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Let {sij : i, j = 1,2, . . .} consist of i.i.d. random variables in C with

Es11 = 0, E|s11|2 = 1. For each positive integer N , let sk = sk(N) =
(s1k, s2k, . . . , sNk)

T , 1 ≤ k ≤ K , with K = K(N) and K/N → c > 0 as
N → ∞. Assume for fixed positive integer L, for each N and k ≤ K , αk =
(αk(1), . . . , αk(L))T is random, independent of the sij , and the empirical dis-
tribution of (α1, . . . , αK), with probability one converging weakly to a prob-
ability distribution H on CL. Let βk = βk(N) = (αk(1)sTk , . . . , αk(L)sTk )T

and set C = C(N) = (1/N)
∑K

k=2 βkβ
∗
k . Let σ 2 > 0 be arbitrary. Then de-

fine SIR1 = (1/N)β∗
1(C + σ 2I )−1β1, which represents the best signal-to-

interference ratio for user 1 with respect to the other K − 1 users in a direct-
sequence code-division multiple-access system in wireless communications.
In this paper it is proven that, with probability 1, SIR1 tends, as N → ∞, to
the limit

∑L
�,�′=1 ᾱ1(�)α1(�′)a�,�′ , where A = (a�,�′) is nonrandom, Her-

mitian positive definite, and is the unique matrix of such type satisfying
A = (

c E αα∗
1+α∗Aα + σ 2IL

)−1, where α ∈ C
L has distribution H . The result

generalizes those previously derived under more restricted assumptions.

1. Introduction. This paper examines the mathematical properties of a quan-
tity fundamental in analyzing the performance of a particular scheme used in
wireless communications. The scheme, known as direct-sequence code-division
multiple-access (or DS-CDMA), currently in use, effectively handles many users
by taking into account the manner interference interacts when a particular user’s
information is being decoded. It is achieved by assigning to each user a vector of
high dimension, called a signature sequence. Suppose there are K users and L re-
ceive antennas. Let N be the dimension of the signature sequences, and denote by
sk ∈ C

N the signature sequence assigned to user k. At a particular instant of time
let Xk ∈ R denote the value transmitted by user k having transmit power Tk ∈ R

+,
and let γk(�) denote the fading channel gain from user k to antenna �. It is assumed
that the Xk’s are independent standardized random variables. With W(�) ∈ C

N de-
noting noise associated with transmission to antenna �, entries Wi(�) i.i.d. across
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i and �, mean zero and E|Wi(�)|2 = σ 2, the data recorded at antenna � is modeled
by

Y(�) =
K∑

k=1

Xk

√
Tkγk(�)sk + W(�).

Letting Y = [Y(1)T , . . . ,Y(L)T ]T ∈ C
NL, the goal is to capture the transmitted

Xk for each user in a linear fashion, that is, by taking the inner product of Y with
an appropriate vector ck ∈ C

NL, called the linear receiver for user k. For user 1,
X̂1 = c∗

1Y is the estimate of transmitted X1.
The output signal-to-interference ratio

|c∗
1 ŝ1|2

σ 2‖c1‖2 + ∑K
k=2 |c∗

1 ŝk|2
associated with user 1 is typically used as a measure for evaluating the performance
of the linear receiver. Here

ŝk = √
Tk[γk(1)sT

k , . . . , γk(L)sT
k ]T .

It turns out that the choice of c1 which minimizes E(X̂−X)2 (the minimum mean-
square error) also maximizes user 1’s signal-to-interference ratio, the latter taking
the value

SIR1 = ŝ∗
1

(
K∑

k=2

ŝk ŝ∗
k + σ 2I

)−1

ŝ1,

where I is the NL × NL identity matrix. It is this quantity which is the focus of
this paper.

In [4] properties of SIR1 and their dependency on the γk(�)’s, Tk’s, σ 2, L, N

and K , when the latter two values are large, are explored by proving limiting re-
sults, as N and K approach infinity with their ratio approaching a positive con-
stant, under the assumption that the sk’s are randomly generated (which is usually
done in practice). They are independent i.i.d. random vectors containing i.i.d. mean
zero entries, independent of the γk(�)’s and Tk’s. The results allow for analysis of
performance in various situations depending on the location of the users with re-
spect to each other and the antennas. Additional assumptions are imposed on the
γk(�)’s and the Tk’s. Throughout [4] it is assumed the γk(�)’s are independent and
circularly symmetric (i.e., the argument of each γk(�) is uniformly distributed on
[0,2π)), and the entries of each sk are mean zero complex Gaussian with variance
1/N [i.e., they are of the form Z1 + iZ2 with Z1, Z2 i.i.d. N(0,1/(2N))]. The Tk’s
are allowed only to depend on |γj (�)| for all k, j, �. Two scenarios depending on
the location of the antennas are considered. One scenario places all the antennas
near each other, the other allowing them to be located anywhere. Theorem 1 in [4]
applies to the former case, the proof of which requires, for each k, γk(1), . . . , γk(L)
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to be identically distributed. Also, Tk , as a function of the |γj (�)|’s, is assumed to
be symmetric with respect to the antennas, in the following sense. For any permu-
tation π on {1, . . . ,L}, we have for each k,

Tk

(
�(π(1)), . . . ,�(π(L))

) = Tk

(
�(1), . . . ,�(L)

)
,

where �(�) = (γ1(�), . . . , γk(�)). These two assumptions are lifted in Theorem 3,
which would not be realistic when antennas are not placed in one location. How-
ever, an additional assumption is made, namely, that there are for each user inde-
pendent signature sequences going to the L antennas, that is, ŝk takes the form√

Tk

[
γk(1)s(1)

k

T
, . . . , γk(L)s(L)

k

T ]T
,

with s(1)
k , . . . , s(L)

k i.i.d. As pointed out in [4], this “completely random sequence
model is not physically realizable.”

