. Since g(b) < 1 we get

0 < (1− g(b))2 ≤ z2
1G

2(b) < |z|2G2(b),

a contradiction of (2.5). Therefore 1− g(b)− z1G(b) > 0, and since b2 > 0, z2 > 0, and G(b) > 0
we have b1 > 0 by (2.3).

To prove (b) we first note that since 0 < g(b) < 1, (2.5) gives

0 < G(b) <
1

|z| . (2.6)

Then using the Cauchy-Schwarz inequality we get

|m| ≤
∫

dH(t)∣∣ t
b
− bz + σ2(1− c)

∣∣ ≤
(∫

dH(t)∣∣ t
b
− bz + σ2(1− c)

∣∣2
) 1

2

=

(
G(b)

σ2c

) 1
2

<

(
1

σ2c|z|
) 1

2

Finally, for part (c) we note that part (b) gives |b| < ∞. Solving (2.1) and (2.2) for G(b) we
find

G(b) =
b2

Im (b2z − bσ2(1− c))
=

1

Re bz + b1
Im bz

b2
− σ2(1− c)

=
1

2b1z1 − b2z2 + b2
1

z2

b2
− σ2(1− c)

. (2.7)

Since F is proper we have
z2

b2

=

(
σ2c

∫
dF (λ)

|λ− z|2
)−1

is bounded as z → x. Then if b1 = 0 and

c < 1 we get

lim
z→x

G(b) ≡ G =
1

−σ2(1− c)
< 0,

a contradiction since (2.6) gives

0 ≤ G ≤ 1

|x| . (2.8)
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If c = 1, then, as z → x, G(b) goes unbounded, again contradicting (2.8). Therefore, b1 > 0 and
the proof is complete.

In the next lemma we will show that mF (z) has a unique limit as z → x ∈ R− {0}.

Lemma 2.2. Let {zn}, {ẑn} ⊂ C+ with zn and ẑn both converging to x ∈ R − {0} as n → ∞.
If m = mF (zn) → m and m̂ = mF (ẑn) → m̂ as n →∞, then m = m̂.

Proof. The result is obvious for x < 0 since mF is analytic outside the support of F . Therefore,
we assume x > 0. We let b = b1 + ib2 = 1 + σ2cm and b̂ = b̂1 + ib̂2 = 1 + σ2cm̂ and define the
functions g(b̂) and G(b̂) in the same way that g(b) and G(b) are defined with the exception that
b and z are replaced by b̂ and ẑ, respectively.

To prevent the confusion of multiple subscripts, we will suppress the dependence on n of the
sequence terms zn, ẑn and write zn = z = z1 + iz2 and ẑn = ẑ = ẑ1 + iẑ2.

We now take the difference m− m̂ =
(z − ẑ)βn

1− αn

where

αn = σ2c

∫ t

bb̂
+ z(

t
b
− bz + σ2(1− c)

)(
t

b̂
− b̂ẑ + σ2(1− c)

)dH(t)

and

βn =

∫
b̂dH(t)(

t
b
− bz + σ2(1− c)

)(
t

b̂
− b̂ẑ + σ2(1− c)

) .

Using the Cauchy-Schwarz inequality, (2.6), and Lemma 2.1 (b), we get for all n

|βn| ≤ |b̂|(G(b)G(b̂))
1
2

σ2c
≤ 1 + σ2c|m̂|

σ2c(|z||ẑ|) 1
2

≤
1 +

(
σ2c
|ẑ|

) 1
2

σ2c (|z||ẑ|) 1
2

≤ K < ∞.

Therefore |m− m̂| ≤ K|z − ẑ|
|1− |αn|| , and consequently we need only show that |αn| stays uniformly

away from 1.
Following the procedure from section 4 of Dozier and Silverstein [3], we use the triangle

inequality followed by the Cauchy-Schwarz inequality to get

|αn| ≤ (g(b))
1
2 (g(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 . (2.9)

Therefore, since g(b), g(b̂), G(b), and G(b̂) are bounded, we can choose a subsequence {nj} for

which αnj
, g(b), g(b̂), G(b), and G(b̂) converge, and we define their respective limits as α, g, ĝ,

G, and Ĝ.
For real numbers u and v with u, v ∈ [0, 1], it is easy to show that

(1− u)
1
2 (1− v)

1
2 ≤ 1− (uv)

1
2 , (2.10)

with equality holding if and only if u = v.
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Taking the limit in (2.9) we get

|α| ≤ g
1
2 ĝ

1
2 + |x|(GĜ)

1
2 . (2.11)

Let b = b1 + ib2 = 1 + σ2cm. From (2.9) and (2.5) we get for all j

|αnj
| < (1− |z|G(b))

1
2 (1− |ẑ|G(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 , (2.12)

and then taking the limit we have

|α| ≤ (1− xG)
1
2 (1− xĜ)

1
2 + x(GĜ)

1
2 . (2.13)

If G 6= Ĝ, then applying (2.10) to (2.13) we get the strict inequality

|α| < 1− (xGxĜ)
1
2 + x(GĜ)

1
2 = 1

as desired.
For the rest of the proof, we assume that G = Ĝ.

From (2.7) we see that G(b) converges if and only if
z2

b2

converges. Therefore,
z2

b2

and similarly

ẑ2

b̂2

must converge, and we call their respective limits y and ŷ.

Solving (2.2) for g(b) gives

g(b) = 1− Im bz

b2

G(b) = 1−
(

b1
z2

b2

+ z1

)
G(b).

We solve for g(b̂) the same way and substitute the results into (2.9) to get

|αnj
| ≤

(
1−

(
b1

z2

b2

+ z1

)
G(b)

) 1
2
(
1−

(
b̂1

ẑ2

b̂2

+ ẑ1

)
G(b̂)

) 1
2

+ |z|(G(b)G(b̂))
1
2 .

We then take the limit and use (2.10) to get

|α| ≤ (1− (b1y + x)G)
1
2 (1− (b̂1ŷ + x)G)

1
2 + xG

≤ 1−
(
(b1y + x)

1
2 (b̂1ŷ + x)

1
2 − x

)
G. (2.14)

By Lemma 2.1 (c), we have b1 > 0 and b̂1 > 0. Therefore if either y > 0 or ŷ > 0, we have
(b1y + x)

1
2 (b̂1ŷ + x)

1
2 > x, and hence |α| < 1 by (2.14).