The purpose of this paper is to prove limiting results on SIR1 substantially more
general than those found in [4]. The main result is the following:

THEOREM 1.1. Let {sij : i, j = 1,2, . . .} be a doubly infinite array of i.i.d.
complex random variables with Es11 = 0, E|s11|2 = 1 (we will from henceforth
call standardized). Define for k = 1,2, . . . ,K sk = sk(N) = (s1k, s2k, . . . , sN k)

T .
We assume K = K(N) and K/N → c > 0 as N → ∞. For each N , let γk(�) =
γ N
k (�) ∈ C, Tk = T N

k ∈ R
+, k = 1, . . . ,K , � = 1, . . . ,L, be random variables,

independent of s1, . . . , sK ’s. Let for each N and k,

αk = αN
k = √

Tk

(
γk(1), . . . , γk(L)

)T
.

Assume, almost surely, the empirical distribution of α1, . . . ,αK weakly converges
to a probability distribution H in C

L.
Let βk = βk(N) = √

Tk(γk(1)sT
k , . . . , γk(L)sT

k )T and

C = C(N) = 1

N

K∑
k=2

βkβ
∗
k.

Define

SIR1 = 1

N
β∗

1(C + σ 2I )−1β1,

then, with probability one,

lim
N→∞ SIR1 = T1

L∑
�,�′=1

γ̄1(�)γ1(�
′)a�,�′,

where the L×L matrix A = (a�,�′) is nonrandom, Hermitian positive definite, and
is the unique Hermitian positive definite matrix satisfying

A =
(
c E

αα∗

1 + α∗Aα
+ σ 2IL

)−1

,(1.1)

where α ∈ C
L has distribution H and IL is the L × L identity matrix.
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Clearly SIR1 defined in this theorem is the same as the one initially introduced,
the only difference in notation being the removal of the scaling by 1/

√
N in the

definition of the sk’s.
Let α� denote the �th entry of the random vector α having distribution H . Un-

der the independence and circularly symmetric assumption on the γk(�)’s and the
independence of their angles and the Tk’s, it follows that for � 	= �′ and positive
a1, . . . , aL,

E
α�ᾱ�′

1 + ∑
� a�|α�|2 = 0.(1.2)

With just this additional condition we have the following:

COROLLARY 1.1. Under the conditions in Theorem 1.1 and (1.2), the limiting
A = diag(a1, . . . , aL), where the a�’s are positive satisfying

a� = 1

c E(|α�|2/(1 + ∑
� a�|α�|2)) + σ 2 .(1.3)

COROLLARY 1.2. Suppose the conditions in Theorem 1.1 are met except, for
the limiting behavior of the αk’s, it is only known that:

1. the empirical distribution of

Tk

(|γk(1)|2, . . . , |γk(L)|2)T
, 2 ≤ k ≤ K,(1.4)

converges almost surely in distribution to a probability distribution G in R
L,

and
2. for � 	= �′ and positive a1, . . . , aL,

1

K − 1

K∑
k=2

Tkγk(�)γ̄k(�
′)

1 + ∑
� a�Tk|γk(�)|2 → 0(1.5)

almost surely, as N → ∞.

Let (δ1, . . . , δL)T ∈ R
L denote a random vector having distribution G. Then the

conclusions of Theorem 1.1 and Corollary 1.1 hold, with each |α�|2 in (1.3) re-
placed by δ�.

Theorem 1.1 frees up conditions on the γk(�)’s, and overall dependence between
them, the Tk’s, and the antennas. Moreover, the result allows for more general (and
realistic) assumptions on the generation of the sk’s, permitting their entries, for
example, to be just ±1, which is typically done in practice.

Thus, under the general assumptions in Theorem 1.1, various scenarios can
be analyzed and compared. In applications the empirical distribution of the αk’s
would typically be used for H , the matrix A thereby satisfying

A =
(

K

N

1

K − 1

K∑
k=2

αkα
∗
k

1 + α∗
kAαk

+ σ 2IL

)−1

.
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Although there appears to be no explicit solution to (1.1), it will be shown that A

can be computed numerically by iteration of the right-hand side of (1.1), provided
the eigenvalues of the initial choice in the iteration lie in a certain closed interval
in (0,∞).

The conclusion of Corollary 1.1 is the same as that of Theorem 3 in [4], where
only the a.s. convergence in distribution of the empirical distribution of (1.4) is
assumed. But recall Theorem 3 also assumes for each user different signature se-
quences for each antenna. The extent of the results in [4] are confined to diagonal
A’s due to the assumptions imposed [essentially the spherically symmetric as-
sumption on the γk(�)

′s], clearly a special case of the general conditions assumed
in Theorem 1.1.

It is remarked here that the assumption of the sij coming from a doubly infinite
array can be replaced with sij = sij (N), 1 ≤ i ≤ N , 1 ≤ j ≤ K , with no depen-
dency assumptions for different N , provided E|s11|4 < ∞. Indeed, it will be seen
in the beginning of the proof of Theorem 1.1 that the double array and finite sec-
ond moment assumption is needed only when the strong law of large numbers is
invoked on sums involving |sij |2, the alternative assumptions yielding the same
conclusions with the aid of Lemma 2.10 below.

Theorem 1.1 only provides limiting properties of the signal-to-interference ratio
with respect to one user. The last section of this paper will address the issue of
uniform convergence of all the K SIR’s.

The proofs of these results will be given in Sections 3–7, with basic mathemat-
ical results needed in the proofs presented in Section 2.

Note. After submitting this paper, the authors came upon a result similar to
Theorem 1.1, announced in a conference paper, without proof [3]. In that paper it
is claimed that a proof is given in another paper, submitted for publication. In [3]
the sij ’s need not be identically distributed, nor come from one doubly infinite
array of variables, but it is assumed E|sij |4 = E|sij (N)|4 < N2−γ for some γ > 1.
Moreover, the limiting distribution H is assumed to have bounded support. The
conclusion has convergence in mean square.

2. Basic tools. This section contains properties of matrices, a classic fixed
point theorem, and some probabilistic results, needed in the proof of the above
statements. Throughout, I will denote the NL×NL identity matrix. For arbitrary
dimension n, In will denote the n × n identity matrix. For any rectangular ma-
trix X, vecX will denote the column vector consisting of stacking the columns
of X on top of each other, first column on top, last on bottom. Spectral norm on
matrices and Euclidean norm on vectors will be denoted by ‖ · ‖.

LEMMA 2.1. Let σ 2 > 0, B , A n × n matrices with B Hermitian nonnegative



86 Z. D. BAI AND J. W. SILVERSTEIN

definite, and x ∈ C
n. Then∣∣tr((B + xx∗ + σ 2I )−1 − (B + σ 2I )−1)

A
∣∣

=
∣∣∣∣x∗(B + σ 2I )−1A(B + σ 2I )−1x

1 + x∗(B + σ 2I )−1x

∣∣∣∣ ≤ ‖A‖
σ 2 .

PROOF. The identity follows from (D + xx∗)−1x = D−1x 1
1+x∗D−1x

, true
whenever n × n D and D + xx∗ are both invertible. Write B = ∑

λieie∗
i , its spec-

tral decomposition. Then∣∣∣∣x∗(B + σ 2I )−1A(B + σ 2I )−1x
1 + x∗(B + σ 2)−1x

∣∣∣∣
≤ ‖A‖‖(B + σ 2I )−1x‖2

1 + x∗(B + σ 2I )−1x

= ‖A‖
∑

(1/(λi + σ 2)2)|e∗
i x|2

1 + ∑
(1/(λi + σ 2))|e∗

i x|2

≤ ‖A‖
σ 2 . �

The next lemma is easily verifiable.

LEMMA 2.2. For any matrix A N × K and σ 2 > 0,

(AA∗ + σ 2IN)−1 = σ−2(
IN − A(A∗A + σ 2IK)−1A∗)

.

The following lemma is a direct consequence of the previous identity.

LEMMA 2.3. Suppose A1, . . . ,AL are N × K , and σ 2 > 0. Define the �, �′
block of the NL × NL matrix A by A�,�′ = A�A

∗
�′ and, splitting (A + σ 2I )−1 into

L2 N × N matrices, let (A + σ 2I )−1
�,�′ denote its �, �′ block. Then

(A + σ 2I )−1
�,�′ = σ−2

(
δ�,�′IN − A�

(∑
�

A∗
�A� + σ 2IK

)−1

A∗
�′

)
.

LEMMA 2.4. Given A1, . . . ,AL are N × K and z1, . . . , z� ∈ C with∑
� |z�|2 = 1, (∑

�

A�z�

)(∑
�

A∗
�ẑ�

)

 ∑

�

A�A
∗
�,

where “
” represents the partial ordering on Hermitian nonnegative definite ma-
trices.
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PROOF. For any b ∈ C
N , we have by two applications of Cauchy–Schwarz,

b∗
(∑

�

A�z�

)(∑
�

A∗
�ẑ�

)
b = ∑

�,�′
b∗A�A

∗
�′bz�ẑ�

≤ ∑
�,�′

(b∗A�A
∗
�b)1/2(b∗A�′A∗

�′b)1/2|z�| |z�′ |

=
(∑

�

(b∗A�A
∗
�b)1/2|z�|

)2

≤ ∑
�

|z�|2
∑
�

b∗A�A
∗
�b = b∗

(∑
�

A�A
∗
�

)
b.

This proves the result. �

LEMMA 2.5. For A1, . . . ,AL, A, σ 2 in Lemma 2.3, the L×L matrix (tr(A+
σ 2I )−1

�,�′) is positive definite with smallest eigenvalue bounded below by

tr

(∑
�

A�A
∗
� + σ 2IN

)−1

.

PROOF. For z1, . . . , zL ∈ C,
∑

� |z�|2 = 1, we have by Lemmas 2.2–2.4 the
smallest eigenvalue of (tr(A + σ 2I )−1

�,�′) is bounded below by∑
�,�′

tr(A + σ 2I )−1
�,�′ z̄�z̄�′

= σ−2 tr

(∑
�,�′

δ�,�′ z̄�z�′IN − ∑
�,�′

A�

(∑
�

A∗
�A� + σ 2IK

)−1

A�′ z̄�z�′

)

= σ−2 tr

(
IN −

(∑
�

A�z�

)(∑
�

A∗
�A� + σ 2IK

)−1(∑
�

A∗
�z̄�

))

≥ σ−2 tr

(
IN −

(∑
�

A�z�

)

×
((∑

�

A∗
�z̄�

)(∑
�

A�z�

)
+ σ 2IK

)−1(∑
�

A∗
�z̄�

))

= tr

((∑
�

A�z�

)(∑
�

A∗
�z̄�

)
+ σ 2IN

)−1

≥ tr

(∑
�

A�A
∗
� + σ 2IN

)−1

.
�



88 Z. D. BAI AND J. W. SILVERSTEIN

For A = (aij ) m × n and B p × q , the Kronecker product of A and B , denoted
by A ⊗ B , is the mp × nq matrix, expressed in blocks of p × q matrices, the i, j

block being aijB . We will need the following, which is Lemma 4.2.10 of [5].

LEMMA 2.6. For A m × n, B p × q , C n × k and D q × r , we have

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

The following is needed to prove Corollary 1.1.

LEMMA 2.7 (Schauder fixed point theorem [7]). If A is a convex, compact
subset of a Banach space X and g :A → A is continuous, then g has a fixed point
in A.

The next result is one on the eigenvalues of the expected value of the Kronecker
product of two random matrices.

LEMMA 2.8. Let A = (aij ) = (a1, . . . ,an) (m × n) and B (h × g) be two
random matrices, the entries having bounded second moments. Then

‖EA ⊗ B‖ ≤ min
(√‖EAA∗‖‖EB∗B‖,√‖EA∗A‖‖EBB∗‖ )

.