Suppose y = ŷ = 0. Then (2.7) gives

1

2b1x− σ2(1− c)
= G = Ĝ =

1

2b̂1x− σ2(1− c)
,

and hence b1 = b̂1.
If b2 = b̂2 = 0, we are done. Suppose that either b2 > 0 or b̂2 > 0. Define

knj
(t) ≡

∣∣∣∣ t

bb̂

∣∣∣∣ + |z| −
∣∣∣∣ t

bb̂
+ z

∣∣∣∣ for t ≥ 0.
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Since Im
1

bb̂
=
−(b1b̂2 + b2b̂1)

|bb̂|2 → −(b1b̂2 + b2b̂1)

|bb̂|2 < 0 as j →∞, then z and
1

bb̂
are noncolin-

ear for j large. Therefore, since knj
(t) is the residual of the triangle inequality, we have for large

j, knj
(t) ≥ 0 for t ≥ 0 with knj

(t) = 0 if and only if t = 0.
Define

γnj
≡ σ2c

∫
knj

(t)dH(t)∣∣∣ t
b
− bz + σ2(1− c)

∣∣∣∣∣∣ t

b̂
− b̂ẑ + σ2(1− c)

∣∣∣ .
Since knj

(t) ≤
∣∣∣ t

bb̂

∣∣∣ + |z|, we have

γnj
≤ σ2c

∫ ∣∣∣ t

bb̂

∣∣∣ + |z|∣∣∣ t
b
− bz + σ2(1− c)

∣∣∣∣∣∣ t

b̂
− b̂ẑ + σ2(1− c)

∣∣∣dH(t)

≤ (g(b))
1
2 (g(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 ≤ 1

for all j. Therefore by Fatou’s lemma we get

γ ≡ σ2c

∫
limj→∞ knj

(t) dH(t)∣∣∣ t
b
− bx + σ2(1− c)

∣∣∣∣∣∣ t

b̂
− b̂x + σ2(1− c)

∣∣∣ ≤ lim inf
j→∞

γnj
≤ 1.

Since H is proper, H 6= 1[0,∞), and b, b̂ are finite we get γ > 0.
Going back to the definition of α we follow similar steps as before to derive

|αnj
| ≤ σ2c

∫ ∣∣∣ t

bb̂

∣∣∣ + |z| − knj
(t)∣∣∣ t

b
− bz + σ2(1− c)

∣∣∣∣∣∣ t

b̂
− b̂ẑ + σ2(1− c)

∣∣∣dH(t)

≤ (g(b))
1
2 (g(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 − γnj

< (1− |z|G(b))
1
2 (1− |ẑ|G(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 − γnj

.

Then
|α| ≤ lim inf

j→∞

(
(1− |z|G(b))

1
2 (1− |ẑ|G(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 − γnj

)
≤ lim inf

j→∞

(
(1− |z|G(b))

1
2 (1− |ẑ|G(b̂))

1
2 + |z|(G(b)G(b̂))

1
2

)
− lim inf

j→∞
γnj

= 1− lim inf
j→∞

γnj

≤ 1− γ < 1.

Therefore in every case we have m = m̂, and hence the proof is complete.

By Theorems 1.1 and 1.2 and Lemmas 2.1 (b) and 2.2 we now have the existence and
continuity of both m and f on R− {0}. Moreover, when f(x) > 0 we have

Im

(
t

b(x)
− b(x)x− σ2(1− c)

)
≤ −Im b(x)x < 0
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for all t ≥ 0, and therefore, by dominated convergence, m(x) satisfies (1.1) for z = x. Therefore,
the only part of Theorem 2.1 that remains to be shown is the analyticity of f .

The following lemma presents a slightly stronger result on uniqueness of solutions to (1.1)
than was stated in Theorem 4.1 of Dozier and Silverstein [3].

Lemma 2.3. Let m = m1 + im2 ∈ C+ and b = b1 + ib2 = 1 + σ2cm. If, for z = z1 + iz2 ∈ C+,
m is a solution to equation (1.1) and Im bz > 0, then m is unique.

Proof. The difference between this lemma and Theorem 4.1 of Dozier and Silverstein [3] is that
here we assume Im bz > 0 instead of Im mz ≥ 0. The proof, however, is exactly the same
for both cases since the theorem’s proof only uses the inequality Im mz ≥ 0 to establish that
Im bz > 0 by the expression Im bz = z2 + σ2cIm mz > 0. Hence, the proof is complete.

We now complete the proof of Theorem 2.1 with the following lemma.

Lemma 2.4. If x0 ∈ (0,∞) and f(x0) > 0, then f is analytic near x0.

Proof. Let b = b1 + ib2 = 1 + σ2cm(x0). For z ∈ C+ and any m ∈ C+ satisfying (1.1), we get

m

1 + σ2cm
=

∫
dH(t)

t− (b2z − bσ2(1− c))
= mH(b2z − bσ2(1− c)), (2.15)

where mH(·) denotes the Stieltjes transform of H and b = 1 + σ2cm. Let w ≡ b2x0− bσ2(1− c).
Since the denominator in (2.7) is bounded, we can tighten inequality (2.8) to get

0 < G ≤ 1

x0

. (2.16)

From (2.7) we get Im w =
b2
G

, and since b2 = πσ2cf(x0) > 0 we have Im w > 0, and hence mH

is analytic near w.
First, suppose that m′

H(w) 6= 0. Then in a neighborhood of w, the analytic inverse m−1
H

exists. It is clear that for z near x0 and b near b, we have w ≡ b2z − bσ2(1 − c) near w.
Therefore, if b is near b and b satisfies equation (1.1′) for z near x0, then we have

1

σ2c

(
1− 1

b

)
= mH(b2z − bσ2(1− c)) = mH(w), (2.17)

and hence

z =
1

b2
m−1

H

(
1

σ2c

(
1− 1

b

))
+

1

b
σ2(1− c). (2.18)

Let z(b) be the right hand side of (2.18). In a neighborhood of b, z(b) is clearly analytic, and
we will show that it is also one-to-one.