PROOF. For any h × m X = (x1, . . . ,xm) and g × n matrix Y = (y1, . . . ,yn)

with trXX∗ = trYY ∗ = 1, we have, using Cauchy–Schwarz,

‖(vecX)∗[EA ⊗ B]vecY‖2

=
∣∣∣∣∣

m∑
i=1

n∑
j=1

Eaij x∗
i Byj

∣∣∣∣∣
2

=
∣∣∣∣∣

n∑
j=1

EaT
j X∗Byj

∣∣∣∣∣
2

≤
(

n∑
j=1

E[‖Xaj‖‖Byj‖]
)2

≤
(

n∑
j=1

E1/2‖Xaj‖2E1/2‖Byj‖2

)2

≤
n∑

j=1

E‖Xaj‖2
n∑

j=1

E‖Byj‖2 = tr(EAA∗X∗
X) tr(EB∗BYY ∗)

≤ ‖EAA∗‖‖EB∗B‖.
Notice that

n∑
j=1

EaT
j X∗Byj = tr EAT X∗BY = tr EBT XAYT ,

so we also have

‖(vecX)∗[EA ⊗ B]vecY‖2 ≤ ‖EA∗A‖‖EBB∗‖.
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The truth of the lemma follows. �

The next result, which is Lemma 2.7 in [2], constitutes the main contribution of
randomness to Theorem 1.1.

LEMMA 2.9. For X = (X1, . . . ,Xn)
T i.i.d. standardized entries, C n × n, we

have for any p ≥ 2,

E|X∗CX − trC|p ≤ Kp

(
(E|X1|4 trCC∗)p/2 + E|X1|2p tr(CC∗)p/2)

,

where the constant Kp does not depend on n, C, nor on the distribution of X1.

The last two results provide conditions guaranteeing the strong law of large
numbers.

LEMMA 2.10. ([6]). For X1,X2, . . . i.i.d., let Sn = X1 + · · · + Xn. For t ≥ 1,
the joint conditions E|X1|t < ∞ and EX1 = b are equivalent to the condition

∞∑
n=1

nt−2P
(∣∣∣∣Sn

n
− b

∣∣∣∣ ≥ ε

)
< ∞

for every ε > 0.

LEMMA 2.11 (Lemma 2 of [1]). Let {Xij , i, j = 1,2, . . .} be a double array
of i.i.d. random variables and let α > 2

3 , β ≥ 0 and M > 0 be constants. Then as
n → ∞,

max
j≤Mnβ

∣∣∣∣∣n−α
n∑

i=1

(xij − c)

∣∣∣∣∣ → 0 a.s.

if and only if the following hold:

E|X11|(1+β)/α < ∞
and

c =
{

EX11, if α ≤ 1,
any number, if α > 1.

3. Proof of Theorem 1.1. For the remainder of this paper we write
√

Tkγk(�)

as αk(�). Write

SIR1 = 1

N

∑
�,�′

ᾱ1(�)α1(�
′)s∗

1(C + σ 2I )−1
�,�′s1,

where (C + σ 2I )−1
�,�′ , N × N , is the �, �′ block of the NL × NL matrix (C +

σ 2I )−1. Some of the NL×NL matrices below will also be viewed in block form:
L2 N × N matrices.
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We begin by truncating and centralizing the entries of s1. For each N , define

s̃n1(N) = sn1I(|sn1|≤(1/3) logN) − Esn1I(|sn1|≤(1/3) logN),

s̃1 = s̃1(N) = (
s̃11(N), s̃21(N), . . . , s̃N1(N)

)T
,

β̃1 = β̃1(N) = (
α1(1)s̃T

1 , . . . , α1(L)s̃1
)T

,

and S̃IR1 = 1
N

β̃
∗
1(C + σ 2I )−1β̃1 = 1

N

∑
�,�′ ᾱ1(�)α1(�

′)s̃∗
1(C + σ 2I )−1

�,�′ s̃1.

We have

|SIR1 − S̃IR1| ≤ σ−2N−1(‖β1 − β̃1‖2 + 2‖β1‖‖β1 − β̃1‖)
= σ−2

∑
�

|α1(�)|2N−1(‖s1 − s̃1‖2 + 2‖s1‖‖s1 − s̃1‖).

We have by the strong law of large numbers (SLLN) N−1‖s1‖2 → 1 a.s. as
N → ∞. Also, since

N−1‖s1 − s̃1‖2 = N−1
N∑

n=1

∣∣sn1I
(|sn1|>(1/3) logN

) − Esn1I(|sn1|≤(1/3) logN)

∣∣2
≤ N−12

N∑
n=1

|sn1|2I(|sn1|>(1/3) logN) + 2
∣∣Es11I(|s11|≤(1/3) logN)

∣∣2,
we have, for any positive M by SLLN,

lim sup
N

N−1‖s1 − s̃1‖2 ≤ lim
N→∞N−1

N∑
n=1

2
∣∣sn1I(|sn1|>M)

∣∣2
= 2E|s11|2I(|s11|>M) a.s.

Since this last expression can be made arbitrarily small by choosing M sufficiently
large, we have

|SIR1 − S̃IR1| → 0 a.s.

Let ŝ1 = ŝ1(N) = s̃1(N)/(E|s̃11(N)|2)1/2. It is clear that E|s̃11(N)|2 → 1 as
N → ∞. Therefore,∣∣∣∣∣S̃IR1 − 1

N

∑
�,�′

ᾱ1(�)α1(�
′)ŝ∗

1(C + σ 2I )−1
�,�′ ŝ1

∣∣∣∣∣ → 0

as N → ∞. Since the entries of ŝ1 are i.i.d. standardized and, for all large N ,
bounded by logN , we have by Lemma 2.9, for any N × N A,

E|N−1ŝ∗
1Aŝ1 − N−1 trA|4 ≤ K4‖A‖4(logN)8N−2,
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which is summable for A bounded in norm. Since we have ‖(C +σ 2I )−1
�,�′‖ ≤ σ−2,

we conclude that, with probability one,∣∣∣∣∣SIR1 − N−1
∑
�,�′

ᾱ1(�)α1(�
′) tr(C + σ 2I )−1

�,�′

∣∣∣∣∣ → 0.

Similar to what is argued above, we have by SLLN

lim
N→∞

1

N2

N∑
n=1

K∑
k=2

|snk|2I(|snk |>logN) = 0 a.s.

It is straightforward to verify the existence of a nonrandom sequence {aN }, of
positive numbers increasing to infinity, satisfying

lim
N→∞

a2
N

N2

N∑
n=1

K∑
k=2

|snk|2I(|snk |>logN) = 0(3.1)

almost surely, and

aNEs11I(|s11|≤logN) → 0.(3.2)

We may assume aN ≤ logN .
Define K1 = K(N) = {k ∈ {2, . . . ,K} : max� |αk(�)|2 < aN } and K2 = {2, . . . ,

K} − K1. Since the empirical distribution of αk converges weakly a.s. to a proba-
bility distribution in C

L, we must have, with probability one,

#K2 ≡ KN = o(N).

Write K2 = {k1, . . . , kKN
}, Ĉ0 = C, and Ĉj = Ĉj−1 − βkj

β∗
kj

, j = 1, . . . ,KN .
Let I�′,� denote the NL × NL matrix consisting of the N × N identity matrix in
the �′, � block, zeros elsewhere. Then, using Lemma 2.1 for any �, �′,

|N−1 tr(C + σ 2)−1
�,�′ − N−1 tr(ĈKN

+ σ 2I )−1
�,�′ |

=
∣∣∣∣∣
KN∑
j=1

tr(Ĉj−1 + σ 2I )−1I�′� − N−1 tr(Ĉj + σ 2I )−1I�′�

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

KN∑
j=1

N−1β∗
kj

(Ĉj + σ 2I )−1I�′,�(Ĉj + σ 2I )−1βkj

1 + N−1β∗
kj

(Ĉj + σ 2I )−1βkj

∣∣∣∣∣
≤ KN

Nσ 2 → 0 a.s.

Therefore, we may assume each αkj
= 0, and that max2≤k≤K,� |αk(�)|2 ≤ aN .
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We truncate and centralize the entries of each sk , 2 ≤ k ≤ K , in the same manner
as performed on s1, and call it s̃k . The corresponding βk and C are denoted by β̃k

and C̃. For any �, �′, we have∣∣N−1(
tr(C + σ 2I )−1

�,�′ − tr(C̃ + σ 2I )−1
�,�′

)∣∣
=

∣∣∣∣∣ 1

N2

K∑
k=2

tr
(
(C + σ 2I )−1(βkβ

∗
k − β̃kβ̃

∗
k)(C̃ + σ 2I )−1I�′,�

)∣∣∣∣∣
=

∣∣∣∣∣ 1

N2

K∑
k=2

β∗
k(C̃ + σ 2I )−1I�′,�(C + σ 2I )−1βk

− β̃
∗
k(C̃ + σ 2I )−1I�′,�(C + σ 2I )−1β̃k

∣∣∣∣∣
≤ 1

N2σ 4

K∑
k=2

‖βk − β̃k‖2 + 2‖βk‖‖βk − β̃k‖

= 1

N2σ 4

K∑
k=2

∑
�

|αk(�)|2(‖sk − s̃k‖2 + 2‖sk‖‖sk − s̃k‖)

≤ aNL

N2σ 4

[
K∑

k=2

‖sk − s̃k‖2 + 2

(
K∑

k=2

‖sk‖2

)1/2(
K∑

k=2

‖sk − s̃k‖2

)1/2]
.

By SLLN, we have

1

NK

K∑
k=2

‖sk‖2 = 1

NK

N∑
n=1

K∑
k=2

|snk|2 → 1 a.s.

and from (3.1) and (3.2),

a2
N

N2

K∑
k=2

‖sk − s̃k‖2

≤ 2a2
N

NK

N∑
n=1

K∑
k=2

|snk|2I(|snk |>(1/3) logN)

+ 2a2
N

∣∣Es11I(|s11|≤(1/3) logN)

∣∣2 → 0 a.s.

Therefore,

N−1(
tr(C + σ 2I )−1

�,�′ − tr(C̃ + σ 2I )−1
�,�′

) → 0 a.s.

It is easy to verify

N−1(
tr

(
(E|s̃11|2)−1C̃ + σ 2I

)−1
�,�′ − tr(C̃ + σ 2I )−1

�,�′
) → 0.
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Therefore, returning to the original notation, we may replace the doubly infinite
array and assume for each N , snk = snk(N), 1 ≤ n ≤ N , 2 ≤ k ≤ K , i.i.d. standard-
ized random variables bounded by logN . The quantities sk = sk(N), βk = βk(N),
and C = C(N) are defined accordingly.

Define C(k) = C − (1/N)βkβ
∗
k . Select ε ∈ (0,1/10). Applying Lemma 2.9 to

each of sk , (C(k) + σ 2)−1
�,�′ , 2 ≤ k ≤ K , 1 ≤ �, �′ ≤ L, with p = 5, along with

standard arguments using Chebyshev’s and Boole’s inequalities, together with
Lemma 2.1, we have

max
k∈{2,...,K}

�,�′∈{1,...,L}

∣∣∣∣Nε

N

(
s∗
k

(
C(k) + σ 2I

)−1
�,�′sk − tr(C + σ 2I )−1

�,�′
)∣∣∣∣ → 0 a.s.(3.3)

Define the L × L matrix B = (b�,�′) with

b�,�′ = 1

N

K∑
k=2

ᾱk(�
′)αk(�)

1 + (1/N)β∗
k(C(k) + σ 2I )−1βk

,

and define the NL × NL matrix B in terms of the Kronecker product: B = B ⊗
IN . We have (B + σ 2I )−1 = (B + σ 2IL)−1 ⊗ IN . Denote the �, �′ entry of (B +
σ 2IL)−1 by b̂�,�′ .

We write

C + σ 2I − (B + σ 2I ) = 1

N

K∑
k=2

βkβ
∗
k − B.