For complex numbers b, b̂ near b and z close enough to x0 so that Im bz > 0 and Im b̂z > 0,
define the function

α = σ2c

∫ t

bb̂
+ z(

t
b
− bz + σ2(1− c)

)(
t

b̂
− b̂z + σ2(1− c)

)dH(t).

9



Note that for t ≥ 0,

Im

(
t

b
− bz + σ2(1− c)

)
= −tIm b

|b|2 − Im bz < 0,

and similarly for b̂. Therefore the integrand of α is bounded since for any t ≥ 0∣∣∣ t

bb̂
+ z

∣∣∣∣∣∣ t
b
− bz + σ2(1− c)

∣∣∣∣∣∣ t

b̂
− b̂z + σ2(1− c)

∣∣∣ ≤
t

|bb̂| + |z|∣∣ t
b
− bz + σ2(1− c)

∣∣ Im b̂z

≤ 1

|b̂|Im b̂z

∣∣∣∣ t
b

t
b
− bz + σ2(1− c)

∣∣∣∣ +
|z|

(Im bz)(Im b̂z)

=
1

|b̂|Im b̂z

∣∣∣∣1− −bz + σ2(1− c)
t
b
− bz + σ2(1− c)

∣∣∣∣ +
|z|

(Im bz)(Im b̂z)

≤ 1

|b̂|Im b̂z

(
1 +

|b||z|+ σ2(1− c)∣∣ t
b
− bz + σ2(1− c)

∣∣
)

+
|z|

(Im bz)(Im b̂z)

≤ 1

|b̂|Im b̂z

(
1 +

|b||z|+ σ2(1− c)

Im bz

)
+

|z|
(Im bz)(Im b̂z)

< K,

and hence α is well-defined and, in fact, continuous in the variables b, b̂, and z. Define α to be
the value of α when b = b̂ = b and z = x0, that is,

α = σ2c

∫ t
b2

+ x0(
t
b
− bx0 + σ2(1− c)

)2dH(t).

Define

k(t) ≡
∣∣∣∣ t

b2

∣∣∣∣ + x0 −
∣∣∣∣ t

b2 + x0

∣∣∣∣
and

γ ≡ σ2c

∫
k(t)∣∣∣ t

b
− bx0 + σ2(1− c)

∣∣∣2dH(t).

Now, Im 1
b2

= − b1b2
|b|2 < 0, and therefore 1

b2
and x0 are noncolinear. Since k is the residual of the

triangle inequality, we have k(t) ≥ 0 for t ≥ 0 with k(t) = 0 if and only if t = 0. Therefore since
H 6= 1[0,∞), we have γ > 0, and since (2.2) gives 1− g = x0G, we get, as in the proof of Lemma
2.2,

|α| ≤ σ2c

∫ ∣∣∣ t
b2

+ x0

∣∣∣∣∣∣ t
b
− bx0 + σ2(1− c)

∣∣∣2dH(t) = σ2c

∫ t
|b|2 + x0 − k(t)∣∣∣ t

b
− bx0 + σ2(1− c)

∣∣∣2dH(t)

= g + x0G− γ = 1− γ < 1.
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Suppose we have b and b̂ both satisfying (1.1′) for the same z, where b, b̂ are close to b and
z is close enough to x0 so that Im bz > 0 and Im b̂z > 0. Then we can write b− b̂ = (b− b̂)α,
and since α is continuous for the variables b, b̂, z and |α| < 1, we must have |α| < 1 for all of
these b, b̂ and z sufficiently close to b and x0, respectively. Therefore, b = b̂. Then the function
z(b) is one-to-one near b and hence has an analytic inverse b(z) for z near x0. By Lemma 2.3 we
must have b(z) = 1 + σ2cmF (z) for z ∈ C+, and hence mF extends analytically onto an interval
about x0. Therefore we get

m(x) =
∞∑

n=0

an(x− x0)
n

for x near x0 and some an ∈ C, and hence

f(x) =
1

π

∞∑
n=0

Im an(x− x0)
n. (2.19)

Now, suppose m′
H(w) = 0. We form the function u of the two complex variables b, z by

u(b, z) = mH(b2z − bσ2(1− c))− 1

σ2c

(
1− 1

b

)

which is analytic near (b, x0) ∈ C2. Then we have u(b, x0) = 0. Taking the derivative with
respect to b we get

∂u

∂b
(b, x0) = m′

H(w)(2bx0 − σ2(1− c))− 1

σ2cb2 = − 1

σ2cb2 6= 0.

Then by the implicit function theorem (Krantz [4] p.54) there is a unique analytic solution b(z)
in a neighborhood of x0 such that b(x0) = b. Since mF is an analytic solution to (1.1) in C+,
we must have b(z) = 1 + σ2cmF (z) by uniqueness of b(z), and hence mF extends analytically to
an interval about x0, and again we have (2.19). Therefore, f(x) is analytic where it is positive,
and the proof is complete.

3. The Support of F

In this section we present results on the support of the limiting distribution F . Let SF and
SH denote the support of F and H, respectively. Clearly, by definition of F and H, we have
SF ⊂ [0,∞) and SH ⊂ [0,∞). We begin our analysis of SF with the following result.

Theorem 3.1. F has no mass at 0.

Proof. The method we will use to prove the lemma was previously used in Silverstein and Choi
[9].

For any p.d.f. G we have

lim
y↓0

iymG(iy) = −G{0}+ lim
y↓0

∫
(0,∞)

iy

λ− iy
dG(λ) = −G{0},

by dominated convergence, and therefore, if G{0} > 0, we must have |mG(iy)| → ∞ as y ↓ 0.
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Suppose F{0} > 0. From (1.1) we have

iym(iy) =

∫
iy

t
1+σ2cm(iy)

− (1 + σ2cm(iy))iy + σ2(1− c)
dH(t).