Taking inverses on each side, we have

(B + σ 2I )−1 − (C + σ 2I )−1

= 1

N

K∑
k=2

(B + σ 2I )−1βkβ
∗
k(C + σ 2I )−1 − (B + σ 2I )−1B(C + σ 2I )−1

= 1

N

K∑
k=2

(B + σ 2I )−1βkβ
∗
k(C(k) + σ 2I )−1

1 + (1/N)β∗
k(C(k) + σ 2I )−1βk

− (B + σ 2I )−1B(C + σ 2I )−1.

Multiplying on the right by I�′,�, taking traces and dividing by N , we get

N−1 tr(B + σ 2I )−1
�,�′ − N−1 tr(C + σ 2I )−1

�,�′

= 1

N

K∑
k=2

(1/N)β∗
k(C(k) + σ 2I )−1I�′,�(B + σ 2I )−1βk

1 + (1/N)β∗
k(C(k) + σ 2I )−1βk

− N−1 trB(C + σ 2I )−1I�′,�(B + σ 2I )−1

= 1

N

K∑
k=2

∑
�,�′ ᾱk(�)αk(�

′)(1/N)s∗
k[(C(k) + σ 2I )−1I�′,�(B + σ 2I )−1]�,�′sk

1 + (1/N)β∗
k(C(k) + σ 2I )−1βk
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− 1

N
tr

∑
�,�′

B�′,�[(C + σ 2I )−1I�′,�(B + σ 2I )−1]�,�′

= ∑
�,�′

1

N

[
K∑

k=2

1

N
s∗
k

[(
C(k) + σ 2I

)−1
I�′,�(B + σ 2I )−1]

�,�′sk

× ᾱk(�)αk(�
′)

1 + (1/N)β∗
k(C(k) + σ 2I )−1βk

− trB�′,�[(C + σ 2I )−1I�′,�(B + σ 2I )−1]�,�′

]

= ∑
�,�′

1

N

[
K∑

k=2

1

N
s∗
k

(
C(k) + σ 2I

)−1
�,�′(B + σ 2I )−1

�,�′sk

× ᾱk(�)αk(�
′)

1 + (1/N)β∗
k(C(k) + σ 2I )−1βk

− trB�′,�(C + σ 2I )−1
�,�′(B + σ 2I )−1

�,�′

]

= ∑
�,�′

1

N

K∑
k=2

b̂�,�′ ᾱk(�)αk(�
′)

1 + (1/N)β∗
k(C(k) + σ 2I )−1βk

N−1

× (
s∗
k

(
C(k) + σ 2I

)−1
�,�′sk − tr(C + σ 2I )−1

�,�′
)
.

Using (3.3), the fact that the b̂�,�′ ’s are bounded by σ−2, and noticing that

N−1 tr(B + σ 2I )−1
�,�′ = b̂�,�′,

we immediately get

|b̂�,�′ − N−1 tr(C + σ 2I )−1
�,�′ | → 0 a.s.(3.4)

Notice C�,�′ , the �, �′ block of C, can be written as((
1/

√
N

)
SA(�)

)((
1/

√
N

)
SA(�′)

)∗
,

where S = (s2, . . . , sK) and A(�) = diag(α2(�), . . . , αk(�)). Therefore, from
Lemma 2.5, the L × L matrix (tr(C + σ 2I )−1

�,�′) is positive definite.
Using this and (3.3), we have∣∣∣∣∣b�,�′ − 1

N

K∑
k=2

ᾱk(�
′)αk(�)

1 + ∑
�,�′ ᾱk(�)αk(�

′)N−1 tr(C + σ 2I )−1
�,�′

∣∣∣∣∣(3.5)
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≤ ∑
�,�′

a2
N

N

N∑
k=2

N−1∣∣s∗
k

(
C(k) + σ 2I

)−1
�,�′sk

− tr(C + σ 2I )−1
�,�′

∣∣ → 0 a.s.

From Lemma 2.5 the smallest eigenvalue of AN ≡ (N−1 tr(C + σ 2I )−1
�,�′) is

bounded below by

1

N
tr

(
1

N
S

∑
�

A(�)A(�)∗S∗ + σ 2IN

)−1

.(3.6)

This quantity is the Stieltjes transform of the empirical distribution of the eigen-
values of

1

N
S

∑
�

A(�)A(�)∗S∗

evaluated at −σ 2. We have, with probability one, the empirical distribution of the
diagonal entries of ∑

�

A(�)A(�)∗

converging weakly to a nonrandom probability distribution. Therefore, from [8],
we see, with probability one, the empirical distribution of the eigenvalues of (3.6)
converges weakly to a nonrandom probability distribution, and consequently, (3.6)
converges a.s. to a nonrandom positive number, say, m. Therefore,

lim inf
N

λminAN ≥ m a.s.(3.7)

Consider a realization in which (3.4),(3.5) and (3.7) hold and the empirical
distribution of (α2, . . . ,αK) converges weakly, where α ∈ C

L denotes the ran-
dom vector having distribution H . Let {Ni} be a subsequence in which each
N−1 tr(C + σ 2I )−1

�,�′ converges, say, to a�,�′ for �, �′ ∈ {1, . . . ,L}. Let A = (a�,�′)

and δ = infNi
λmin(ANi

) > 0. We have for z ∈ C
L,∣∣∣∣ zz∗

1 + z∗Az

∣∣∣∣ ≤ ‖z‖2

1 + λmin(A)‖z‖2 ≤ 1

δ
.

Therefore, by the dominated convergence theorem, along {Ni},
1

K − 1

K∑
k=2

αkα
∗
k

1 + α∗
kAαk

→ E
αα∗

1 + α∗Aα
,

and since ∣∣∣∣ zz∗

1 + z∗ANz
− zz∗

1 + z∗Az

∣∣∣∣ ≤ 1

δ
‖AN − A‖,
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we have by (3.5), along {Ni},

B → c E
αα∗

1 + α∗Aα
.

So A satisfies (1.1). The next section shows that only one Hermitian positive defi-
nite A will satisfy this equation. With this fact we have, with probability one, AN

converges to a nonrandom Hermitian positive definite L × L matrix A satisfy-
ing (1.1).