Since F{0} > 0 we have, for any t ≥ 0, as y ↓ 0

iy
t

1+σ2cm(iy)
− (1 + σ2cm(iy))iy + σ2(1− c)

→ 0

σ2cF{0}+ σ2(1− c)
= 0,

and since ∣∣∣∣∣ iy
t

1+σ2cm(iy)
− (1 + σ2cm(iy))iy + σ2(1− c)

∣∣∣∣∣ ≤ y

Im iyb(iy)
=

1

b1(iy)
< ∞,

by Lemma 2.1 (a), we have, by dominated convergence, limy↓0 iym(iy) = 0, a contradiction.
Therefore, F{0} = 0.

The fact that F{0} = 0 gives no information on whether or not 0 ∈ SF . Simulations have
shown that either case can occur, depending on H and the values of c and σ.

A method to identify the support of F is presented next.
First, we give a lemma that will be used in the proof of Theorem 3.3.

Lemma 3.1. If b,b ∈ R are positive and both satisfy (1.1′) for z = x ∈ R, x < 0, then b = b.

Proof. First, note that for t ≥ 0, b > 0, and x < 0 we have

1

| t
b
− bx + σ2(1− c)| =

1
t
b
+ b|x|+ σ2(1− c)

≤ 1

b|x| < ∞,

and therefore the integral in (1.1′) is well-defined for both b and b. We write b− b = (b− b)α,
where

α = σ2c

∫ t
bb

+ x

( t
b
− bx + σ2(1− c))( t

b
− bx + σ2(1− c))

dH(t).

Again, following the procedure from section four of Dozier and Silverstein [3], we use the Cauchy-
Schwarz and triangle inequalities to get

|α| ≤ (g(b))
1
2 (g(b))

1
2 + |x|(G(b)G(b))

1
2 . (3.1)

From (2.1) we get b(1− g(b) + xG(b)) = 1 + σ2(1− c)G(b) > 0, and since b > 0 we get

g(b) < 1 + xG(b) = 1− |x|G(b) (3.2)

and similarly for b. Substituting this into (3.1) and using (2.10) we get

|α| < (1− |x|G(b))
1
2 (1− |x|G(b))

1
2 + |x|(G(b)G(b))

1
2

≤ 1− (|x|G(b)|x|G(b))
1
2 + |x|(G(b)G(b))

1
2 = 1.

Therefore, b = b, and the proof is complete.
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Suppose we have x ∈ R − {0}. If x ∈ Sc
F , we have that m(x) is real, continuous, and

increasing, and therefore so is m−1(x). Let b(z) = b1(z) + ib2(z) = 1 + σ2cmF (z). Since b(z)
is a well-defined, analytic function for z in a neighborhood of x, we have that the function
w(z) ≡ b2(z)z − b(z)σ2(1 − c) is also well-defined and analytic in such a neighborhood. In the
next theorem, we will show that w(x) ∈ Sc

H , and therefore we may write the inverse of m,
expressed in terms of b ∈ R, as

x(b) =
1

b2
m−1

H

(
1

σ2c

(
1− 1

b

))
+

1

b
σ2(1− c).

Theorem 3.2. If x ∈ Sc
F , then w(x) ∈ Sc

H .

Proof. Let (l1, l2) ⊂ [L1, L2] ⊂ Sc
H and choose x0 ∈ (l1, l2). Since x0 ∈ Sc

F , mF (z) is analytic in a
neighborhood V of x0 with V ∩R ⊂ (l1, l2), and therefore w(z) is also analytic in V . Note that
w(z) = z + 2σ2cmF (z)z + (σ2c)2m2

F (z)z− σ2(1− c)− σ2cσ2(1− c)mF (z). Let ζ = u + iv, where
u ∈ R is fixed and v → ∞. Since mF (ζ) → 0, mF (ζ)ζ is bounded, and m2

F (ζ)ζ → 0, we have
w(ζ) →∞, and hence w(z) is nonconstant. Therefore, by the open mapping theorem, w(V ) is
an open set.

For z ∈ C+ we have b(z) ∈ C+, and therefore w(z) ∈ C+ by (2.7). Therefore, by (1.1) and
Lemma 2.1 (a), we get for any z ∈ C+

mF (z)

1 + σ2cmF (z)
= mH(w(z)) =

∫
dH(t)

t− w(z)
,

which gives

Im mH(w(z)) = Im w(z)

∫
dH(t)

|t− w(z)|2 =
Im mF (z)

|1 + σ2cmF (z)|2 . (3.3)

Let w0 ∈ w(V ) ∩ R be arbitrary. Take a sequence {wj} ⊂ w(V ) ∩ C+ such that wj → w0.
There exists a sequence {zj} ⊂ V for which wj = w(zj) for each j. For any z ∈ V we have

b(z) = b(z), and consequently, w(z) = w(z). Therefore, {zj} ⊂ C+. Since the zj’s are bounded,
there exists a subsequence {zjk

} ⊂ {zj} that converges to some z0 ∈ V . If z0 ∈ C+, then
G(b(z0)) > 0 and b2(z0) > 0, and therefore (2.3) gives Im w(z0) = Im w0 > 0, a contradiction.
Then we must have z0 ∈ R, and hence z0 ∈ Sc

F . Therefore Im mF (z0) = 0. If z0 6= 0, Lemma
2.1 (c) gives b(z0) > 0. If z0 = 0 we may assume, without loss of generality, that 0 ∈ [L1, L2],
and therefore we have

b(z0) = 1 + σ2c

∫
dF (λ)

λ− z0

= 1 + σ2c

∫
(L2,∞)

dF (λ)

λ
> 1.

Therefore, in either case, b(z0) > 0, and (3.3) gives

lim
k→∞

Im mH(w(zjk
)) =

Im mF (z0)

|b(z0)|2 = 0.

Hence by Theorem 1.1, H is differentiable at w0 and its derivative is 0. Since w0 is arbitrary in
w(V ) ∩ R, we have w(V ) ∩ R ⊂ Sc

H , and therefore w(x0) ∈ Sc
H , and since x0 is arbitrary in Sc

F ,
the proof is complete.
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So far we have shown that if we have an x outside the support of F , the corresponding w(x)
is outside the support of H, and we have an expression for the inverse of m. Therefore, if we
graph the inverse x(b) and identify an interval of points in Sc

F on the vertical axis, x(b) will be
increasing on that interval, but does the presence of an interval on the vertical axis for which
x(b) is increasing always yield an interval in Sc

F ? The answer is yes, if b > 0, as Theorem 3.3
will show. To prove this semi-converse we proceed as follows.