4. Proof of uniqueness. Suppose A and Ã are two different L×L Hermitian
positive definite matrices satisfying (1.1). Then

A − Ã = c E
Aαα∗Ãα∗(A − Ã)α

(1 + α∗Aα)(1 + α∗Ãα)
.

Multiplying A−1/2 on the left and Ã−1/2 on the right, we obtain

A1/2Ã−1/2 − A−1/2Ã1/2 = cE
A1/2αα∗Ã1/2α∗(A − Ã)α

(1 + α∗Aα)(1 + α∗Ãα)

= cE
ηη̃∗η∗(A1/2Ã−1/2 − A−1/2Ã1/2)̃η

(1 + α∗Aα)(1 + α∗Ãα)
,

where η = A1/2α and η̃ = Ã1/2α. Write µ = vec(A1/2Ã−1/2 − A−1/2Ã1/2). With
the aid of the Kronecker product, we can write the above equation as

µ = cE
(̃η ⊗ η)(̃ηT ⊗ η∗)

(1 + α∗Aα)(1 + α∗Ãα)
µ.(4.1)

Using Lemma 2.6, we have

cE
(̃η ⊗ η)(̃ηT ⊗ η∗)

(1 + α∗Aα)(1 + α∗Ãα)
= cE

[
η̃η̃∗

1 + α∗Ãα
⊗ ηη∗

1 + α∗Ãα

]
and, since µ 	= 0, this matrix has an eigenvalue equal to 1. By Lemma 2.8, its
largest squared eigenvalue cannot be greater than∥∥∥∥cE

(
η̃η̃∗

1 + α∗Ãα

)2∥∥∥∥∥∥∥∥cE
(

ηη∗

1 + α∗Aα

)2∥∥∥∥.
We have

cE
(

ηη∗

1 + α∗Aα

)2

= cE
A1/2αα∗A1/2α∗Aα

(1 + α∗Aα)2 ,

and since

A1/2αα∗A1/2

1 + α∗Aα
− A1/2αα∗A1/2α∗Aα

(1 + α∗Aα)2
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is nonnegative definite, we have

cE
(

ηη∗

1 + α∗Aα

)2


 cE
A1/2αα∗A1/2

1 + α∗Aα

= A1/2(A−1 − σ 2IL)A1/2 = IL − σ 2A,

the eigenvalues of which must all be less than one. The same result applies for the
other matrix involving Ã. Therefore, the matrix in (4.1) cannot have an eigenvalue
equal to one, a contradiction. So we conclude that there is only one Hermitian
positive definite solution to (1.1).

5. Convergence of iterations. Let f (A) denote the right-hand side of (1.1),
considered as a mapping of the set of Hermitian positive definite matrices, which
we will denote by H . Clearly f maps H into itself with largest eigenvalue not
larger than σ−2. We proceed in finding a positive b < σ−2 such that f maps

H [b,σ−2] ≡ {A ∈ H : all eigenvalues of A lie in [b,σ−2]}
into itself. Notice from the dominated convergence theorem

g(a) ≡ cE
a‖α‖2

1 + a‖α‖2 + aσ 2

is continuous and nondecreasing for a ∈ [0, σ−2] with g(0) = 0 and g(σ−2) ≥ 1.
Therefore, there exists â ∈ (0, σ−2] for which g(â) = 1. We claim a suitable b is
â/(c + 1). Indeed, suppose the eigenvalues of A ∈ H are contained in [â/(c +
1), σ−2]. If a ≡ λmin(A) ≥ â, then using the fact that ‖EB‖ ≤ E‖B‖ for any ran-
dom matrix B ,

λmax(f
−1(A)) = σ 2 + cλmax

(
E

αα∗

1 + α∗Aα

)

≤ σ 2 + cE
‖α‖2

1 + a‖α‖2 ≤ 1 + c

a
≤ 1 + c

â
,

whereas if a ∈ [â/(c + 1), â),

λmaxf
−1(A) ≤ g(a)

a
≤ 1

a
≤ c + 1

â
.

The claim is proven.
Let A0 ∈ H [b,σ−2] and define recursively An+1 = f (An). We have An ∈

H [b,σ−2] for all n, and for n ≥ 1, as in Section 4,

A
1/2
n+1A

−1/2
n − A

−1/2
n+1 A1/2

n = cE
A

1/2
n+1αα∗A1/2

n α∗(An − An−1)α

(1 + α∗Anα)(1 + α∗An−1α)
.

Letting

Hn = A1/2
n A

−1/2
n−1 − A−1/2

n A
1/2
n−1,
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we have

Hn+1 = cE
A

1/2
n+1αα∗A1/2

n α∗A1/2
n HnA

1/2
n−1α

(1 + α∗Anα)(1 + α∗An−1α)

= cE
A

1/2
n+1αα∗A1/2

n α∗A1/2
n−1H

∗
n A

1/2
n α

(1 + α∗Anα)(1 + α∗An−1α)
,

or in vector form,

vecHn+1 =
[
cE

(Ā
1/2
n α̂ ⊗ A

1/2
n+1α)(αT Ā

1/2
n ⊗ α∗A1/2

n−1)

(1 + α∗Anα)(1 + α∗An−1α)

]
vecH ∗

n

= cE
[
(Ā

1/2
n ᾱαT Ā

1/2
n ) ⊗ (A

1/2
n+1αα∗A1/2

n−1)

(1 + α∗An−1)(1 + α∗Anα)

]
vecH ∗

n ,

using Lemma 2.6. Arguing the same way as in the previous section, we have by
Lemma 2.8,∥∥∥∥cE

[
(Ā

1/2
n ᾱαT Ā

1/2
n ) ⊗ (A

1/2
n+1αα∗A1/2

n−1)

(1 + α∗An−1)(1 + α∗Anα)

]∥∥∥∥2

≤
∥∥∥∥cE

A
1/2
n αα∗Anαα∗A1/2

n

(1 + α∗An−1α)(1 + α∗Anα)

∥∥∥∥∥∥∥∥cE
A

1/2
n+1αα∗An−1αα∗A1/2

n+1

(1 + α∗An−1α)(1 + α∗Anα)

∥∥∥∥
≤

∥∥∥∥cE
A

1/2
n αα∗A1/2

n

1 + α∗An−1α

∥∥∥∥∥∥∥∥cE
A

1/2
n+1αα∗A1/2

n+1

1 + α∗Anα

∥∥∥∥
= ‖A1/2

n (A−1
n − σ 2IL)A1/2

n ‖‖A1/2
n+1(A

−1
n+1 − σ 2IL)A

1/2
n+1‖

= ‖IL − σ 2An‖‖IL − σ 2An+1‖
≤ (1 − σ 2b)2.