Suppose we have w0 ∈ (l1, l2) ⊂ [L1, L2] ⊂ Sc
H . Then mH(·) is increasing on (l1, l2) and

maps (l1, l2) onto some interval (d1, d2). Now,
1

σ2c

(
1− 1

b

)
is an increasing function of b from

(0,∞) onto (−∞,
1

σ2c
). Since b ≤ 0 does not correspond to our Stieltjes transform by Lemma

2.1 (a),(c) , we may assume w0 is chosen so that (d1, d2) ⊂ (−∞,
1

σ2c
). Therefore there is an

interval (k1, k2) ⊂ (0,∞) such that the mapping

b 7→ 1

σ2c

(
1− 1

b

)
(3.4)

is a one-to-one correspondence from (k1, k2) to (d1, d2). Therefore m−1
H

(
1

σ2c

(
1− 1

b

))
is well-

defined from (k1, k2) to (l1, l2), and hence we define

x(b) =
1

b2
m−1

H

(
1

σ2c

(
1− 1

b

))
+

1

b
σ2(1− c) (3.5)

for b ∈ (k1, k2). The next theorem will show that at a point b ∈ (k1, k2) for which x′(b) > 0, we
have x(b) ∈ Sc

F , and b = 1 + σ2cmF (x(b)).

Theorem 3.3. Let b ∈ (k1, k2) and x′(b) > 0. Then x(b) ∈ Sc
F and b = 1 + σ2cmF (x(b)).

Proof. Let (k1, k2) ⊂ (k1, k2) be an interval on which x′(b) > 0. Fix b ∈ (k1, k2). If x(b) < 0, we
immediately have x(b) ∈ Sc

F , and by Lemma 3.1 we must have b = 1+σ2cmF (x(b)). Therefore
we assume x(b) ≥ 0. Let D be an open set in C such that D ∩R = (k1, k2). Since x is analytic
on (k1, k2), we may write x(b) in a power series expansion centered at b, and therefore, for
b ∈ D, the function

z(b) ≡ x(b) +
∞∑

j=1

x(j)(b)

j!
(b− b)j (3.6)

is the analytic extension of x onto D. Using (3.6) we write z(b) = x(b) + x′(b)(b − b) + θ(b)
where θ(b) = o(b − b). Since x′(b) > 0, it is clear that we may choose b̂ = b̂1 + ib̂2 ∈ D ∩ C+

sufficiently close to b to ensure that z(b̂) ∈ C+, and since b̂z(b̂) = b̂x(b) + x′(b)b̂(b̂− b) + b̂θ(b̂)
and x(b) ≥ 0 we have Im b̂z(b̂) = b̂2(x(b)+x′(b)(2b̂1−b))+Im b̂θ(b̂) > 0 for b̂ ∈ D∩C+ close
enough to b. Therefore we have Im z(b̂) > 0, Im b̂z(b̂) > 0, and

z(b̂) =
1

b̂2
m−1

H

(
1

σ2c

(
1− 1

b̂

))
+

1

b̂
σ2(1− c). (3.7)

Hence, by Lemma 2.3, b̂ is the unique solution to (1.1′) for z = z(b̂), that is, b̂ = 1+σ2cmF (z(b̂)).
Therefore, bF = 1 + σ2cmF extends analytically onto a neighborhood B of b and its inverse is
given by (3.7).
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Choose a sequence {zj} ⊂ z(B) ∩ C+ such that zj → z(b) (= x(b)). Then we have
bF (zj) = 1 + σ2cmF (zj) → bF (z(b)) = b, and consequently Im mF (zj) → 0 as j → ∞. By
Theorem 1.1, F is differentiable at x(b), and it’s derivative is 0. Since b ∈ (k1, k2) is arbitrary
we have F ′(x) = 0 for all x = x(b) ∈ (x(k1), x(k2)), and therefore these x’s are outside SF .
Moreover, mF is analytic in C+ ∪ (x(k1), x(k2)), and therefore b = 1 + σ2cmF (x(b)) for any
b ∈ (k1, k2) for which x′(b) > 0, and this completes the proof.

As a result of Theorems 3.2 and 3.3, we now have a method whereby we may graphically
identify the support of F . The first step of the procedure is to choose an open interval IH ⊂ Sc

H

such that IH is not in Sc
H , that is, IH is not a subset of a larger interval in Sc

H . On IH , mH

is increasing and maps to an interval (d1, d2). Since the function (3.4) maps positive values
of b onto (−∞, 1

σ2c
), we take only those intervals IH for which (d1, d2) ≡ (d1, d2) ∩ (−∞, 1

σ2c
)

is nonempty, and disregard any IH for which this intersection is empty. Let (k1, k2) be the

pre-image of (d1, d2) under the mapping given in (3.4). Therefore, m−1
H

(
1

σ2c

(
1− 1

b

))
is well-

defined from (k1, k2) to ĨH ≡ {t ∈ IH : mH(t) ∈ (d1, d2)}, and hence we may graph the function
x(b) given by (3.5) for b ∈ (k1, k2). We then identify all intervals on the vertical axis where
the graph of x is increasing. By Theorem 3.3, we know that these intervals are outside SF ,
and therefore we remove these intervals from R, and SF must be contained in what is left. We
continue in this manner for every interval IH ⊂ Sc

H . Let D be the resulting set. Since, by
Theorem 3.2, every x ∈ Sc

F corresponds (via w(x)) to a point in Sc
H , we must have D = SF .

Also, for each interval IF ⊂ Sc
F , there is only one interval IH ⊂ Sc

H for which our procedure
produces IF . In other words, the intervals outside SF that are being removed from R in the
above procedure will not overlap each other. To see this, we note that (3.5) gives

m−1
H

(
1

σ2c

(
1− 1

b

))
= b2x(b)− bσ2(1− c). (3.8)

By Theorem 3.3, for each x ∈ IF , there is a unique b, namely b = 1 + σ2cmF (x), such that
x = x(b). Therefore, IF uniquely determines the range of the left-hand side of (3.8), which is
an interval in Sc

H . Consequently, once we eliminate an interval from being in SF , we will never
again encounter any portion of this interval in subsequent steps of the procedure.