Notice ρ ≡ 1 − σ 2b ∈ (0,1). For n ≥ 2, we therefore get

‖Hn‖ ≤ ‖vecHn‖ ≤ ρn−1‖vecH1‖,
and so

‖An − An−1‖ = ‖A1/2
n HnA

1/2
n−1‖ ≤ σ−2ρn−1‖vecH1‖,

which implies for m ≥ n ≥ 2,

‖Am − An‖ ≤ ‖vecH1‖
σ 2(1 − ρ)

ρn.

Therefore, {An} is a Cauchy sequence, and hence, convergent to a matrix A ∈
H [b,σ 2]. From continuity of f , A satisfies (1.1).
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6. Proofs of corollaries. For the first corollary we see that, under assump-
tion (1.2), f maps diagonal matrices consisting of positive diagonal elements into
diagonal matrices. Due to the uniqueness of solutions to (1.1), the proof amounts
to showing the existence of positive a1, . . . , aL satisfying (1.1). This is achieved
by invoking Lemma 2.7. We simply take X = R

L, g the right-hand side of (1.3)
and A = [b,σ−2]L. The first statement in Corollary 1.1 follows.

For the second corollary, we follow along the argument toward the end of
Section 3. We see immediately that (3.7) holds. Consider a realization in which
(3.4), (3.5) and (3.7) hold, the empirical distribution of (|αk(1)|2, . . . , |αk(L)|2),
2 ≤ k ≤ K , converges weakly to G, and (1.5) is true for all positive rational
a1, . . . , aL. Then, for this realization, a simple continuity argument reveals (1.5)
true for all positive a1, . . . , aL. Moreover, the empirical distribution of αk ,
2 ≤ k ≤ K , is tight. The subsequence {Ni} considered can therefore also be one
in which the empirical distribution of αk , 2 ≤ k ≤ K , converges weakly to, say,
H . The rest of the argument at the end of Section 3 leads to only one solution A

on {Ni} satisfying (1.1). But, by the dominated convergence theorem, (1.2) holds
for all positive a1, . . . , aL. Thus, from Corollary 1.1, A is diagonal satisfying (1.3),
which depends only on G. Thus, Corollary 1.2 follows.

7. Question of uniformity. Let

Ck = 1

N

(
K∑

j=1

βjβ
∗
j − βkβ

∗
k

)
.

Then

SIRk ≡ 1

N
β∗

k(Ck + σ 2I )−1βk = 1

N

∑
�,�′

ᾱk(�)αk(�
′)s∗

k(Ck + σ 2I )−1
�,�′sk

represents user k’s best signal-to-interference ratio. We are interested in knowing
what conditions are needed to insure

max
k≤K

∣∣∣∣∣ 1

N

∑
�,�′

ᾱk(�)αk(�
′)

(
s∗
k(Ck + σ 2I )−1

�,�′sk − a�,�′
)∣∣∣∣∣ → a.s.

Clearly nothing can be concluded without assuming bounds or some growth
rate on the αk(�)’s along with knowledge of the rate of convergence of the
(1/N)s∗

k(Ck +σ 2I )−1
�,�′sk’s. The latter is tied closely with its limiting distributional

behavior, which will be investigated in later work. For now we will confine the
analysis to providing conditions to ensure for any �, �′,

max
k≤K

|N−1s∗
k(Ck + σ 2I )−1

�,�′sk − a�,�′ | → 0 a.s.(7.1)

as N → ∞.
We have the following:



100 Z. D. BAI AND J. W. SILVERSTEIN

THEOREM 7.1. If, in addition to the conditions in Theorem 1.1, E|s11|4 < ∞,
or if the doubly infinite array assumption is dropped, E|s11|6 < ∞, then (7.1) is
true.

PROOF. For each k ≤ K , let s̃k denote the vector obtained after truncating and
centralizing sk , the same way as s1. Each Ck remains unchanged. We have

|N−1s∗
k(Ck + σ 2I )−1

�,�′sk − N−1s̃∗
k(Ck + σ 2I )−1

�,�′ s̃k|
≤ σ−2N−1(‖sk − s̃k‖2 + 2‖sk‖‖sk − s̃k‖).

By Lemma 2.11, (X11 = |s11|2, α = β = 1) under the double array assumption,
or, for nondouble array, Lemma 2.10 (X1 = |s11|2, t = 3) together with Boole’s
inequality, we follow the steps in the beginning of Section 3 and find, almost surely,

lim sup
N

max
k≤K

|N−1‖sk‖2 − 1| = 0

and

lim sup
N

max
k≤K

N−1‖sk − s̃k‖2 = 0.

Letting ŝk = s̃k/(E|s̃11|2)1/2, it follows that, almost surely,

max
k≤K

N−1|s∗
k(Ck + σ 2I )−1

�,�′sk − ŝ∗
k(Ck + σ 2I )−1

�,�′ ŝk| → 0

as N → ∞. Applying Lemma 2.9 for any p > 4, we have then

max
k≤K

N−1|s∗
k(Ck + σ 2I )−1

�,�′sk − tr(Ck + σ 2I )−1
�,�′ | → 0 a.s.

as N → ∞. For any k, k′, with two applications of Lemma 2.1, we find (with
A = I�′,�)

N−1| tr(Ck + σ 2I )−1
�,�′ − tr(Ck′ + σ 2I )−1

�,�′ | ≤ 2σ−2N−1.

Thus, the remainder of the proof of Theorem 1.1 proceeds exactly as in Section 3,
and we get (7.1). �
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