4. Behavior Near a Boundary Point

We now focus on the behavior of the density f near boundary points of SF . Let a be a
left end-point of SF , and let ε > 0 be sufficiently small so that (a − ε, a) ⊂ Sc

F . Therefore,
by the previous section, there exists an interval (l1, l2) ⊂ Sc

H from which we can construct a
well-defined, analytic function x(b) given by the representation in (3.5), for b in some interval
(k1, k2) ⊂ (0,∞), such that (a − ε, a) is in the range of x(b) and x′(b) is positive over these
range values. We now assume that [a− ε, a] is in the range of x(b), and, in particular, we define
b∗, ba ∈ (k1, k2) so that x(b∗) = a − ε and x(ba) = a. Therefore b∗ < ba, and x(b) is defined on
both sides of ba.

Note that our assumption may not occur for certain choices of H. It may be the case that
limb↑ba x(b) exists, but x(b) is not defined at ba, which can possibly occur if b2

aa−baσ
2(1−c) ∈ ∂SH

and m′
H(w) exists as w → b2

aa − baσ
2(1 − c). However, our assumption is valid, for example,
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when H is discrete, since m′
H will not exist on ∂SH . This constitutes the most relevant cases

of application of our model. A non-discrete H would only be considered if it approximates the
population eigenvalues in an analytically tractable manner.

Since x(b) is analytic with x′(b) > 0 for all b ∈ (b∗, ba) and a is a left end-point of SF , we
must have x′(ba) = 0, and the next theorem will imply that ba is a relative maximum of x.

Theorem 4.1. For some δ > 0 for which ba + δ < k2 we have x′(b) < 0 for all b ∈ (ba, ba + δ).

Proof. Suppose x(j)(ba) is the first non-vanishing derivative of x(b) at ba. Then for all b in
some interval (ba, ba + δ) ⊂ (ba, k2), x(j)(b) is of one sign, and therefore each of the first j − 1
derivatives do not change sign in this interval. If x′(b) > 0 on (ba, ba + δ) then we would have
(x(ba), x(ba + δ)) = (a, x(ba + δ)) ⊂ Sc

F , and consequently, a would be an isolated point in SF ,
an impossibility since F has a continuous density on R−{0}. Therefore we must have x′(b) < 0
for all b ∈ (ba, ba + δ), and the proof is complete.

Let k∗ ∈ (ba, k2) be such that x′(b) < 0 for all b ∈ (ba, k
∗). Define the interval (l1, l2) ⊂

(l1, l2) to be the image of (b∗, k∗) under the mapping m−1
H

(
1

σ2c

(
1− 1

b

))
. For z ∈ C+ let

bF (z) ≡ 1 + σ2cmF (z). Write limz∈C+→x bF (z) ≡ b(x) = b1(x) + ib2(x) for x ∈ R − {0}. We
have (b1(a), b2(a)) = (ba, 0). Choose δ sufficiently small so that for x ∈ (a, a + δ) we have
b1(x) ∈ (b∗, k∗) and b2

1(x)x− b1(x)σ2(1− c) ∈ (l1, l2).
We argue that f(x) = 1

σ2cπ
b2(x) > 0 for all x ∈ (a, a+δ). Suppose x0 ∈ (a, a+δ) is such that

b2(x0) = 0. Letting b̂ = b1(x0), we have x(b̂) = x0. It is obvious that b̂ 6= ba, and if b̂ ∈ (b∗, ba),
then x0 < a, a contradiction. Therefore b̂ ∈ (ba, k

∗), and hence, x′(b̂) < 0. For any b ∈ (ba, k
∗)

we have from (1.1′)
b = 1 + σ2cbmH(b2x(b)− bσ2(1− c)),

and therefore differentiating implicitly with respect to b we get

x′(b) =
1− σ2cb2m′

H(b2x(b)− bσ2(1− c))(2bx(b)− σ2(1− c))

σ2cb4m′
H(b2x(b)− bσ2(1− c))

< 0. (4.1)

Since b is real, we have

σ2cb2m′
H(b2x(b)− bσ2(1− c)) = σ2cb2

∫
dH(t)

(t− (b2x(b)− bσ2(1− c))2

= σ2c

∫
dH(t)(

t
b
− bx(b) + σ2(1− c)

)2 = G(b),

and therefore

x′(b) =
1−G(b)(2bx(b)− σ2(1− c))

b2G(b)
< 0. (4.2)

Let z = z1 + iz2 ∈ C+ and b(z) = b1(z) + ib2(z) ≡ bF (z). From (2.7) we get

z2

b2(z)
=

1−G(b(z))(2b1(z)z1 − σ2(1− c)) + b2(z)z2G(b(z))

b2
1(z)G(b(z))

> 0. (4.3)
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Letting z → x0 we have b(z) → b̂ and therefore (4.3) gives

1−G(b̂)(2b̂x0 − σ2(1− c))

b̂2G(b̂)
≥ 0,

a contradiction of (4.2). Therefore, b2(x0) > 0, and hence f(x) > 0 for all x ∈ (a, a + δ).

Theorem 4.2. x′′(ba) < 0.

Proof. Since x′(ba) = 0, we have, by Theorem 4.1, that ba is a relative maximum of x. Therefore,
x′′(ba) ≤ 0. Since the first non-vanishing derivative of a function at a relative extreme must be
of even order, we will assume x′′(ba) = 0 and x′′′(ba) = 0, and proceed to show a contradiction.

Let w ≡ b2x(b)−bσ2(1−c), wa ≡ b2
aa−baσ

2(1−c), d ≡ 2bx(b)−σ2(1−c), da ≡ 2baa−σ2(1−c),
and define

Aj =

∫
dH(t)

(t− wa)j
for j = 2, 3, 4

so that m′
H(wa) = A2, m′′

H(wa) = 2A3, and m′′′
H(wa) = 6A4. Writing (1.1′) as

1

σ2c

(
1− 1

b

)
= mH(w), (4.4)

and differentiating implicitly with respect to b three times results in the following three equations

1

σ2cb2
= m′

H(w)(d + b2x′(b))

−2

σ2cb3
= m′′

H(w)(d + b2x′(b))2 + m′
H(w)(2x(b) + 4bx′(b) + b2x′′(b))

6

σ2cb4
= m′′′

H(w)(d+b2x′(b))3+3m′′
H(w)(d+b2x′(b))(2x(b)+4bx′(b)+b2x′′(b))

+m′
H(w)(6x′(b) + 6bx′′(b) + b2x′′′(b)).

Now, we evaluate these equations at the point ba and use the assumption that the first three
derivatives of x are zero to get the following three equations in terms of the Aj’s

daA2 =
1

σ2cb2
a

d2
aA3 + aA2 = − 1

σ2cb3
a

d3
aA4 + 2adaA3 =

1

σ2cb4
a

.

Note that the first equation implies da > 0. Solving for A3 and A4 we get

A3 = − 1

σ2c

(
a

d3
ab

2
a

+
1

d2
ab

3
a

)

and

A4 =
1

σ2c

(
2a2

d5
ab

2
a

+
2a

d4
ab

3
a

+
1

d3
ab

4
a

)
.
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Writing wa = daba − b2
aa and A3 =

∫
t

(t−wa)4
dH(t)− waA4 we get

0 <

∫
t

(t− wa)4
dH(t) = waA4 + A3 =

−2a3b4
a

σ2cd5
ab

4
a

,

a contradiction since a and da are both positive. Therefore, x′′(ba) < 0.

We now show that the density f resembles a square root function in a neighborhood to the
right of a.

Since m′
H(wa) 6= 0, there exists a neighborhood W ⊂ C of wa on which mH is one-to-one,

and hence has an analytic inverse. Let B ⊂ C and U ⊂ C be neighborhoods of ba and a,
respectively. Define

W0 ≡ {w ∈ C : w = b2z − bσ2(1− c) for b ∈ B and z ∈ U}.
Choose B and U sufficiently small so that B ∩ R ⊂ (k1, k2), W0 ⊂ W and W0 ∩ R ⊂ (l1, l2).

Then m−1
H

(
1

σ2c

(
1− 1

b

))
is an analytic mapping from B to W0. For b ∈ B define

z(b) =
1

b2
m−1

H

(
1

σ2c

(
1− 1

b

))
+

1

b
σ2(1− c). (4.5)

Therefore, if b ∈ B ∩ R, we have z(b) = x(b), and hence z′(ba) = x′(ba) = 0 and z′′(ba) =
x′′(ba) < 0. By Theorem 10.32 of Rudin [6], there is a neighborhood V ⊂ B of ba and a function
φ, analytic in V , such that

z(b)− a = (φ(b))2 for all b ∈ V, (4.6)

φ′ has no zero in V , and φ is an invertible mapping of V onto a disc centered at the origin. We
then have φ(ba) = 0, φ′(ba) 6= 0, and computing the first two derivatives on both sides of (4.6)
we get

z′(b) = 2φ(b)φ′(b)

and
z′′(b) = 2[φ′(b)]2 + 2φ(b)φ′(b).

Therefore
0 > z′′(ba) = 2[φ′(ba)]

2, (4.7)

and hence φ′(ba) must be purely imaginary. Write 1
φ′(ba)

= iα, where α ∈ R is nonzero.

Let δ > 0 be small enough so that f is positive over (a, a + δ) and (a, a + δ) ⊂ U ∩ R. Fix
x ∈ (a, a + δ). Since m(x) satisfies (1.1) for z = x we immediately have

x− a = [φ(b(x))]2.

Since x > a, we may take the square root of both sides to get

φ(b(x)) =
√

x− a,

where we assume that φ(b(x)) is the positive root. Let Γ be the inverse of φ on V . Then
Γ(0) = ba and Γ′(0) = 1

φ′(ba)
= iα, and expanding Γ about 0 we have

b(x) = Γ(
√

x− a) = Γ(0) + Γ′(0)
√

x− a + (higher order terms)
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= ba + iα
√

x− a + (higher order terms).

Therefore
b2(x) =

√
x− a(α + (higher order terms )),

and hence, for x ∈ (a, a + δ), we have expressed f(x) = 1
σ2cπ

b2(x) as an analytic function of√
x− a. This is a stronger result that what was proven for the density in Silverstein and Choi

[9], although the same method used here may be applied to that case and yield the same strong
result.

The a we used was a left end-point of SF . If a were a right end-point of SF , the analysis
would differ only slightly from what we have done here. In that case we assume that ba is a
relative minimum of x(b), and therefore (4.7) becomes

0 < z′′(ba) = 2[φ′(ba)]
2,

giving that φ′(ba) is nonzero and real. Write 1
φ′(ba)

= α. Let δ > 0 be small enough so that f is

positive over (a− δ, a) and (a− δ, a) ⊂ U ∩ R. Fixing x ∈ (a− δ, a), we again have

x− a = [φ(b(x))]2,

and hence, since x < a, we get
φ(b(x)) = i

√
|x− a|,

where the square root is assumed to be positive. Again letting Γ be the inverse of φ on V we
have Γ(0) = ba and Γ′(0) = α. Expanding Γ about 0 we get

b(x) = Γ(i
√
|x− a|) = Γ(0) + iΓ′(0)

√
|x− a|+ (higher order terms)

= ba + iα
√
|x− a|+ (higher order terms),

and therefore
b2(x) =

√
|x− a|(α + (higher order terms)).

5. An Example and Application

In this section we graphically analyze the limiting density and the procedure for finding SF

for a particular example of F . We compare the results of a simulation to our density graph, and
use the comparisons to analyze the problem of signal detection in array signal processing.

As noted earlier, F is nonrandom and only depends on the distribution H and the constants
c and σ. We construct our example by letting c = .1 and σ = 1 and taking H to be discrete
with mass .2, .4, and .4 at the respective values 0, 3, and 10.

In section 3 we described a method by which SF may be obtained. From each interval
IH ⊂ Sc

H we construct a well-defined function x given (in terms of b = 1 + σ2cm) by

x(b) =
1

b2
m−1

H

(
1

σ2c

(
1− 1

b

))
+

1

b
σ2(1− c) (5.1)

for b in some interval (k1, k2) ⊂ (0,∞) prescribed by IH . We graph this function and remove
the intervals along the vertical axis where the graph is increasing. We repeat this procedure for
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each interval IH ⊂ Sc
H , and the set of points that have not been removed from the vertical axis

will be SF .
For our example, Sc

H is composed of the four intervals I(i) = (−∞, 0), I(ii) = (0, 3), I(iii) =
(3, 10), and I(iv) = (10,∞), and therefore we have four functions given by (5.1). The graphs of
these four functions (given as x(m)), obtained using Newton’s method, are shown in Figure 1
(a). The thick lines on the vertical axis represent SF . As noted in sections 3, we see that the
intervals on the vertical axis where the graphs are increasing do not overlap each other from one
function to the next.

Fig1.

Once we have obtained SF it is a simple matter of applying Newton’s method to equation
(1.1) with z = x and m = m(x) to numerically obtain the density f(x) = 1

π
Im m(x) for each

x ∈ SF . Figure 1 (b) shows the graph of the limiting density f . Note that when positive, f is a
smooth function, and, at the boundary of its support, f goes down vertically to the x-axis, thus
behaving in a similar fashion to a square root.
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Recall that when c ↓ 0, F will converge to the distribution of a random variable Y +σ2, where
Y has distribution H. For our example, as c ↓ 0, F will converge to the discrete distribution
having mass .2, .4, and .4 at the respective points 1, 4, and 11. It is evident that our choice of
c = .1 is small enough to see the mass beginning to accumulate around 1, 4, and 11.

In Figure 2 we have overlaid the density graph with a histogram and a scatterplot of the
eigenvalues of a simulation of the matrix Cn. We choose n = 200 so that, since c = .1, N = 2000.
We construct Rn in a deterministic manner so that the e.d.f. of the eigenvalues of 1

N
RnR

∗
n

is exactly H, and we let the entries of Xn be i.i.d. standardized Gaussian. We see that the
histogram of the eigenvalues of Cn follows the shape of the density and the scatterplot, with each
eigenvalue marked by the symbol ‘◦’, stays close to SF . The eigenvalues exhibit a clear separation
into three distinct groups clustering near the points 1, 4, and 11. In fact, the distribution of
the eigenvalues among the three groups is, from left to right, .2, .4, and .4. That is, of the 200
eigenvalues, 40 are in the first group, 80 are in the second group, and 80 are in the last group.

Fig2.

We use this example to illustrate the connection to the detection problem in array signal
processing, where an array of n sensors receives signals transmitted by an unknown number q < n
of sources with unknown locations in a noise-filled environment. The goal is mainly to identify
the number of sources (signal detection) and their direction of arrival (DOA). The model is given
by an n×N matrix Yn = Rn +σXn in which the columns represent N “snapshots” (samples) of
the received signals. The matrix Rn represents the pure signal information and contains values
detailing sensor orientation, the signal values at the source, and components such as steering
vectors which provide information on the unknown direction of arrival of the signals. The signals
are commonly assumed to be stationary ergodic processes. The matrix Xn represents additive
noise (variance σ2 unknown) that contaminates the signal during transmission and processing.
The entries of Xn are assumed to be i.i.d. standardized random variables. If the population
matrix Sn + σ2I (Sn ≡ E 1

N
RnR

∗
n) were known, or at least adequately approximated, then

using the MUSIC (multiple signal classification) algorithm, as presented in Schmidt [7], one
could determine the number of sources and, depending on the accuracy of the approximation,
their direction of arrival. The sample covariance matrix Cn = 1

N
YnY

∗
n is used to estimate the
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population matrix, however, as stated in the introduction, if the number of sensors, n, is large
then it may not be possible to collect enough samples to adequately estimate it. In this case,
limiting results on the eigenvalues of Cn can aid in the detection problem: determining the
number of sources. As noted in Schmidt [7], if q < n then Sn is singular with n − q zero
eigenvalues. Therefore the n − q smallest eigenvalues of the matrix Sn + σ2I are equal to σ2.
These are called the “noise” eigenvalues, and the q larger eigenvalues are called the “signal”
eigenvalues. Therefore, obtaining the value of q, the number of sources, can be accomplished
by determining the multiplicity of the noise eigenvalues. From this it is clear that limiting
results on the eigenvalues of the sample covariance matrix Cn can play an important role in
signal detection. Indeed, if it can be shown that, for large n, the eigenvalues of Cn display this
”splitting” into groups of smaller and larger eigenvalues with the correct number of eigenvalues
in each group corresponding to the noise and signal eigenvalues, then determining the number
of sources can be accomplished with fewer samples than needed to approximate the population
matrix itself. It will only require enough samples for the eigenvalues of Cn to separate into
distinct, separate clusters.

Results of this type were proven for a different class of matrices in Bai and Silverstein [1],
[2] with the first paper showing that, for n large, no eigenvalues appear where they should not,
i.e., outside the support of the limiting distribution, and the second paper showing that, for n
large, each interval of the support contains the correct number of eigenvalues. As yet, there are
no such results proven for our limiting distribution, but from simulations it appears that similar
results hold true for our case as well.

In the simulation above the number of sensors is 200, sample size is 2000, the (unknown)
number of sources is 160, and σ2 = 1. Since Rn was artificially constructed so that 1

N
RnR

∗
n has

only two distinct nonzero eigenvalues, our example is limited in its comparison to an actual sig-
nal detection problem. Even so, this example is useful for illustrative purposes. The scatterplot
shows a clear separation of the 40 noise eigenvalues from the 160 signal eigenvalues. The value
c = .1 is certainly small enough to see the separation of the support of F into disjoint intervals.
In fact, by analyzing the density for different values of c, we discover that the separation of
the smaller eigenvalues from the larger ones occurs when c is approximately .37555. Therefore,
for a particular value of n, it would take less than 3n samples for separation of the support
to occur. This number is substantially smaller than the number of samples required to ade-
quately approximate the population matrix Sn + σ2I using conventional multivariate inference
methodology.

Further research is needed to make rigorous the mathematical arguments for exact eigenvalue
separation in our information-plus-noise model.
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